



## SIG:

## A Technology Development Program Toward A Compact Superconducting Ion Gantry

Marco Prioli on behalf of INFN-Milano, UniMi, INFN-Genova, UniGe, INFN-LNF, INFN-Torino, UniTo, CNAO

### What is SIG

- SIG = Superconducting Ion Gantry
- Scope: study and development in 3.5 years of the key technologies for the next generation ion gantry of "only" 50 tons. This R&D of SIG will enable non-coplanar ion irradiation, greatly increasing the quality of the cancer treatment.
- Competitive 2021 call to INFN-CSN5
- Time span: ~3.5 years 2022 mid 2025
- Budget: 1 M€ (+ 600 k€ Ext. Funds: CNAO+CERN)
- Personnel: 50 FTE-y (12 FTE-y Fellows included in the budget)







## Gantry key features

- Particles up to a rigidity of 6.6 Tm (430 MeV/u carbon ions)
- 14 m long, ~50 tons weight
- 4 T curved superconducting dipoles
- Superconducting spool piece quadrupoles
- Downstream scanning magnet system
- Dose Delivery and Range Verification Systems for adaptive cancer treatments





~300 tons, 11m diameter, 13m length

#### Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli

## Project structure

- WP1: Project coordination Principal Investigator: L. Rossi (INFN-MI)
  - WP2: Superconducting dipole magnet demonstrator Technical coordinator: M. Prioli (INFN-MI). Group: INFN-MI, INFN-GE, CERN, CNAO
  - WP3: Scanning magnet system Technical coordinator: L. Sabbatini (INFN-LNF). Group: INFN-LNF, CNAO
  - WP4: Dose Delivery System (DDS) Technical coordinator: S. Giordanengo (INFN-TO)
  - WP5: Range Verification System (RVS) Technical coordinator: E. Fiorina (INFN-TO)





## WP2: scope

WP2 scope: design, construction and test of a curved superconducting demonstrator magnet (SDM) for ion gantries

- SIG is the successor of SIGRUM by CERN and Tera Foundation (<u>link</u>) with updated params: present SIG (previous SIGRUM)
  - $\cos-\theta$  coils
  - Pure dipolar field: 4 T (3 T with gradient)
  - Bore diameter: 80 mm (70 mm)
  - Small curvature radius: 1.65 m (2.2 m)
  - Angular sector: 30°
  - High field ramp-rate: 0.4 T/s (0.1 T/s)
  - Compatible with conduction cooling (no LHe) but no optimization
- A parallel program at CERN is devoted to the construction of a straight thermal demonstrator



SIGRUM 3T Himac 2.9T

SIS100-FAIR

Beam curvature radius  $\rho$  (m)

3,0E+04

0,0E+00

10000

Supercon

Gantry

on

## European Projects on SC magnet design for Gantry<sup>1</sup>



Supercond

## WP2: magnet curvature

WP2 accent is on the magnet curvature, why it is so demanding?

- Modelling
  - Mathematical (e.g., definition of harmonics, together with HITRIplus W.G.)
  - Software tools for optimization consider straight geometry
- Some design steps become iterative (e.g., ends design & integrated field)
- Winding and manufacturing strongly concave coils → dedicated tooling
- Mechanical
  - Selection of materials and manufacturing techniques
  - Structural concept



Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli

Curved magnet assembly (preliminary!)

INFN-MI/GE, UniMi/Ge



Courtesy of S. Farinon, R. Cereseto



## WP2: main findings (1)

A possible showstopper was identified: conduction cooling of current leads requires a high power. For the resistive part between 300 K and 60 K:

$$\frac{Q_{c,min}}{I} = 46 \left[ \frac{W}{kA} \right]$$

 $\rightarrow$  The operational current must be minimized

| Cable                       | Discorap III gen. | CERN LHC05 |
|-----------------------------|-------------------|------------|
| Strand diameter [mm]        | 0.821             | 0.48       |
| Operational Temperature [K] | 5                 | 5          |
| Operational Current [A]     | 4195              | 2790       |
| $Q_{c,min}$ [W]             | 2 x 193           | 2 x 128    |
| Margin on Load Line [%]     | 28.1              | 21.9       |
| Temperature Margin [K]      | 1.49              | 1          |
| Inner Layer Turns           | 24                | 35         |
| Outer Layer Turns           | 29                | 43         |





## WP2: main findings (2)

B' = 0.4 T/s seems within reach for the final prototype

- Coil loss ~ 1 W/m with a low-loss cable design (DISCORAP experience)
- For the demonstrator, too long lead-time for such a ٠ dedicated cable  $\rightarrow$  LHCo<sub>5</sub> with reduced ramp-rate
- The final prototype will inherit DISCORAP and LHCog beast features





Max. temperature (K)

|           |        |  |      | Total        |      |
|-----------|--------|--|------|--------------|------|
| -         | - 4.75 |  | 4.75 | Eddy current | 0.57 |
|           |        |  | 4.8  | Eddy current | 037  |
|           | - 4.8  |  | 1.0  | nonnyse      | 0.01 |
| $\square$ | - 4.85 |  | 4.85 | Iron hyst    | 0.33 |
| 11        |        |  |      |              |      |

|   | Cable                | Ope<br>curr | rational<br>ent (kA) | Max.<br>(1 | dB/dt<br>[/s) | Coil loss<br>(W/m) |
|---|----------------------|-------------|----------------------|------------|---------------|--------------------|
|   | Discorap III<br>gen. | 4.2         | ×                    | 0.4        |               | 1                  |
|   | CERN LHC05           | 2.8         |                      | 0.15       | X             | 0.98               |
| 5 | Future ad-hoc        | 2.8         |                      | 0.4        |               | 1                  |

INFN-MI/GE, UniMi/Ge

|                | Straight<br>part | Int. l = 1.1<br>m (45°) | Ends   |
|----------------|------------------|-------------------------|--------|
| Conductor loss | 1 W/m            | 1.1 W                   | 0.18 W |
| Iron hyst      | 0.32 W/m         | 0.35 W                  | 0.14 W |
| Eddy current   | 0.37 W/m         | 0.41 W                  | 0.41 W |
| Total          |                  | 1.9 W                   | 0.7 W  |
|                |                  |                         |        |

Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli

Superconducting

Gantry



Seconda Giornata Acceleratori, INFN-LN

#### Courtesy of E. Felcini 10

## WP2: present efforts

We are now concentrated on the preparation of the winding trials, fundamental to have design iterations

- CERN winding table installed •
- Cable tensioner foreseen in March •
- Design of winding tooling and components ongoing ٠

Winding table





Courtesy of A. Palmisano



Straight practice coil





#### Plan: 2x50 m Cu cable from CERN on May, first straight practice coil by July

## WP2: alternative winding technique

Alternative winding technique developed for a coil block magnet

At first the coil is wound in a convex shape  $(L_1)$  and then it is pushed to obtain the final concave form  $(L_2)$ 





1. The coil is wound on a manual rotating table

2. A template pushes one side of the coil in order to obtain the final shape

3. The table is equipped with a support that inclines the heads

## WP2: quadrupole spool pieces

The gantry optical layout requires spool piece quadrupoles at each end of the dipole magnets

One possibility is to leverage on the INFN-MI LASA experience on the superferric HOC magnets for HL-LHC

urface contours:

- 5.747097E+0

5.600000E+0

5.400000E+00

5.200000E+00

5.000000E+00

4.800000E+00

#### First design:

- $40 \text{ T/m} @ \text{R}_{\text{ref}} = 26.7 \text{ mm of magnet field gradient}$
- 175 mm of magnetic length
- 60% margin on the loadline @ T = 5.5 K.
- Indirect Cooling (gas vs cryocooler)

The thermal design is more demanding!



## WP3: scanning magnet system

| Parameter                | Boundaries   | Optimal Value |
|--------------------------|--------------|---------------|
| $B_{0x}$ [T]             | [0.3 - 1]    | 1             |
| $B_{0y}$ [T]             | [0.3 - 1]    | 0.85          |
| $\alpha_x \text{ [rad]}$ | [0 - 1]      | 0.042         |
| $\alpha_y \; [rad]$      | [0 - 1]      | 0.064         |
| $I_x$ [A]                | [500 - 800]  | 800           |
| $I_y$ [A]                | [500 - 1500] | 1500          |

Table 2: The set of free parameters used for the optimization

| Parameter                       | Value |
|---------------------------------|-------|
| Gap SMx [mm]                    | 53    |
| Gap SMy [mm]                    | 113   |
| Yoke length SMx [m]             | 0.221 |
| Yoke length SMy [m]             | 0.380 |
| Stored energy SMx [kJ]          | 0.64  |
| Stored energy SMy [kJ]          | 3.21  |
| Ampere-turs SMx [kA turns]      | 42.18 |
| Ampere-turs SMy [kA turns]      | 77.00 |
| Inductance SMx [mH]             | 2.00  |
| Inductance SMy [mH]             | 2.86  |
| dI/dt SMx [kA/s]                | 200.0 |
| dI/dt SMy [kA/s]                | 300.0 |
| Current density Cu SMx [A/mm2]  | 6.91  |
| Current density Cu SMy [A/mm2]  | 12.96 |
| Total voltage $V_{tot}$ SMx [V] | 409.0 |
| Total voltage $V_{tot}$ SMy [V] | 880.9 |

Table 3: The set of parameters resulting from optimization

Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli

Design targets:

- Wide area 240 x 300 mm<sup>2</sup>
- Scanning speed: 20 m/s
- Beam accuracy better than 0.5 mm

Technical implications:

- Demanding power supply (MedAustron)
   → Possibility of including a complete system demonstrator
- Field repeatability 0.3 % in transient





Coordinated by

CNAO in SIGRUM



Supercond

Gantry

lon

## WP3: scanning magnet system

Present efforts:

- 3D numerical models for the optimization of the magnet design
- Study of the magnet's crosstalk, hysteretic and dynamic effects
- Characterization of the FeCo properties at INFN-LNF
  - Option: real time modelling of the dynamic effects for field feedback?



Courtesy of L. Sabbatini, A. Vannozzi

Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli



Courtesy of E. Felcini

# WP4 & WP5: integrated DDS & RVS

General scope: accurately and safely delivering the prescribed radiation dose by monitoring and controlling, <u>in real-time</u>:

- Parameters of the scanned particle beam (DDS)
- Its effect on the patient (RVS) Paves the way to adaptive treatments!

Design features:

- Mechanical integration in the ion gantry
- First integrated system optimized for ions:
  - Accurate and fast beam monitoring system for ions
  - Accurate RVS signals analysis with DDS signal synchronization
  - Online dose quality feedback with integrated GPU-based calculations









## WP4 & WP5: starting point

INFN-TO, UniTo Courtesy of S. Giordanengo,

E. Fiorina, R. Sacchi



**Results with protons** 

DDS:

- MoVeIT detectors for protons
- RIDOS GPU-based dose calculation RVS:
- I3PET modules
- Algorithm for secondary radiation data analysis



First I3PET proton beam test (June 2021): **primary-secondary radiation coincidences identified!!!** 



## WP4: DDS tasks

## T4.1 – Thin planar silicon sensors for Carbon ion counter



- Single ion signal
- Ionization density effects
- Radiation resistance



#### First characterization at CNAO with carbon ions



#### T4.2 - Single ion crossing time measurement

- **Proof of Concept** to provide the time stamps for ions with high efficiency.
- **Start counter** for range verification system.



**pico-TDC ASIC** for precise time-tagging of up to 64 inputs channels, 3ps or 12ps binning very low jitter (<1ps) **Virtex 7 FPGA** Catania. Marzo 2023 – M. Prioli T4.3 – GPU-based data analysis for online dose verification

#### New GPU-based algorithms to exploit ion treatments (ADAPTIVE PT) with a very fast data analysis for online feedback on the dose delivered.



Supercond

Gantry

on

→ Collaboration with GSI within the **RAPTOR** project (ETN – H2020)

INFN-TO, UniTo

Courtesy of S. Giordanengo,

E. Fiorina, R. Sacchi

#### **Real-Time Adaptive Particle Therapy Of Cancer**



ONLINE results: (1) planned and (2) delivered doses, (3) dose difference, (4) DVH, (5,6) gamma index 18

# Seconda Giornata Acceleratori, INFN-LNS Catania, Marzo 2023 – M. Prioli

# WP5: RVS tasks

Effective RVS for ion gantry based on PET and/or PGT (Prompt Gamma Timing) techniques

|                                                                                                                                                                                                                                                                         | , , ,                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>OPEN ISSUES</b>                                                                                                                                                                                                                                                      | R&D WP5 TASKS                                                                                                                                                                                                                                                                                                     |
| Production of secondary<br>radiation (prompt photons and<br>positron emitters) by ions (from<br>He to O) dramatically reduced<br>wrt to proton beams. Extensive<br>study not performed yet.<br>Feasibility of a hybrid approach PGT-<br>PET for ions to be demonstrated | <ul> <li><b>5.1 Detector development</b></li> <li>PG detector (LaBr3 + SiPM)</li> <li>PGT-PET detector (from I3PET project, LFS + SiPM)</li> <li><u>DDS-RVS integrated DAQ (ASIC-based, collaboration with WP4)</u></li> <li><b>5.2 Detector optimization study</b></li> <li>beam test at CNAO and GSI</li> </ul> |
| <b>Standard data analysis methods</b><br><b>not available</b> for online ion range<br>verification                                                                                                                                                                      | <b>5.3 PET-PGT reconstruction algorithms</b><br>Maximum A Posteriori (MAP) based algorithm<br>for PET<br><u>Maximum Likelihood Expectation Maximization</u><br>( <u>MLEM</u> ) based for PGT<br>Algorithms developed in collaboration with<br>University of Lubeck                                                |
| Feasibility of a <b>full-size RVS</b> for an ion gantry                                                                                                                                                                                                                 | <b>5.4 MC simulations</b> evaluation of the final RVS performance                                                                                                                                                                                                                                                 |



INFN-TO, UniTo

Courtesy of S. Giordanengo,

E. Fiorina, R. Sacchi





## Conclusion & acknowledgement

- Supercon<sub>du</sub> Ion Gantry
- The SIG project brought together a motivated community for a substantial contribution to the technology development of ion gantries
- 2.5 years to deliver effective technology demonstrators!
- I would like to thank all the (direct and indirect) collaborators

| INFN Milano &<br>UniMi                                                                                                                                                   | INFN-Genova &<br>UniGe                                                        | CERN                                                       | CNAO                                                                                | MedAustron              | INFN-LNF                                                    | INFN-Torino &<br>UniTo                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L. Rossi<br>M. Prioli<br>A. G. Carloni<br>G. Ceruti<br>E. De Matteis<br>F. Mariani<br>S. Mariotto<br>A. Palmisano<br>M. Sorbi<br>S. Sorti<br>M. Statera<br>R. U. Valente | R. Musenich<br>S. Farinon<br>E. Bianchi<br>R. Cereseto<br>A. Gagno<br>F. Levi | E. Gautheron<br>M. Karppinen<br>D. Tommasini<br>L. Gentini | M. Pullia<br>E. Felcini<br>S. Savazzi<br>A. Mereghetti<br>M. Donetti<br>G. Frisella | C. Kurfuerst<br>M. Pivi | L. Sabbatini<br>A. Vannozzi<br>L. Pellegrino<br>A. Trigilio | S. Giordanengo<br>E. Fiorina<br>R. Sacchi<br>R. Cirio<br>F. Mas Milian<br>S. Garbolino<br>C. Galeone<br>E. Data<br>A. Fadavi<br>F. Pennazio<br>P. Cerello<br>V. Ferrero<br>R.J. Wheadon<br>S. Ranjbar |