

LNS Accelerator Division: status and perspectives

Luigi Celona

Seconda Giornata Acceleratori

Catania, March 02nd 2022

I-LUCE area

by P. Cirrone

we we

Laser area

Punto Misura 2

Punto Misura

⁹⁴Nb

 $2.03 \times 10^4 > 700$

PANDORA: Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archeometry

ECRIT – ECR Ion Trap for β -decay measurements in plasmas

MAIN GOAL: Make β -decay measurements in plasmas of astrophysical interest: many isotopes can change their lifetime of several order of magnitude when ionized!! strophysics uclear Decay Observation and adiation for chaeometry X-rays SDD detectors X-rays pin-hole camera Extraction line **RF** generator **RF** waveguides Mass spectrometer Superconducting magnets (coils + hexapole) Faraday cup Plasma Horn antenna for y-rays HpGe detectors InterferoPolarimetry by D. Mascali

Status of accelerator rooms & beam lines

TANDEM automation and instrumentation upgrading

LABORATORI NAZIONALI DEL SUD

First Tandem beam delivered to 60° beamline expected for end of 2023

Pelletron extra maintenance and relative tests (NEC discussion ongoing) Tandem vacuum system **Alignment check Power converter change** Safety issues (RSPP prescriptions) Tandem tests April-May'23 Switching magnet installation May'23 **Electrical plant extra maintenance** (compliance) June'23 SF6 plant extra maintenance (controls with redundancy of temperature and pressure gauges, alarm leak) July'23 **Improved** Diagnostics **Spectrometry of accelerated species Consolle migration**

Tandem Beam Menu

- ${}^{1}\text{H}, {}^{2}\text{H}$
- ⁶Li, ⁷Li
- •
- $^{10}B, ^{11}B$ •
- ${}^{12}C, {}^{13}C$
- 14N •
- ¹⁶**O**, ¹⁷**O**, ¹⁸**O**
- 19F
- ²³Na ٠
- ${}^{24}Mg, {}^{25}Mg$
- ²⁷Al

- ²⁸Si, ²⁹Si • $^{32}S, ^{34}S$
- ⁹Be, ¹⁰Be ³⁵Cl, ³⁷Cl
 - ⁴⁰Ca
 - ⁵⁸Ni, ⁶⁰Ni
 - ⁶³Cu, ⁶⁵Cu
 - ⁷⁰Ge
 - ⁷⁹Br
 - ⁹³Nb
 - ¹¹⁶Sn, ¹²⁰Sn
 - 127
 - ¹⁹⁷Au

Maximum High Voltage ≈ 13.5MV **Pelletron charging system** HV stability $\approx 10^{-4}$

Noble gases development in progress

Long half-life isotopes in batch-mode

¹⁰Be (*T*_{1/2} = 1.39×10⁶ y) Tandem beam has been produced in batch-mode, in collaboration with PSI (Zurich)

450kV PLATFORM-Sputter IS

Extraordinary maintenance was carried out for all the subsystems

Sputtering beam planned:

- 1. Gold -> reference beam
- 2. Aluminium
- 3. Lithium
- from Li₂O+Ag
- 4. Oxygen
- **5.** Magnesium from Mg $+H_2$ or Mg $+NH_3$
- **6. Carbon** from BN+ graphite or B_4C

450kV PLATFORM-NESTOR

New characterization in progress:

- degradation of performance observed after almost one week of operation
- modification in progress

Planned operations:

- Positive He production and relative transport along the beam line in different conditions and operations
- Charge-exchange cell installation and test of production of negative ion beams in different conditions and operations.

Superconducting Cyclotron

Operating 1994 - 2020

E_{MAX} ~ 80 AMeV for lighter ions E_{MAX} ~ 25 AMeV for heavier ions (i.e. Au³⁶⁺) K_{bend} =800 - K_{foc}=200 Pole radius: 90 cm – Mag. field: 2.2 - 4.8 T RF range: 15-48 MHz

Since 1999

Two ECR ion sources: CAESAR and SERSE

June 2020 last experiment, disassembly for the upgrading started in November.

Cyclotron Beams Menu

AX	E (AMeV)
H_2^+	62,80
H_3^+	30,35,45
$^{2}\mathbf{D}^{+}$	35,62,80
⁴ He	25,62,80
He-H	10, 21
⁹ Be	45
¹¹ B	55
¹² C	23,62,80
¹³ C	45,55
14 _N	62,80
¹⁶ O	21,25,55,62,80
¹⁸ O	15,55
¹⁹ F	35,40,50
²⁰ Ne	20,40,45,62
^{24}Mg	50
²⁷ Al	40
³⁶ Ar	16,38
⁴⁰ Ar	15,20,40

E (AMeV) ⁴⁰Ca 10,25,40,45 ^{42,48}Ca 10,45 ⁵⁸Ni 16,23,25,30,35,40 62,64Ni 25,35 ^{68,70}Zn **40** ⁷⁴Ge **40** ^{78,86}Kr 10 ⁸⁴Kr 10,15,20,25 ⁹³Nb 15,17,23,30,38 ¹⁰⁷Ag **40** ¹¹²Sn 15.5,35,43.5 ¹¹⁶Sn 23,30,38 ¹²⁴Sn 15,25,30,35 ¹²⁹Xe 20,21,23,35 ¹⁹⁷Au 10,15,20,21,23 ²⁰⁸Pb 10

AX

,45

New Extraction line by stripping

Instantaneous change of the magnetic rigidity, when the charge state of the ion is suddenly increased crossing a thin carbon foil

Beam extraction by stripping Efficiency >99%

Extraction by electrostatic deflection

Istituto Nazionale di Fisica Nucleare

Extraction by electrostatic deflection

Extraction by stripping

From ED \rightarrow Stripping:

- Rimuovere il Def E1 dall'interno del CS
- Rimuovere la piastra unica con motori e slitte
- Rimuovere le aste di collegamento al Def E1
- Montare lo Stripper all'interno del CS
- Inserire il complessivo della trasmissione
- Assemblare il complessivo quadrupoli e Steerer (in azzurro) dislocato preventivamente nell'area A3

Durante il funzionamento del CS con estrazione per Stripping, non è prevista la rimozione del deflettore E2

Cyclotron Upgrade: expected currents by stripping

lon	q	Energy	Isource	lacc	l extract	rate
		MeV/u	еμА	еμА	еμА	pps
12C	4	18	400	60	90.0 (6+)	9.5E+13
12C	4	30	200	30	45.0 (6+)	4.7E+13
12C	4	45	400	60	90.0 (6+)	9.5E+13
12C	4	60	400	60	90.0 (6+)	9.5E+13
180	6	20	400	60	80.0 (8+)	6.3E+13
180	6	29	400	60	80.0 (8+)	6.3E+13
180	6	45	400	60	80.0 (8+)	6.3E+13
180	6	60	400	60	80.0 (8+)	6.3E+13
180	7	70	200	30	34.3 (8+)	2.7E+13
20Ne	4	15	600	90	225.0 (10+)	1.4E+14
20Ne	7	28	400	60	85.7 (10+)	5.4E+13
20Ne	7	60	400	60	85.7 (10+)	5.4E+13
40Ar	14	60	400	60	77.1 (14+)	1.0E+13

180 @ 20 MeV will be the beam used to commissioning of the machine:

- The power is not too high and it could mitigate eventually activation issues during the commissioning phase.
- During the commissioning of the machine the beam intensity will be
 - increased step by step adjusting the duty cycle of the CHOPPER.
- Diagnostics improved to monitor the beam losses permitting a better optimization of the tuning.

Beam dynamics simulations. Warm coil qualification will permit to refine the studies.

in progress

- Magnetic measurement on «Alfa 2» (superior coil) Decrease of Bz component at the current feedthroughs, probably due to a nonuniform density of windings at that area for construction reasons.
- Magnetic measurement on «Alfa 1» (bottom coil) just started

preliminirary

Upgrade of CS & Tandem ancillaries

Vacuum	Improvement of the entire vacuum system is in progress (acceleraton chamber, liner), splitted-cryo not anymore supported, Trim coils. New Vacuum system for TANDEM and the related beam lines.
Cryogenics	Revamping HELIAL 4011, P&I and control system maintenance and ugrading in progress
RF	Refurbishment of the entire LLRF and development of Labview control software , HLRF (MV transformers and MV cables replacement, Three Phase Power Controller replacement, BBC refurbishment, new configuration with 3x80 kW dummy load BIRD 7092), Pulsing systems, Extraordinary maintenance of CS cavities.
Diagnostics	New non-interceptive diagnostics along old and new beam lines; visual diagnostics.
Power converters	Power converters for new beam lines: Extraction, Fraise, Magnex. New power converters for TANDEM and related beam lines.

Beam Auto Tuning with AI tools

Speed up of the beam tuning with Artificial intelligence

Real-time messages and alarms received automatically by field devices to improve safety

Centro di Massa X: 280 Risoluzione immagine: 768x576 Sigma X: 23 Centro di Massa Y: 298 Sigma Y: 50

MATRIX

ZQU2

Def1 - M3

CS masterplan

UNIONE EUROPEA Fondo Sociale Europeo Fondo Europeo di Sviluppo Regionale

Masterplan

ECR ion sources

SERSE (1997) High B mode operation– HCl production (e.g.: 80 μA of Xe²⁷⁺)

CAESAR (1999)

SC-AISHa: a new ion source for INFN-LNS

- The AISHa ion source has been expressly conceived and realized for actual and future hadrontherapy facility (e.g.:HITRI+). It has a strong limitation on a radial field (1.28T instead of 1.55T of SERSE) affecting HCI production.
- A fully superconducting version has been conceived to overcome such limitation.

Radial field	1.9 T
Axial field	3.5 T - 0.5 T - 2.2 T
Operating frequencies	24 GHz – 18 GHz
Operating power	5 + 5 kW (max)
Extraction voltage	50 kV (max)
Chamber diameter / length	Ø 130 mm / 500 mm
LHe	Free
Warm bore diameter	140 mm
Source weight	2100 kg

Axial injection beam line

Designed in late 90's to permit selection and transport of low currents of highly charged ions.

Review to adapt it for the transport with a good efficiency of high currents.

Insertion of a Low Energy Chopper as mitigation device for MPS.

Renewal of the two axial bunchers

Modification in beam diagnostics

Refurbishment vacuum sysytem and controls

Axial injection beam line

I=0.5emA-Not optimized

optimized

AISHa: a testbench for INFN-LNS

AISHa source has been moved to a new room being in conflict with the civil works of CS upgrading.

Installation of crane and services needed to operate is expected for June'23 and restart of operation is planned for October'23

R&D activities \rightarrow **IONS**

Charge state	Beam intensity	$arepsilon_{rms.norm}$ $[\pi \cdot mm \cdot$
	[eµA]	mrad]
$^{16}O^{6+}$	1400	0.2198
$^{16}O^{6+}$	225	0.115
¹⁶ O ⁷⁺	350	0.247
¹² C ⁴⁺	650	0.272
$^{12}C^{4+}$	150	0.222
$^{12}C^{5+}$	165	
⁴⁰ Ar ¹¹⁺	155	0.201
⁴⁰ Ar ¹²⁺	140	0.201
He ²⁺	5400	0.418
He ²⁺	700	0.245

AISHa@CNAO (IRPT, INSPIRIT)

Istitute Nazionale di Fisica Nucleare Sezione di Pavia

lon	AISHa Performances	Requirement CNAO
	[uA]	[uA]
C ⁴⁺	520	110
O ⁶⁺	1200	64
He ²⁺	5400	344
Li ³⁺	To be developed	230
Fe ¹⁹⁺	To be developed	175

First beam produced on 19/11/22 (He@16kV).

ONE EUROPE

SS fesr

Regione Lombardia

Sistema Sanitaria

Thanks for your kind attention!