

UNIVERSITÀ DEGLI STUDI DI MILANO

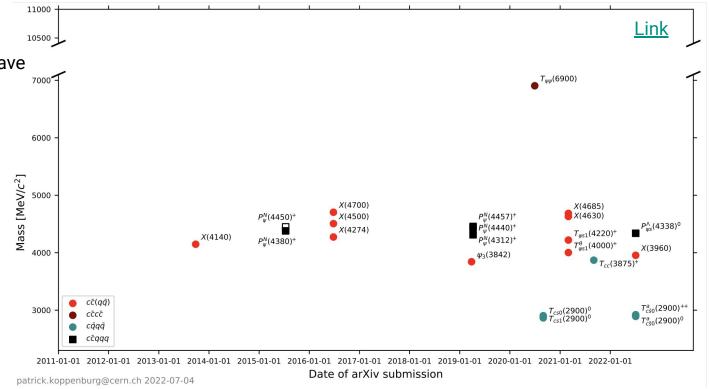
New pentaquark states in B meson decays at LHCb

End-of-year seminar

Elisabetta Spadaro Norella

University & INFN Milano

Assegno PostDoc tipo A

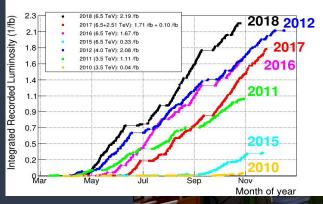

Sept 20th, 2022

Spectroscopy at LHC

More than 60 hadrons have been observed by LHC

14 manifestly exotic

 minimal quark content different from qq and qqq

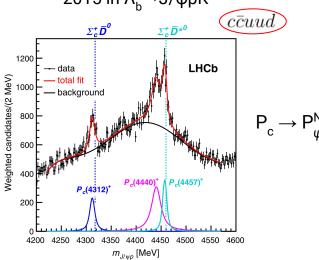


LHCb detector

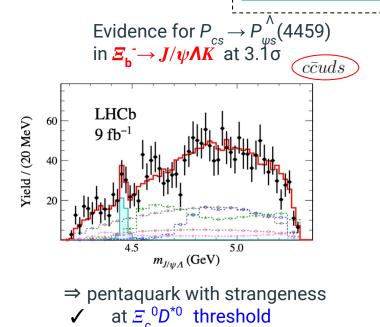
The major player in spectroscopy thanks to its unique dedicated design

- high invariant mass resolution
- PID for separate K, π , p
- highly performant trigger

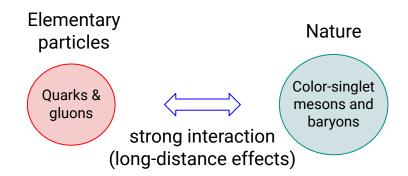
Luminosity: Run 1 and Run 2: 9 fb⁻¹



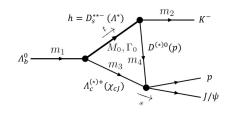
Pentaquarks


New naming scheme: arxiv2206.15233

First pentaquarks by LHCb in 2015 in $\Lambda_h \rightarrow J/\psi pK$


 $P_c(4312)^+ + 2 peaks at 4450 MeV$

PRL 122, 222001 (2019)


Sci.Bull. 66 (2021) 1278-1287 PLB 772 (2017) 265-273

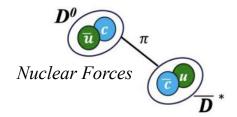
The unresolved nature

Rescattering effects

Guo,Meissner,Wang,Yang, PRD 92 (2015) 071502 Liu, Wang, Zhao, PLB 757 (2016) 231 Mikhasenko, arXiv:1507.06552 Szczepaniak, PLB 757 (2016) 61 and others

Compact tetraquark/pentaquark

Diquark-antidiquark PRD 71, 014028 (2005) PLB 662 424 (2008)


Color Forces

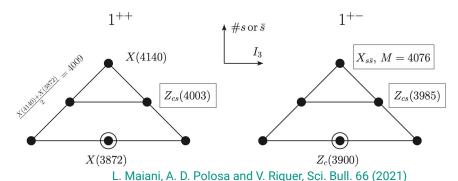
Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 011502 (R) (2019)

How to discriminate?

- ⇒ Masses & widths
- $\Rightarrow J^{P}$
- ⇒ Isospin multiplets


No consensus yet

Many peaks close to meson-meson or meson-baryon thresholds and have narrow widths:

$$\begin{array}{ccc} & & & & & & \\ T_{cc}(3875)^{+} & cc\bar{u}\bar{d} & D^{*+}D^{0} \\ P_{\psi}^{N} & c\bar{c}uud & \Sigma_{c}D^{0(*)} \\ P_{\psi s}^{A}(4459)^{0} & c\bar{c}uds & \Xi_{c}^{0}D^{*0} \end{array}$$

States belonging to multiplets of SU(3)_f symmetry

ie.
$$Z_{cs}^{+}(4000)$$
 and $Z_{cs}^{+}(3985)$

⇒ favor the **molecular** interpretation

In S-wave?

 \Rightarrow Need to establish J^{P}

⇒ fit in the compact model

Search for states with s quark content

New decays to search for pentaquarks

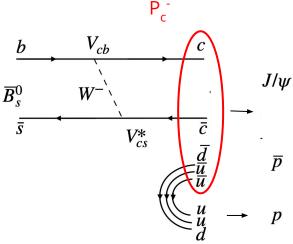
Multibody decays of B meson

- good invariant mass resolution
- high signal purity

$$B^0_s o J/\psi par p$$
 $ar B^0_s w^{-} y_{cs} c J/\psi ag{d} ar p$

⇒ good place to search for narrow resonances ⇒ Exotic states

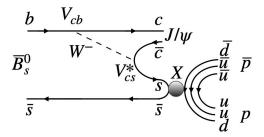
$$B^- o J/\psi \Lambda ar p$$
 $b V_{cb} c J/\psi \Lambda ar p$ $B^- V_{cs} S u \Lambda ar u A ar u ar u$

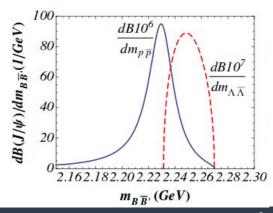

Evidence of new structure in $J/\psi p$ and $J/\psi \bar{p}$ systems in $B^{o}_{(s)} \rightarrow J/\psi p \bar{p}$ decays

Part of my PhD thesis & published this year in PRL 128 (2022) 062001

$B^0_s o J/\psi par p$ decays

PRL 128 (2022) 062001 -

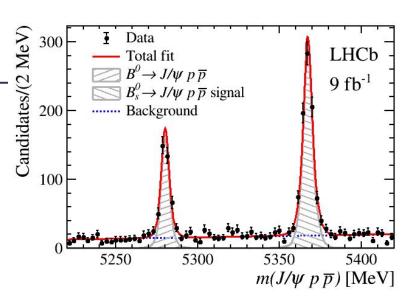

Search for pentaquark searches in $J/\psi p$ and $J/\psi \bar{p}$ and for glueball^[2] in $p\bar{p}$ system

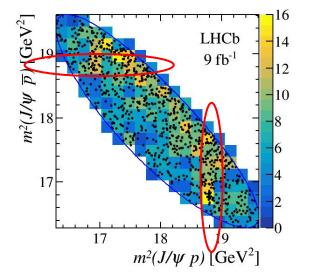

→ Same final state as $\Lambda_b \rightarrow J/\psi pK^{[1]}$ but mesonic decay ⇒ clearer channel

[1] PRL 122, 222001 (2019)

[2] Eur. Phys. J. C75 (2015), no. 3 101

Resonant state $f_J(2230) \rightarrow p\bar{p}$, peak at 2.2 GeV and $J^P = 2^{++}$ or 4^{++} [2]

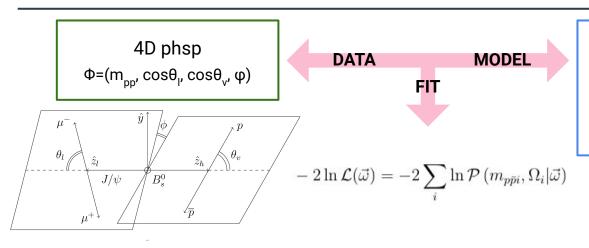

Selection


Dataset: 9 fb⁻¹

~800 $\rm B_{\rm s}$ events in 3σ window

with 15% of background

 $N_{sig}(B_s) = 776 + /-30$ $f_{bkg} = 14.9 + /-0.6 \%$ Purity: 85.1%



Structure in J/ψp, but to rule out possible pp reflections

Amplitude analysis in 4D

[LHCb-PAPER-2021-018]

The amplitude analysis

Fit models:

- Baseline model: only non resonant (NR) in pp chain
- Baseline + old P_c states: $P_c(4312)$
- Baseline + new P_c state ⇒ Nominal model

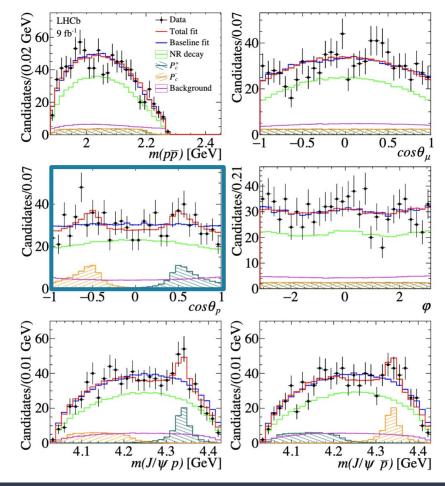
Helicity formalism

- flavour untagged B_s decays
- assuming CP symmetry

2-body decay amplitudes:

Nominal fit to data

Amplitude contributions:


- NR in S-wave in $p\bar{p}$
- P_c^+ and P_c^- with same M, Γ and coupling
- \rightarrow Improvement in $cos\theta_p$ (helicity angle of p) w.r.t. baseline model

Goodness of fit test: $\chi^2/ndf=0.998\pm0.008$

Other models tested:

- Old P_c states observed by LHCb in 2019
- Glueball at M~2.2GeV and Γ=20 MeV

⇒ No evidence

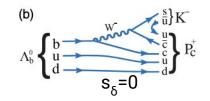
Evidence of a new exotic state

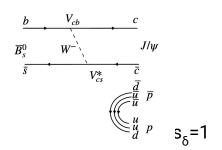
PRL 128 (2022) 062001

New pentaquark-like state $c\bar{c}uud$ with significance between 3.1-3.7 σ

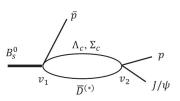
$$M_{P_c} = 4337^{+7}_{-4} (ext{stat}) \pm 2 (ext{sys}) ext{MeV}, \ \Gamma_{P_c} = 29^{+26}_{-12} (ext{stat}) \pm 14 (ext{sys}) ext{ MeV}$$

 P_c (4337) not consistent with previously observed P_c states


Peculiar that:


- $P_c(4312)$ only in Λ_b decays
- $P_c(4337)$ only in B_s decays

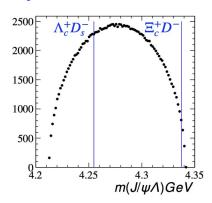
Possible theoretical interpretations

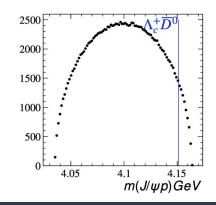

Tight pentaquark: <u>PRD 104, 114028 (2021)</u>

Creation processes involving different spin (s_{δ}) of the di-quark (ud)

• Triangle cusps: Phys. Rev. D **104**, L09150. Interference effects between $\Sigma_c \bar{D}$ and $\Lambda_c \bar{D}^*$ threshold cusps can explain the oscillation in $\cos \theta_{\rm p}$

Observation of a J/ $\psi\Lambda$ resonance in B⁻ \rightarrow J/ $\psi\Lambda\bar{p}$ decays

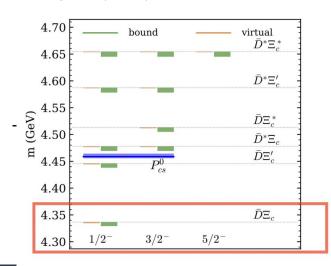

LHCb-PAPER-2022-031


Branching ratio: [1]

$${\cal B}(B^- o J/\psi\Lambdaar p)=(11.8\pm 3.1)\cdot 10^{-6}$$

 \Rightarrow Candidate for pentaquarks in $J/\psi\Lambda$ and $J/\psi\bar{p}$

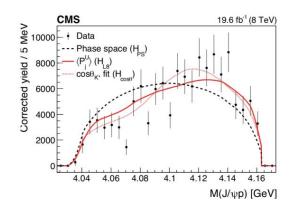
Phsp covers thresholds of $\Lambda_c D_s^- \sim 4251$ MeV, $\Xi_c^+ D^- \sim 4337.6$ MeV, and $\Lambda_c^+ D^0 \sim 4151.3$ MeV

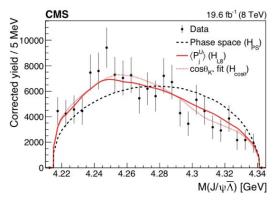


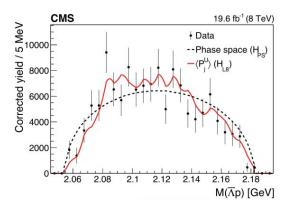
Existing interpretations:

Molecular states: low binding energy = few MeV below threshold

Progr.Phys.41(2021)65-93

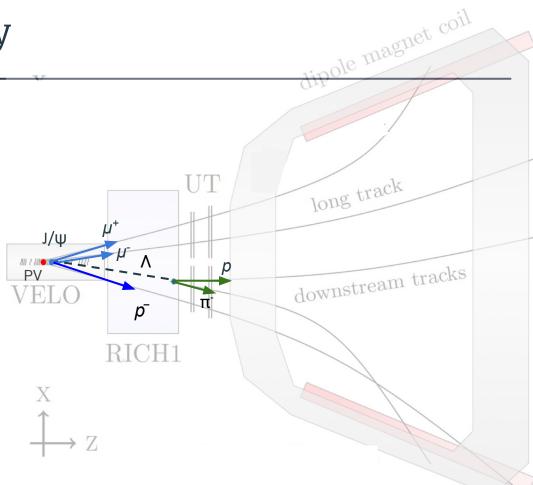

B^+ → J/ψ $\bar{\Lambda}$ p @CMS: Inconsistency with flat phsp


-CMS: <u>JHEP12(2019)100</u>—


CMS published results with 19.6 fb⁻¹ at 8 TeV

⇒ ~450 signal events

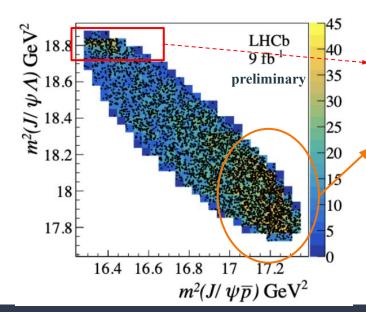
- Inconsistency with pure phase space hypothesis
- K* can describe the mass projections


Our selection strategy

Candidates selected exploiting:

- Trigger on detached $J/\psi \rightarrow \mu\mu$
- A reconstructed from
 - tracks in VELO (= long)
 - tracks after VELO (= downstream)
- PID cut on the bachelor antiproton
- good-quality vertex for Λ , J/ ψ and B⁻

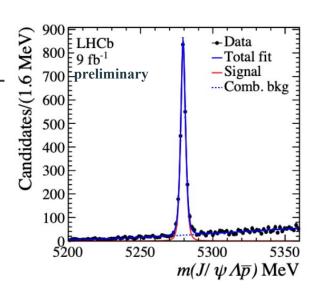
BDT optimization divided in 4 categories:


Run 1 long-long Run 2 down-down

$B^- \rightarrow J/\psi \Lambda \bar{p}$ signal candidates

Full LHCb dataset: 9 fb-1

 \Rightarrow 4600 candidates in 2.5 σ around peak with 93% of purity



Narrow structure in J/ψΛ

Activity in J/ψp̄

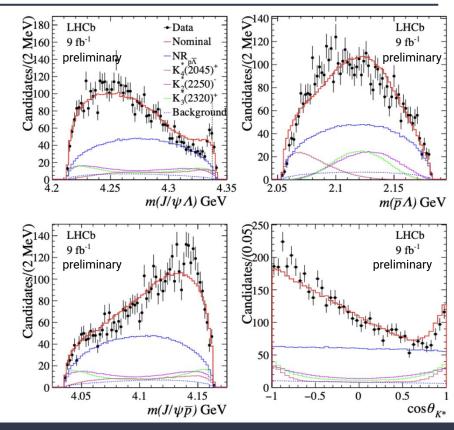
Possible reflections from $K^*_{2,3,4}$?

⇒ need for a full amplitude analysis

6D phsp

 $m(par{\Lambda}), cos heta_{K^*}, cos heta_\psi, \phi_\mu, cos heta_\Lambda, \phi_p$

Model with only K*


Amplitude contributions:

- $NR(\bar{p}\Lambda)$
- $K^{*+}_{2,3,4}$ \rightarrow peaks out of phsp, no obvious contribution in $\bar{p}\Lambda$ distribution

Resonance	Mass (MeV)	Natural width (MeV)	J^{P}
$K_4^*(2045)^+$	2045 ± 9	198 ± 30	4^+
$K_2^*(2250)^+$	2247 ± 17	180 ± 30	2^{-}
$K_3^*(2320)^+$	2324 ± 24	150 ± 30	3^+
. ,		PDG 2	020

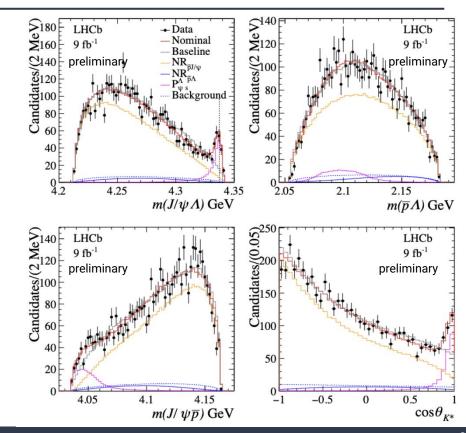
Model with K^* cannot describe data

$$\chi^2/ndf=123/33$$

Model with $J/\psi \Lambda$ resonance

Amplitude contributions:

 $NR(\bar{p}\Lambda)$ Baseline NR(p̄J/ψ)
 P_{ws}^Λ(J/ψΛ) model


Goodness-of-fit test: =
$$\chi^2_{max}$$
 of 1D projections

Baseline model

$$\chi^2/ndf=121/39$$
 with ${\sf P}^{\wedge}_{
m \psi s}$

$$\chi^2/ndf = 55.3/39 \qquad p = 4.4\%$$

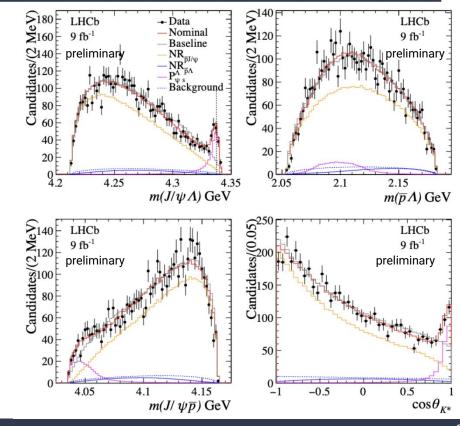
 \Rightarrow Compatible results with m(P_{us}^{\wedge}) allowed to go outside of phase space

Model with $J/\psi \Lambda$ resonance

Amplitude contributions:

- $NR(\bar{p}\Lambda)$
- NR($\bar{p}J/\psi$) P_{ws}($J/\psi\Lambda$)

Fit results:

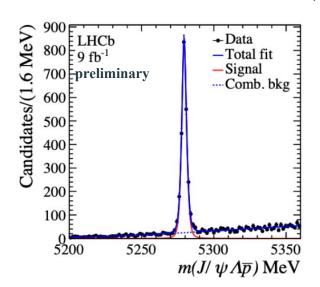

$$m(P_{\psi s}^{\Lambda})$$
 4338.2 \pm 0.7 MeV
 $\Gamma(P_{\psi s}^{\Lambda})$ 7.0 \pm 1.2 MeV
 $f(P_{\psi s}^{\Lambda})$ 12.5 \pm 0.7%

⇒ Spin-parity:

J = ½ determined

P = -1 favored, ½+ rejected @90% CL

From Wilks' theorem: significance > 10σ


B⁻ mass measurement

Small Q value, ~128 MeV ⇒ most precise B mass measurement with a resolution of 2 MeV

✓ only with decays of ∧ within VELO

$$m(B^{-}) = 5279.44 \pm 0.05 \text{ (stat)} \pm 0.07 \text{ (syst)} \text{ MeV}$$

From PDG 2020:
$$m(B^{-})= 5279.34 \pm 0.12 \text{ MeV}$$

Systematic uncertainties

Momentum scale, assigned as $\alpha \cdot Q = 0.04 \text{ MeV}$

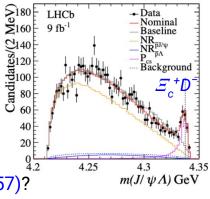
Energy loss due to uncertainty of the material interaction lengths in the simulation [PLB 708 (2012) 241]

Fit model determined from 1000 toy experiments

[MeV]
0.039
0.050
0.030
0.070

Observation of a new $J/\psi\Lambda$ state

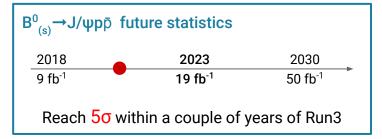
First pentaquark candidate $P_{\psi s}^{\Lambda}(4338)$ with strange quark content $c\bar{c}uds$,


$$M_{P_{cs}} = 4338.2 \pm 0.7 \pm 0.4 \, \mathrm{MeV}$$

$$\Gamma_{P_{cs}} = 7.0 \pm 1.2 \pm 1.3 \, \text{MeV}$$

 \Rightarrow first pentaguark with spin assigned J^P= $\frac{1}{2}$

For theoretical interpretation


- ✓ narrow, close to $\mathcal{Z}_c^+ D^$ threshold and in S-wave
- ✓ pentaquark with strangeness, due to SU(3) symmetry
- ✓ at same mass of $P_{\psi}^{N}(4337)$: analogy to $P_{\psi s}^{\Lambda}(4459)\& P_{\psi}^{N}(4457)$?

Can be a compact state or are more likely molecular states?

Results & Conclusions

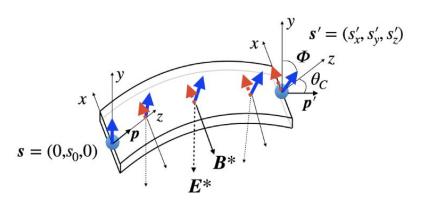
- 1. New evidence of pentaquark $P_c(4337)$ in $B_s \rightarrow J/\psi p\bar{p}$
 - ⇒ not clear theoretical interpretation at the moment
 - ⇒ extension with Run 3 data
 - \Rightarrow study of $B^0 \rightarrow J/\psi p\bar{p}$ to prove the existence of $P_c(4337)$

- 2. Observation of a new $P_{\psi s}^{\wedge}(4338)$ with spin 1/2 in $B^- \to J/\psi p \Lambda \Rightarrow$ at threshold of $\Xi_c^+ D^- (\sim 4337.6 \text{ MeV})$
 - ⇒ Close to submission to PRL
 - \Rightarrow Update with larger statistics: to study structures in $J/\psi p$

Next-year plan

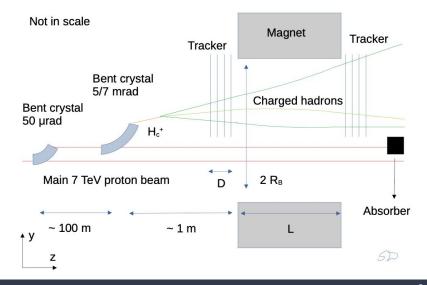
Other analysis to search for exotics:

- \rightarrow Inclusive $J/\psi\Lambda$ production (prompt and detached J/ψ): to confirm the new $P_{cs}(4338)$ and $P_{cs}(4459)$ and help discriminate among theoretical models
- \rightarrow $B_{\rm s}$ \rightarrow $J/\psi \Lambda \Lambda$ decays or similar Small Q-value ~40 MeV \Rightarrow narrow resonances if present


Next-year plan

Simulation of fixed-target experiment at IR3

Eur. Phys. J. C 77, 828


Experiment to measure EDM/MDM of short-lived baryons exploiting channelling in bent crystals

$$\Phi \approx \frac{g-2}{2} \gamma \theta_C, \tag{1}$$

Setup a full simulation to demonstrate the feasibility of double channeling layout at LHC

 Coordinating a team of people from Valencia, Bonn, UCAS, Milano

Backup slides

New naming scheme

arxiv2206.15233 -

No PDG rule for

- exotic mesons with s, c, b
 quantum numbers
- no extension for pentaquark states

Idea of the proposal

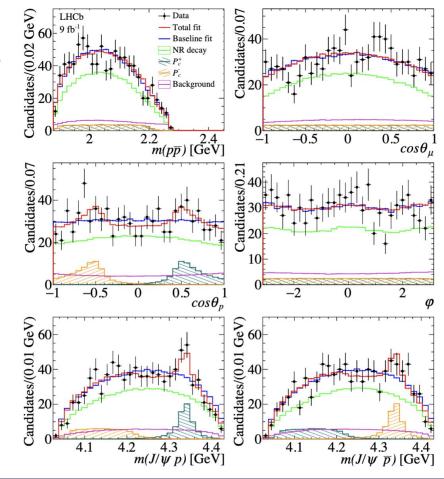
- T for tetra, P for penta
- Superscript: based on existing symbols, to indicate isospin, parity and G-parity
- Subscript: heavy quark content

Impact on existing states

Minimal quark content	Current name	$I^{(G)}, J^{P(C)}$	Proposed name
$\frac{c\bar{c}}{c\bar{c}}$	$\chi_{c1}(3872)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$
$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, J^P = 1^+$	$T_{\psi 1}^{b}(3900)^{+}$
$c\bar{c}u\bar{d}$	$Z_c(4100)^+$	$I^G = 1^-$	$T_{\psi}(4100)^{+}$
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, J^P = 1^+$	$T_{\psi 1}^b(4430)^+$
$c\bar{c}u\bar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T_{\psi s1}^{\theta}(4000)^{+}$
$c\bar{c}u\bar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, J^P = 1$?	$T_{\psi s1}(4220)^+$
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^+, J^{PC} = ??+$	$T_{\psi\psi}(6900)$
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$
$b ar{b} u ar{d}$	$Z_b(10610)^+$	$I^G = 1^+, J^P = 1^+$	$T_{\Upsilon_1}^b(10610)^+$
$car{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$
$c\bar{c}uds$	$P_{cs}(4459)^0$	I = 0	$P_{\psi s}^{\Lambda}(4459)^{0}$

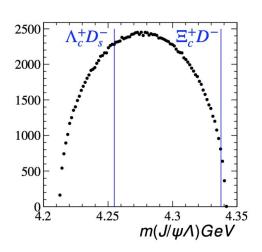
Model with only NR

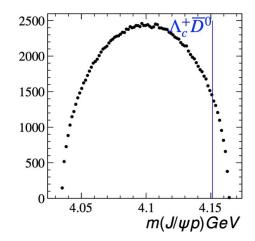
Non resonant contribution (J^{PC}=1⁻⁻) + bkg


- \rightarrow J^{PC}=1⁻⁻ is the only term in S-wave
- → Different J^P can be excluded (2 Δ logL worse by 140 units)

 $\implies m(J/\psi p(\bar{p}))$ still not well described

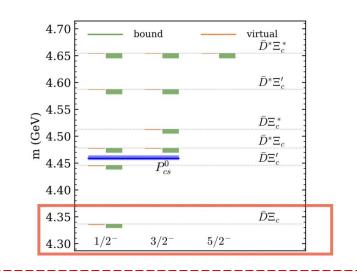
Goodness-of-fit test:


$$\chi^2/ndf=1.7
ightarrow p=4\cdot 10^{-3}$$


Can we improve upon this model?

Existing predictions: Molecular

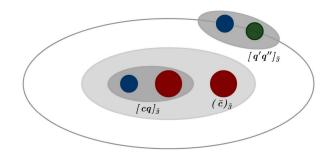
Phsp covers thresholds of $\Lambda_c D_s^- \sim 4251$ MeV, $\Xi_c^+ D^- \sim 4337.6$ MeV, and $\Lambda_c^+ D^0 \sim 4151.3$ MeV



Previous P states not visible because out of the phsp

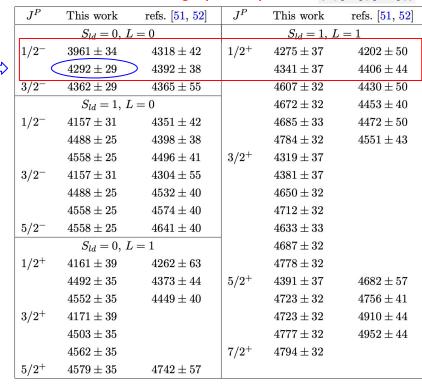
Attractive Model [Progr.Phys.41(2021)65-93]

~ threshold of any pair of heavy-baryon and anti-heavy meson with attractive interaction



Existing predictions: Tight-pentaquark

JHEP (10) (2019) 256 [arxiv:1907.06507]


Hidden-charm strange pentaquarks $(\bar{c}_{\bar{3}}[cs]_{\bar{3}}[qq']_{\bar{3}})$

- Doubly-heavy triquark light diquark model
- very rich spectra with lots of J^P

Allowed mass range in $\,B^- o J/\psi \Lambda ar p \,$

 $M(J/\psi\Lambda) \in [4212.58, 4341.07] MeV$

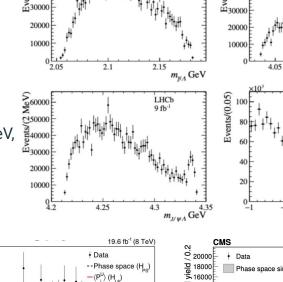
Comparison with CMS results

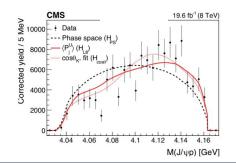
Efficiency corrected and background subtracted plots

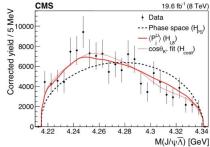
Statistics: 10x larger with LHCb dataset

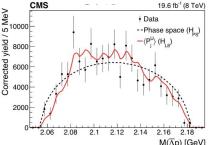
Invariant mass resolution:

CMS: m(Λ)~3.7 MeV

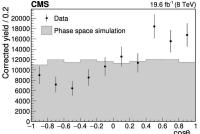

LHCb: m(Λ)~1MeV, m(B)~2 MeV


Trigger and selection cuts, in particular on p_⊤:


- CMS: Trigger on displaced $J/\psi \rightarrow \mu\mu$, Selection: $p_T(\mu\mu) > 6.9$ GeV, $p_T(\Lambda) > 1$ GeV and $p_T(p) > 1$ GeV


- LHCb: $p_{\tau}(\mu) > 500$ MeV, no p_{τ} on Λ and p

 \Rightarrow Efficiency correction on m(Λ p) and cos θ_{K^*} instead of 6D



∑50000 ∑40000

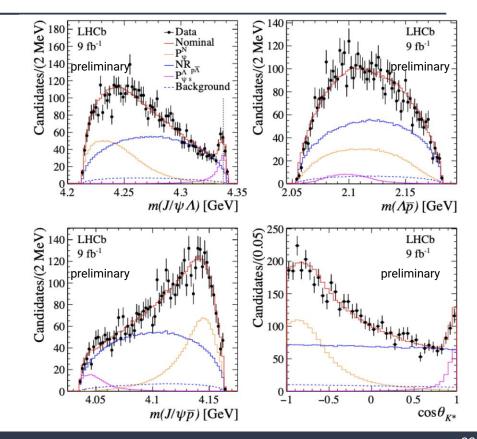
 $m_{J/\psi \overline{\nu}}$ GeV

 $\cos\theta$.

P_{ψ}^{N} contributions in $\bar{p}J/\psi$?

Amplitude contributions:

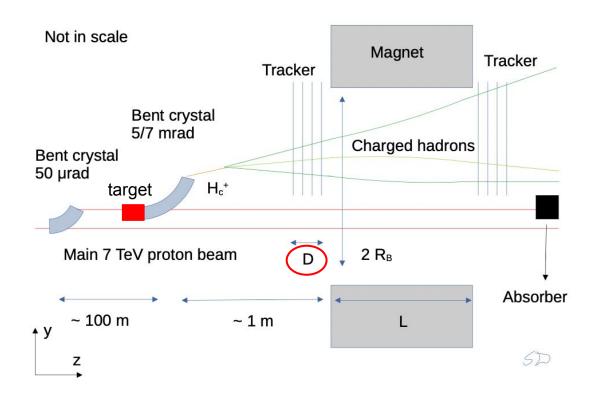
- $NR(\bar{p}\Lambda)$
- $\begin{array}{ccc} & & & & & \\ & & & & \\$


Compatible $P_{\psi s}^{\Lambda}$ results

$$m(P_{\psi s}^{\Lambda})$$
 4338.8 \pm 1.1 MeV $\Gamma(P_{\psi s}^{\Lambda})$ 8.4 \pm 1.6 MeV $m(P_{\psi}^{N})$ 4152.3 \pm 2.0 MeV $\Gamma(P_{\psi}^{N})$ 41.8 \pm 6.0 MeV

-logL decreases by 80 wrt nominal model

Model with NR polynomial is preferred, not very sensitive to pJ/ψ structures with current statistics



IR3 detector layout

First bent crystal for secondary beam

Second bent crystal channeling charm hadrons (5/7 mrad of bending)

Spectrometer composed by warm/permanent magnet + tracking stations

