RD_FCC – GR1@WP7: LNF

Marco Poli Lener

Amoroso A.¹, Balossino I.², Bencivenni G.³, Bertani M.³, Cafaro V.⁴, Cibinetto G.², De Lucia E.³, Domenici D.³, Farinelli R.², Felici G.³, Garzia I.², Gatta M.³, Giacomelli P.⁴, Gramigna S.², Lavezzi L.¹, Melchiorri M.², Mezzadri G.², Morello G.³, Papalino G.³, Poli Lener M.³, Scodeggio M.², Sosio S.¹

INFN Torino
 INFN Ferrara
 LNF-INFN
 INFN Bologna

RD-FCC $\rightarrow \mu\text{-RWELL}$ for tracking and muon system

The **IDEA detector** is a general purpose detector designed for experiments at future e^+e^- colliders (FCCee and CepC). **Pre-shower detector** and the Muon system are designed to be instrumented with μ -RWELL technology.

Pre-shower

Tiles: 50x50 cm² with X-Y readout **Strip length: 50cm** TOT: 330 m², 1.5×10⁶ channels (0.4 mm strip pitch)

Muon detector

Tiles: 50x50 cm² with X-Y readout **Strip length: 50cm** TOT: 4000 m², 5×10⁶ channels (1.5 mm strip pitch)

Requirements:

- Tiles 50x 50 cm²
- Efficiency ≥ 98%
- Space resolution ≤ 100 μm (pre-shower)
 ≤ 400 μm (muon)
- Mass production \rightarrow Technology Trasfer to Industry
- FEE Cost reduction \rightarrow custom made ASIC (TIGER)

The µ-RWELL: detector scheme

The μ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. **The core is the \muRWELL_PCB** realized by coupling three different elements:

- **a WELL** patterned kapton foil acting as **amplification stage** (GEM-like)
- 2 a **resisitive DLC** layer^(*) (Diamond Like Carbon) for discharge suppression w/surface resistivity ~ $50 \div 100$ M Ω/\Box

J	RECEIVED: October 2, 201/ ACCEPTED: January 8, 201: PUBLISHED: February 18, 201:
The micro-Resisti	ve WELL detector: a compact
spark-protected s	ingle amplification-stage MPGD
G. Bencivenni, ^{a,1} R. De Oliv	eira, ^b G. Morello ^a and M. Poli Lener ^a
^a Laboratori Nazionali di Frascati o Frascati, Italy	dell'INFN,
^b CERN, Meyrin, Switzerland	
E-mail: giovanni.benciven	ni@lnf.infn.it
ABSTRACT: In this work we pre	sent a novel idea for a compact spark-protected single amplifica-
tion stage Micro-Pattern Gas De	tector (MPGD). The detector amplification stage, realized with a
structure very similar to a GEM	foil, is embedded through a resistive layer in the readout board.
A cathode electrode, defining the	e gas conversion/drift gap, completes the detector mechanics. The
mon with previous MPGDs, suc	h as C.A.T. and WELL, developed more than ten years ago. The
prototype object of the present s	tudy has been realized in the 2009 by TE-MPE-EM Workshop a
CERN. The new architecture is a	very compact MPGD, robust against discharges and exhibiting a
large gain (\sim 6 \times 10 ³), simple to	construct and easy for engineering and then suitable for large area
tracking devices as well as huge	calorimetric apparata.

(*) The DLC foils are currently provided by the Japan Company – BeSputter-

The µ-RWELL: principle of operation

Applying a suitable voltage between the **top Cu-layer and the DLC** the WELL acts as a **multiplication channell for the ionization** produced in the conversion/drift gas gap.

Introduction of the resistive stage:

Pros: suppression of the transition from streamer to spark \rightarrow Spark amplitude reduction

Cons: reduction of the capability to stand high particle fluxes. But an **appropriate grounding schemes** of the resistive layer solves this problem (see next slide)

Comparison between the **current** drawn by a single GEM and a μ -RWELL at various **gas gain**.

The black spikes are the sparks in the detectors, clearly dumped in the $\mu\text{-}$ RWELL for higher gains

µ-RWELL performance overview

Gain

2021 Test Beam: 1D readout u-RWELL

New μ-RWELL prototypes with 40cm long strips (1D readout)

140-180 GeV/c muon and pion beam Operated in $Ar/CO_2/CF_4$ (45/15/40)

N. Poli Lener – RD_FCC @ LNF – GR1

7 μ-RWELL prototypes with resistivity varying between
10 and 80 MOhm/O will allow to define best resistivity for final 50x50 cm² detector

Preliminary Results 2021

With a pitch 0.4 mm at HV=520 V and with CL=1.5 $\rightarrow \sigma$ <100 um With a 0.8 mm pitch, increasing the HV=600V, we estimate a CL=1.5 expecting a σ <100 um

We are extrapolating from 2021 TB runs the performance with 0.8 mm strip pitch

The **increase of the strip pitch** allows to decrease the FEE channels without compromising the spatial resolution

R&D for 2022-23

L'R&D for the 2022 foreseen the production of uRWELL with X-Y readout TB a Ottobre 2022 (SPS-H8-CERN)

N.2 u-RWELLS 1D Y-strips Drift gap Drift gap Drift gap Drift gap X-strips X-strips X-strips X-strips

Detector layouts 2D

These layouts allow to operate at lower gain with respect to the GEM detectors in «COMPASS»

Easy production technlogy for both layouts. Bi-dimensional space resolution to be verified with Beam Test

Technology transfer with ELTOS/CERN

DLC sputtering with new INFN-CERN machine @ CERN

Step 1: producing µ-RWELL_PCB

- with top patterned (pad/strip)
- without bottom patterned

Step 2: DLC patterning

- in ELTOS with BRUSHING-machine

Step 3: DLC foil gluing on PCB

-double 106-prepreg (~2x50 μm thick) (already used in ELTOS)

- pre-smoothing + 106-prepreg (~50 μm thick)
- single 1080-prepreg (~75 μm thick)

Step 4: top copper patterning

Step 5: Kapton etching on small PCB

9

Finalization

Conclusioni

- μ -RWELL now is a mature technology
 - It is also considered for an upgrade of the LHCb Muon

- apparatus and for the spectrometer of CLAS12 Jlab (White paper for Snowmass)
- IDEA detector concept is considered for both FCC-ee and CEPC future colliders
- Freshower and muon detectors designed with the μ-RWELL technology
- Studies aimed at defining the best DLC resistivity and strip pitch for the requested spatial resolution of the preshower and muon detectors
- % 2D μ -RWELL prototype characterization with a new test beam in 2022
- Continue partnership with ELTOS (preparation) and CERN (finalization) to complete technology transfer
- * Develop a new custom-made ASIC for μ -RWELL readout
 - ℁ Final design ready for next FCC-ee and CEPC descriptive document (2025-2027)

Ş

Ş

Phone: 77500 or 70475 ————————————————————————————————————		
E10 3.3 E10	Monday 01/11: Scrubbing started NA beam back tonigl	nt

Thanks for your attention

M. Poli Lener - WP7 uRWELL

References

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

G. Bencivenni et al., *The* μ -*RWEL detector*, 2017 *JINST* **12** C06027

G. Bencivenni et al., Performance of µ-RWELL detector vs resistivity of the resistive stage, Nucl. Instrum. Meth. A 886 (2018) 36.

G. Bencivenni et al., *The µ-RWELL layouts for high particle rate*, 2019 *JINST* **14** P05014

G. Bencivenni et al., On the space resolution of the μ -RWELL, 2020 JINST **16** P08036

A. Ochi et al., Carbon sputtering Technology for MPDG detectors, PoS(TIPP2014)351 (2014).