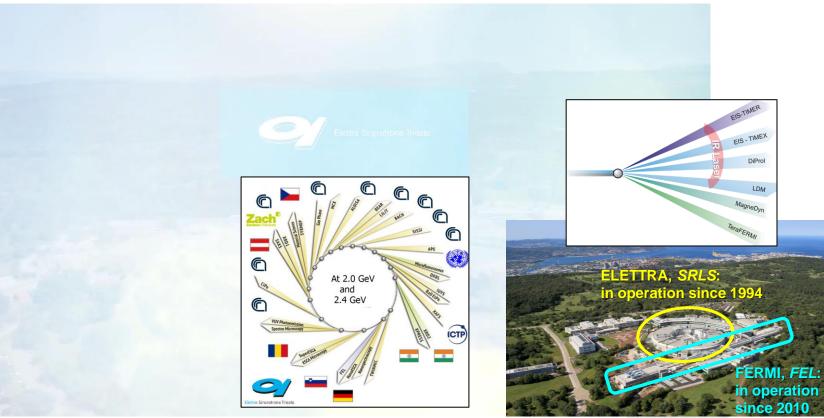


Accelerators Development at Elettra Sincrotrone Trieste

Simone Di Mitri

Elettra Sincrotrone Trieste Univ. Trieste, Dept. Physics

on behalf of Elettra Team & FERMI Team


INFN-LNS, Catania, March 2023

simone.dimitri@elettra.eu

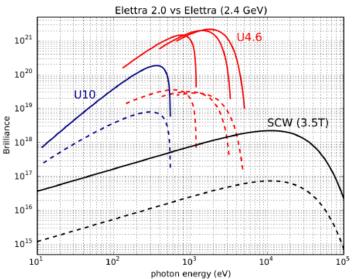
1

CERTIFIED AGEMENT SYSTEM

CERTIQUALITY UNI EN ISO 9001:2015 UNI ISO 45001:2018 2

From Elettra to Elettra2.0

		ELETTRA	ELETTRA 2.0		
In operation since		1994	2027		
Availability		5000-us	5000-user / 6400-tot		
e-Beam energy	GeV	2.0 (75%) – 2.4 (25%)	2.4 (2.0 for some time)		
Photon energies	keV	0.020 – 35	0.060 – 50		
#Beamlines (#ID, #Bends)		28 (17,7)	32 (17, 3+2)		
Hybrid filling patterns		yes			
ID occupancy	%	30	40		
Circumference	m		259		
Magnetic Lattice		12 x 2BA	12 x S6BA-E		
Hor. emittance, coupling	nm rad, %	7 – 10, 1%	bare 0.212, 3% × 100		
Max. ave. current	mA	310 – 160	400 (1-10		


UNI EN ISO 9001:2015 UNI ISO 45001:2018

Science drivers

Reduction in e-beam **emittance** \rightarrow reduced **beam size**, increased peak **brightness** will lead to:

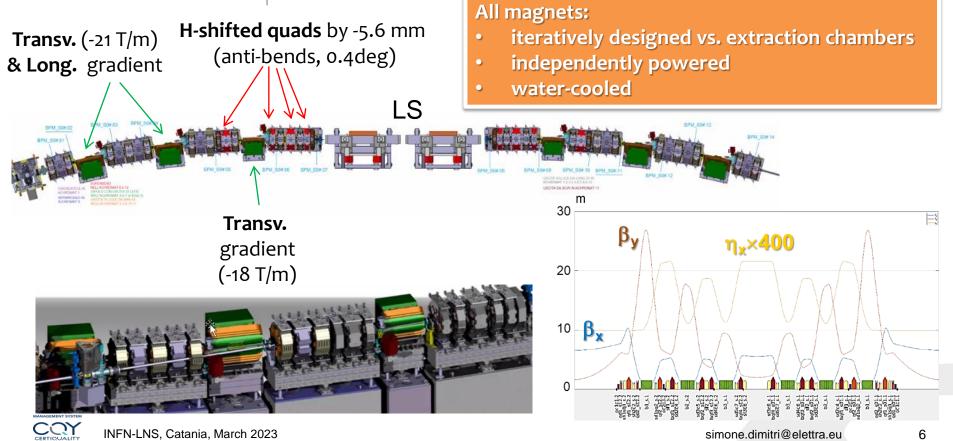
- gain in the emitted/transmitted signals from samples
- reduced acquisition time for all types of spectroscopies and X-ray scattering techniques
- implementation of *photon-hungry techniques* (high pressure exps. with anvil cells and dilute samples, spinresolved ARPES)
- improvement of the *lateral resolution* with focusing optics down to a few nm scale (e.g. nano-PES, nano-ARPES)

Transversal **coherence** will open unique opportunities for coherence-hungry methods:

- Coherent Diffraction Imaging (CDI) with chemical specificity
- Ptychography
- X-ray photon correlation spectroscopy (XPCS)

simone.dimitri@elettra.eu

Boundary conditions


- □ Keep same: building and circumference
 Iong SS-ID position
 full-energy injection (linac+booster)
 e-beam energy(-ies)
 diverse filling patterns
 √ hybrid, single/few bunches
 - Improve: horizontal emittance beam dimensions @ LS-ID intensity ID occupancy

- ✓ 47-fold
- (35-x,6-y)μm, (6-x',2-y')μrad
- ✓ 400 mA @ 2.4 GeV
- ~40%, +4 beamlines

Magnetic lattice

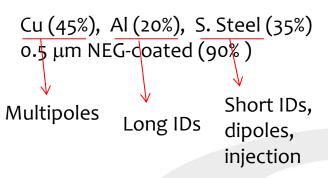
Other upgrades

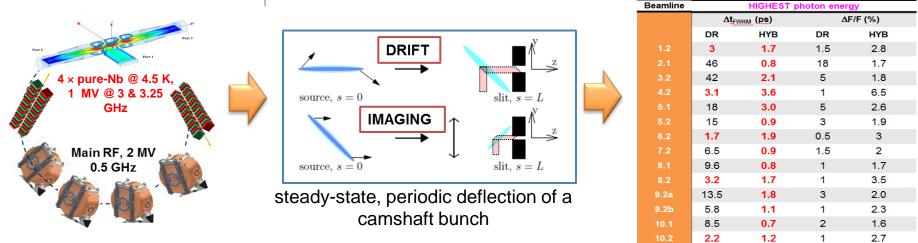
□ Insertion devices

Main RF

4 x up to 130 kW solid state RF transmitters

Injection


Traditional off-axis 4-kickers bump & 3 septa, supplied by low-emittance optics and emittance swap in the Booster ring (near difference resonance at extraction)


27 x 17 internal (1.5 mm thickness)

7

Crab cavities for MHz, ps-long X-rays

• Sub/few ps pulse duration at multiple beamlines, at > 0.2 keV photon energies

- Up to 1 MHz rep. rate (1 tilted bunch in a dark gap)
- ~1-few % flux relative to standard single bunch emission
- Preserving transverse coherence
- Impact on standard bunches: vertical emittance x 2, bunch charge x 2

BLs Funding & Operation:39% by Elettra33% by CNR28% shared, other Institutions

Hard x-rays, $10 \rightarrow 9$ VUV – soft x-rays, $17 \rightarrow 15$ IR/THz, 1 Tender x-rays, $0 \rightarrow 4$ Super-bends, $0 \rightarrow 3$

Beamlines Elettra Sincrotrone Trieste IVUs 12 BLs kept as now, 14 BLs moved, 7 BLs new, 10 BLs from undulators, 19 BLs from mini-wiggler, 2 BLs from SC-wiggler, 3 IUVS 20 BLs from bends, 4 ES4 BLs from Super-bend, 3 UV laser lab < 30 eV

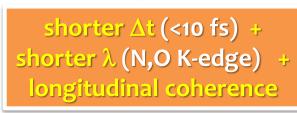
INFN-LNS. (

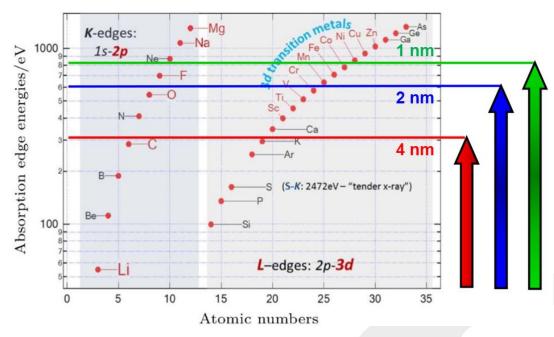
simone.dimitri@elettra.eu

UNI EN ISO 9001:2015 UNI ISO 45001:2018

From FERMI to FERMI 2.0

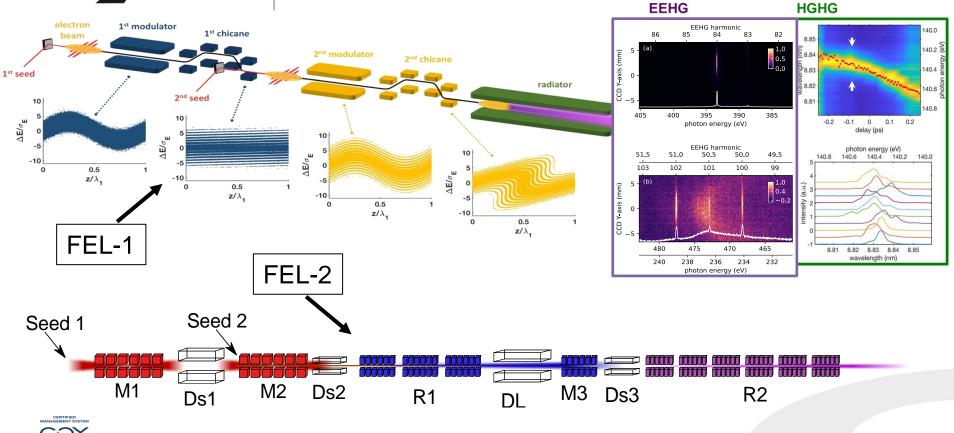
		FERMI	FERMI 2.0 (concept)	
In operation since		2010	2029 ?	
#Beamlines		6		
Repetition Rate		10	, 50 Hz	
e-Beam energy	GeV	0.9 – 1.55	0.9 - 1.85	
Peak current	kA	0.7	1.0 Wate	
IDs		Apple-II,	Apple-II, windo	
FEL scheme, default		HGHG, HGHG-FB	EEHG, EEHG-FB	
Photon energies, fundam.	eV	FEL1: 12 – 62 FEL2: 62 – 310	FEL1: 15 – 124 FEL2: 62 – 620	
Pulse duration	fs	10 – 150	< 5 – 50	
Temporal and spectral shaping INFN-LNS, Catania, March 2023			yes simone.dimitri@elettra.eu	

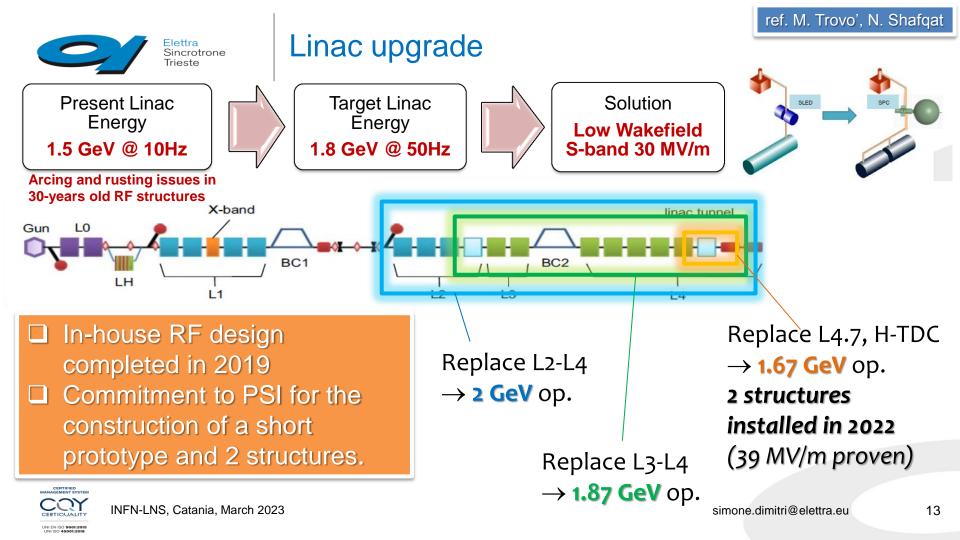




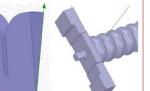
Science drivers

- □ Resonant exps. exploiting processes of few fs-lifetime (X-Abs., Small Ang. XS, CDI,...)
- Nonlinear optics (large wave-vectors)
- Ultra-fast chemistry
- □ Water window
- □ Coherent control




ref. E. Allaria, P. Rebernik, C. Spezzani

FEL upgrade to EEHG(-FB)


CERTIQUALITY UNI EN ISO 9001:2015 UNI ISO 45001:2018

Design, prototype, full structure RF test

- The new accelerating module will be comprised of 3.0 m long, constant gradient type structures. **Double rounding** is introduced to reduce Ohmic losses and increase Q
- A customized version of dual-fed-electric coupled (EC) coupler is chosen for the new high gradient (HG) structures
 - Very low surface magnetic field
 - Easy to machine
 - Reduced cost of fabrication

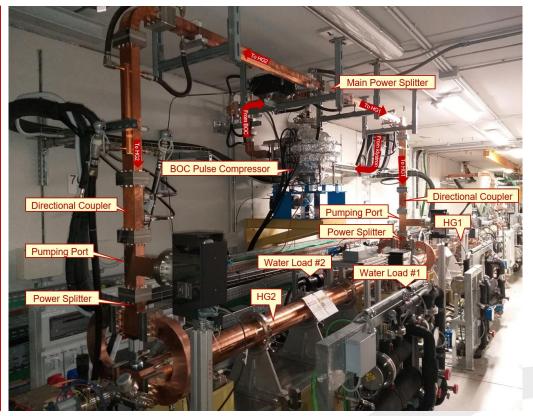
9-cells prototype RF test

Acc. Gradient (MV/m)	PWR @ Ptype (MW)	# of Pulses (Million)	BDR (bpp)
30	72	225	$2.0 imes10^{-8}$
35	98	229	$7.3 imes10^{-8}$
39	122	400	7.9×10^{-8}

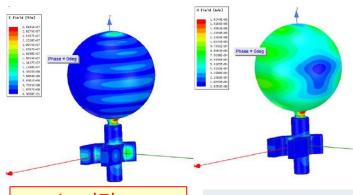
VacuumPump **RF** conditioning history faults history 30*MV* (a) 77 MV 1 2E-07 6 0E-08 40 Pulse count Millions

During the Spring Shutdown (April 2022) the HG structure was installed in FERMI Test Facility.

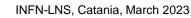
From Klystron



Installation and conditioning in FERMI

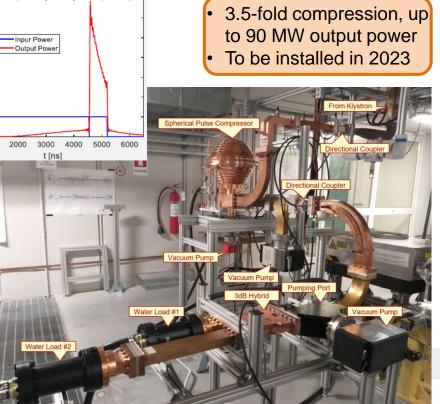

- The 2nd HG structure (HG2) was installed directly at FERMI linac without conditioning
- Since installation is done without any phase shifter so precise phase calculations were done to ensure that both HG1 and HG2 are in phase.
- Due to user beam operation requirements and reduced operational hours due to power management the conditioning of HG2 is bit slower.

Spherical Pulse Compressor RF test



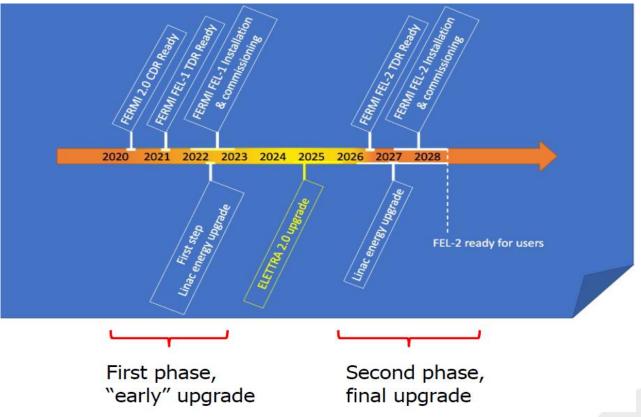
$\beta = \frac{1 + \Gamma }{1 - 7.13}$
$p = \frac{1}{1 - \Gamma } = 7,13$
$\beta_{optimal} = 7,3$

- In-house design
- Manufactured by



6 - (X) 5 - linpur P 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		
	3000 4000 5	5
	t [ns]	
1	ROAD AND A	ł
and the second se	1 - marile	

RF Parameters					
fo	2.99801	GHz			
Nominal Temperature	35	°C			
Mode	TM13				
QO	≈140000				
Coupling Coefficient	7.2 <u>±</u> 0.1				
E @ 45 MW	28.16	MV/m			
H @ 45 MW	169.75	kA/m			


Conditioning Results

90	MW
700	ns
26	MW
4000	ns
32.25	°C
3.45	
	700 26 4000 32.25

Time plan

Elettra 2.0 TDR

https://www.elettra.eu/images/Documents/ELETTRA%20Machine/Elettra2/TDR-Machine-Infrastructures-Final-compresso.pdf

• Elettra 2.0 physics and design

E. Karantzoulis and W. Barletta, "Aspects of Elettra 2.0 design", NIM A 927 (2019) 70-80

Crab cavities

X. Huang PRAB 2016 & NOCE 2017

A. Zholents et al. NIM A 2015

FERMI 2.0 CDR

https://www.elettra.eu/images/Documents/FERMI%20Machine/Machine/CDR/FERMI2.0CDR.pdf

FERMI FEL physics & upgrade

E. Allaria et al., Nat. Phot. 6 (2012), Nat. Phot. 7 (2013)

- P. Rebernik et al., Nat. Phot. 7 (2019)
- L. Giannessi, C. Spezzani et al., Proc. of IPAC 2022, TUPOPT018 and TUPOPT019
- FERMI linac physics & upgrade
 - C. Serpico et al., Rev. Sci. Instr. 88 (2017)
 - N. Shafqat et al., NIM A 867 (2017), NIM A 979 (2020)

FERMI 2.0 Conceptual Design Report

Thank you for your attention

Collaborations and Commitments

SLS-2 (2020-2024)

- Magnets
- Power supplies
- RF system (waveguides)
- Kickers for MBFS

Diamond-II (2020)

• MBF electronics

BESSY VSR (2020-2027)

- Time-resolved techniques
- Blazed gratings production

DOE-APS (2019-2021)

- Crab cavities
- Simulations

DOE (2021-2022)

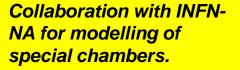
- Crab cavities
- Superconductive solution

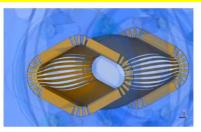
CERN (2021-2024)

- NEG
- Vacuum simulations

- Solid state RF transmitters
- Multipole magnets
- BPM electronics
- CDI undulator

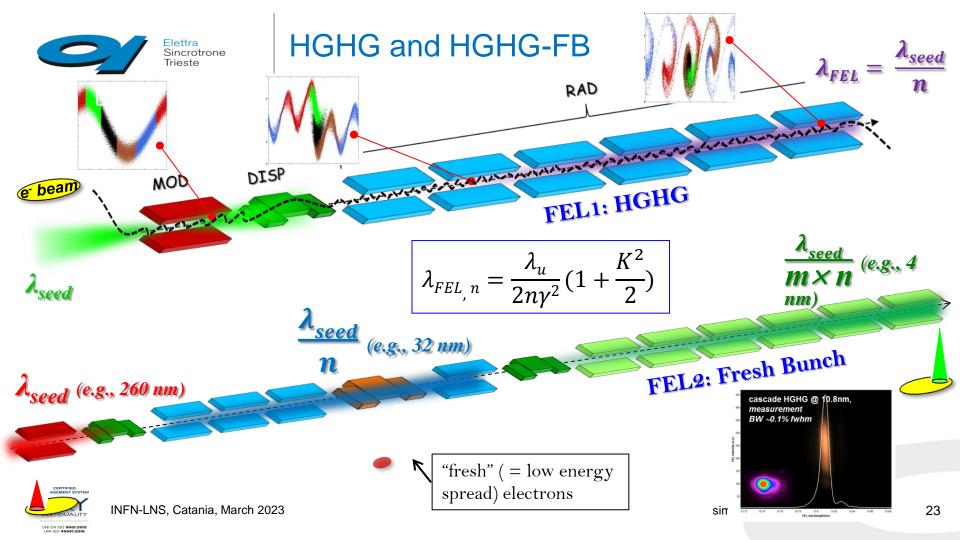
. . .


- CDI experimental station
- X-press detector
- Electron analyzers
- MCX diffractometer
- SYRMEP Life Science Beamline



- Estimated with well-known formulas, successfully benchmarked for Elettra. Low gap chambers and RF transitions "dominate" the BB impedance of vacuum components.
- $\circ \quad |Z_{//}/n| = 0.8 \ \Omega, \ |Z_{\perp}| = 0.5 \ M\Omega/m \qquad \rightarrow -0.8 \ \text{kHz/mA} \ (0.6 \ @ \textit{Elettra})$
- $k_{//}$ = 20 kV/pC → 3 kW parasitic loss @ 400 mA (with 3HC)
- TMCI threshold ~5 mA
- HOMs in RF cavities modelled and measured in the past
- HOM counteracted with shifters and temperature control, 3HC for longitudinal MB instabilities, transverse and longitudinal feedback.
- \circ Damping times ~ (5, 9) ms vs. (10, 13) ms in Elettra
- \circ RF L1 mode characteristic time ~0.04 ms vs. 0.003 ms in Elettra

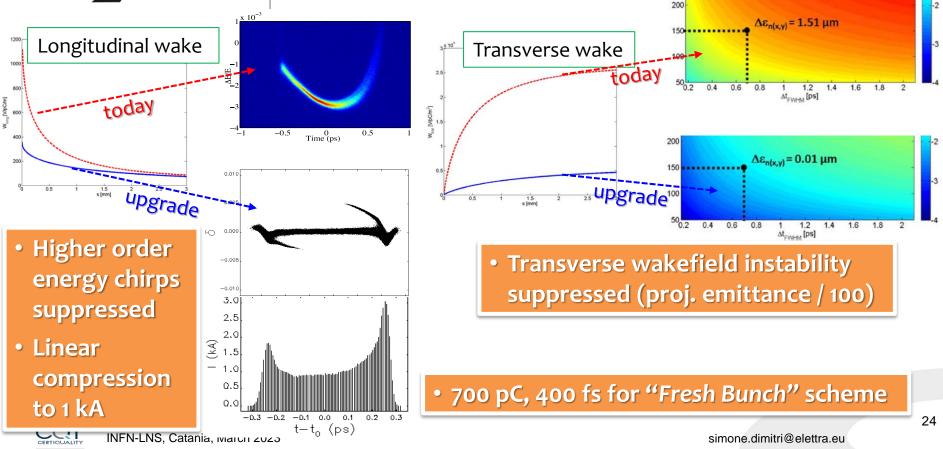
21



Elettra-TR vs. Elettra2.0-TR

- Maximum total stored current is 310 mA @ Elettra-2GeV, 400mA @ Elettra2.0-2.4 GeV
- Total stored current in *Low Current* mode is 100 mA

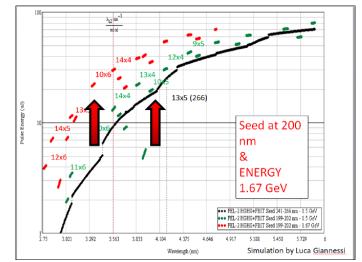
ELETTRA @ 2 GeV		E	LETTRA2.0) @ 2.4 Ge	v	
	Single Bunch	Hybrid F.P. ¹		Low current	Hybrid F.P.	CC ¹
mA	1 (5)	5 + 310	mA	0.25×400 bn.	2 (5) + 400	2 + 400
ps, FWHM	~40 - 70	~200	ps, FWHM	14 - 17	≤ 100 (150)	1–5 @ sel. bls.
MHz	1.157	1.157	MHz	500	1.157	1.157
Flux(SP) Flux@ 310 mA	1/300 (1/60)	1/60	Flux(SP) Flux@ 400 mA	1/1600	1/200 (1/80)	1/9000

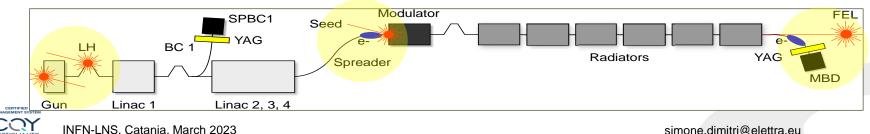


INLEN ISO 9001:201

e-Beam phase space

Lasers upgrade


Lasers determine availability, reliability and ultimate performance:


• PIL: Ti:Sa amplifier upgraded to single pump for more reliable and stable operation.

Seed lasers:

< 60 fs-OPA on FEL1, < 45 fs-THG on FEL2, now available to users; < 200 nm-OPA on FEL2 in preparation.

• **SLU** (pump on sample): hollow fiber pulse compressor for < 15 fs-UV

UNUSO 45001:201