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ATTENTION MECHANISM
• Several examples in DNN in which the whole task to be learned is subdivided in sub-tasks which apply to local elements of 

the input:


• RNN example: to translate each element of a sequence 


• CNN example: to classify each pixel in a image segmentation (eg classification pixel by pixel)


• GNN example: to predict the target for each node in a graph 


• to solve the sub-task in all these cases the model learns to form an internal representation of the input that acts as context 
for the sub-task


• ideally this context vector should contains information from the entire input, however:


• fixed length vectors scales quite poorly with input size (number of subtasks grow), like in the analysis of long sequences


• either the size of the context vector grows or it will not have the capacity to represent all the relevant information leading 
to a degradation in performance


• this clash with computational resources


• idea: even if the model may need to draw upon information from the entire input, however some parts of it will be more 
relevant than others. The attention mechanism provides a way to identify such parts …
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REMINDER: SEQ-TO-SEQ LSTM/GRU
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Encoder-Decoder RNNs

use of LSTM o GRU cells allows to 
“memorise” relevant terms that are far from 
the current element in the sequence and 
that are crucial to solve the task

encoder

decoder

seq2seq models (used for example in machine translation 
tasks) represents a first example of such attempt to create 
a context vector (the cell state of the LSTM/GRU) from the 
input

limitation: LSTM/GRU becomes ineffective for 
very long sequence, unless implemented in 
complex StackedRNN architectures that are 
impossible to train in an acceptable time due 

to the recursive (i.e. non parrallelizable) 
intrinsic structure of a RNN 



ATTENTION
• intuitive idea: one forms a representation for the entire input, but different parts of the input are 

weighted differently according to the task at hand. By making the weights a learnable component, the 
network can learn to attend to the relevant parts of the input 


• example: in a NLP translation task, attention will works by aligning each words in the output 
sequence (translated text) with some words in the input sequence that give context to the translation. 
These words are not necessarily aligned in the original order, they can aligned in different order to 
take into account that words order may be for example different in different languages …
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Ci = ∑
j

αijhj
context vector for the i-th output word 

(or sequence element in general)

αij = softmax(alignment(si, hj)) =
exp[alignment(si, hj)]

∑k exp[alignment(si, hk)]
alignment weight between 

input encoding hj and output 
encoding si guarantees a 


convex combination
αij ≥ 0; ∑

j

αij = 1

a suitable alignment function: 

ex. alignment(si, hj) = sT

i hj



t
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RNNSearch: BIDIRECTIONAL RNN WITH ATTENTION
• attention idea implemented for the first time in a model (RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR 

2015) which made a breakthrough in machine translation by combining a bi-directional RNN with an additive 
attention mechanism
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attention weights in a seq-to-seq problem of translation from ENG to FR

alignment(si, hj) = U tanh(Wsi−1 + W̃hj + bi) learnable weights
U, W, W̃, bi
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RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR 2015

BLEU score: percentage of 
translated words that appear in the 

ground truth

alignment matrices



DIGRESSION: ATTENTION AND NOTION OF SPARSITY OF INTERACTIONS 

• the attention mechanism is a generalisation of the assumption of locality used in CNN with the 
concept of sparsity of interactions 


• this can be intuitively understood by considering the k-NN algorithm: 
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g(x) =
1
k ∑

i∈ k−nn(x)

yi
in a regression task returns the average of the 
values of the closest k-points according to a 
defined distance d(x,xi)  

• g(x) is considered “sparse” as only depends on k points of the entire dataset


• the attention makes the operation of selection the k-nn points differentiable and useable by summing 
over all points and weighting them with the distance d:

g(x) = ∑
i

d(x, xi)yi = ∑
i

e−β∥x−xi∥2yi Nadaraya-Watson kernel estimator

the attention mechanism makes this estimator a convex sum using the softmax



SCALED DOT-PRODUCT ATTENTION AND TRANSFORMERS 

• Transformers are recent DNN architectures based on the attention mechanism that have gradually 
replaced RNNs in mainstream NLP tasks, and that can also often compete/surpass (when trained 
with very large datasets) CNNs and RNNs in vision and in time-domain related tasks


• Compared to RNN, Transformers:


• facilitate the learning of long range sequences


• don’t need recurrence:


• no gradient vanishing or explosion problems


• typically need fewer training steps (contrarily to RNNs that due to recurrence when unrolled are 
very deep networks), and can be easily parallelised on GPUs (while recurrence is intrinsically 
serial) 


• The core ingredient of Transformers is the so called multi head (self) attention layers based on 
scaled doct-product alignment
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ATTENTION MECHANISM AS A DB RETRIEVAL TECHNIQUE 

• the attention mechanism can be also seen in a different way, as a technique that 
mimics the retrieval in a database of a value v based on a query q and on a key k 

• in a database retrieval process the query is used to identify a key that allows to 
retrieve a given value associated to that key:
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key1     value1
key2     value2 
key3     value3

keyN     valueN 

query: aligns with 
one of the keys

database

the key is aligned 
with one of the 
values of the 
database and 

produce in output 
that value



• the dotted attention mechanism mimics this via a neural network architecture:
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a way to measure how similar 
(“aligned’) are q and ki

attention(q, k, v) = ∑
i

similarity(q ⋅ ki) × vi

the value associated to the 
key ki

• in a db normally the query returns one value, and this corresponds to use a similarity 
function that produce a one-hot encoding [0,0,0,…,1,0,…,0] that effectively return just one 
value vk


• the dotted attention generalise this by using a distribution, e.g. weights ∈ [0,1] that sum up to 1 
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k1 k2 k3 k4

λ1 λ2 λ4

query q:
λ3 similarity measures

λi = f(q, ki) =

qTki

qTki

d

WqqTWkki

Wqq + Wkki

dot product

scaled dot product

general (scaled) 
dot product
additive similarity (as in the RNNSearch)

project the query on a new space (for 
example to be in the same space from 

the point of view of the similarity as 
the key) via a learnable transformation

much more efficient 
than additive similarity

• as example in a machine translation task we may have:

• query i: hidden representation vector for the i-th output word: si

• key j: hidden representation vector for the j-th input word: hj 

• value j: again the hidden representation vector for the j-th input word: hj

this way the attention allows to 
compare each output word with a 

context vector that takes into 
account all the input words

several 
possibilities for 
the similarity 

measure
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λi = f(q, ki)
similarity measures


(scalars)

softmax weights

(scalars)

k1 k2 k3 k4

λ1 λ2 λ4

query q:
λ3

α1 α2 α4α3 αi =
eλi

∑j eλj
weight calculation:


implemented as a softmax 
layer, i.e. like a dense layer 

but w/o weights

⊗ ⊗ ⊗⊗weight combination:

v1 v2 v4v3

+ + + attention 
score/value = ∑

i

αivi

keys

values



TRANSFORMER  
ARCHITECTURE

• A. Vaswani et al. “Attention is All You 
Need” (2017) arXiv:1706.03762 


• Encoder-decoder architecture for 
sequence analysis fully based on 
attention w/o recurrence 


• Today has substantially replaced any 
other DNN model for NLP tasks
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decoder

encoder

https://arxiv.org/abs/1706.03762
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decoder:

looks at the correlations from 

the output words and between 
them and the encoded input to 

produce the translated text

encoder:

encode the input sequence, output will be 
an embedding for each word (position) in 

the input

input is the entire sequence of 
words


(not one by one like in a RNN)

there are N of these blocks 
organised as a stack

positional encoding: 
allows the sentence not 
to be treated as a bag of 

words

output: distribution over 
the words dictionary

self attention layer that 
combines output words with 

previous output words

(w/ teacher forcing)

attention layer that combines 
output words embedding with 

input words embeddings



WORD EMBEDDING (I.E. LEARN REPRESENTATIONS OF WORDS)
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to be understood by a NN a text must be vectorized + represented effectively

two main techniques typically used: 

doesn’t scale well with the dictionary dimension … scale well with dimensionality

(1,0,0)
(0,1,0)

(0,0,1)

example:

a 3 words 

dictionary 

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

•  simple

•  naive approach, no similarity information


•  more complex, more powerful

•  takes into account words similarity

•  dense vectors can be learned with a NN



MULTI HEAD (SELF) ATTENTION
• it is the core of the Transformer architecture, the structure is the same of the attention layer we have just discussed:


• feed with a vector made by the embedding vectors of every words in the sentence


• the MH attention compute the self attention between every position and every other position in the input vector, treating each 
word as a query and find some keys that corresponds to the other words on the sentence and make a weighted convex sum 
of the values (taken to be equal to the keys) to produce a better embedding that merge informations from pair of words


• to increase the expressive power, in a way similar to the convolution filters in a CNN, multiple sets i=1,…,h of keys, querys, 
and values are computed:
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MultiHead(Q, K, V) = concat[h1, h2, …, hh]W0

Qi = XWq,i Ki = XWk,i Vi = XWv,i

hi(Qi, Ki, Vi) = attention(Qi, Ki, Vi) = softmax ( QiKT
i

dk ) Vi

• NOTE: in the Transformer there are N of these multi head attention blocks organised in stacks, the first one capture correlations 
between pair of words, second between pair of pair of words, and so on so eventually all the words in the sentence will be 
combined together …

for each one a dot product attention is computed:

and finally all of them are concatenated 
before to apply a final projection: 
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schema of a MH Attention layer

concat

linear

Queries Keys Values

linearlinear linearlinearlinear linearlinearlinear linear

scaled dot product attentionscaled dot product attentionscaled dot product attention

h: # of heads

h

Qi = XWq,i
Ki = XWk,i
Vi = XWv,i

Hi(Qi, Ki, Vi) = softmax ( QiKT
i

dk ) Vi

concat[h1, h2, …, hh]

MultiHead(Q, K, V) = concat[h1, h2, …, hh]W0



MASKED MH ATTENTION
• is a masked version of the MHA layer in which some values are masked to prevent 

them to be selected


• in the decoder the first MHA combines output words with previous output words (a 
given output cannot depends on future outputs), so future outputs will be masked
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H(Q, K, V) = softmax ( QKT

dk ) V

Masked H(Q, K, V) = softmax ( QiKT + M

d ) V

with M a mask matrix with 

zero’s for unmasked 
elements and -∞ for 
masked elements 


(exp(-∞) = 0)



LAYER NORMALIZATION
• normalize values in each layer to have 0 mean and 1 variance to reduce covariate shifts 

(eg gradient correlations/dependences between each layer) , making training faster 


• for each hidden unit h substitute h with γ(h-μ)/σ with γ a “gain” hyper parameter that 
compensate for the fact that we are normalising:


• is very similar to a batch normalisation layer, with the difference that here the 
normalisation is done at the level of the layer (normalising across hidden units) while in 
BN is done for each units normalising across batch elements, so it is no sensitive to 
small batch sizes
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μ =
1
H

H

∑
i=1

hi σ =
1
H

H

∑
i=1

(hi − μ)2



POSITIONAL EMBEDDING
• is used in both encoder and decoder modules just right after the input 


• allows the words in the sentence not to be treated as a bag of words, e.g. takes into account the position in the sentence of each word


• this is needed as the attention mechanism is equivariant to the ordering of the elements (e.g. MH(PX) = P MH(X) with P permutation matrix) 
and this is not what we want for an input that is a sequence in which order is important (PE can be omitted in case we want to retain 
permutation equivariance in the transformer model)


• implemented with a trick: 


• use a vector that embed the position and add or concatenate this to the word embedding vector: MH(Pconc(X,E)) ≠ P MH(conc(X,E))


• empirically using as positional embedding vector a position integer or a one-hot encoding of the position has been shown to not perform 
always well, instead very good performances have been obtained using a sinusoidal embedding:  
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Epos,2i = sin(pos × ωi) = sin ( pos
100002i/d )

Epos,2i+1 = cos ( pos
100002i/d )

word position in the input embedding

i: from 0 to d-1

and added to the embedding (X →X+E) instead of concatenating 
it to reduce the number of parameters (this is debatable)

d = dimension of the 
embedding vector

for each position (scalar) a vector is produced E:



PERFORMANCES
• original transformer
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BLEU score: percentage of 
translated words that appear in the 

ground truth

65 Mpar
213 Mpar

largest of the two 
EN-DE/EN-FR



TRANSFORMERS AND GNN
• there is a strong link between Graph Neural Networks and Transformers

• in the most simple form a GNN update the hidden feature of a given node, by message passing, i.e. by a non 

linear transformation of the node feature added to an aggregation of the features of the neighbouring nodes: 
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j ∈ N(i) ht+1
i = ϕ(Utht

i + ∑
j∈N(i)

(Vtht
j))

learnable weight matrices

non linear function 
(i.e. ReLU, σ, …)

• replacing the summation over the neighbours j with the attention mechanism, i.e., with a weighted sum, we'd get the Graph Attention 
Network (GAT), adding normalisation and an MLP we get something formally equivalent to a graph transformer


• a Transformer is a GNN with a multi-head attention as aggregation function 


• while a GNN aggregate features from their local neighbourhood nodes  , transformers treat the whole input sequence as the 
local neighbourhood, aggregating features from each element of the sequence at each layer 

j ∈ N(i)

GNN layer

MH Attention Layer

• the sum over the neighbours node can be replaced by a 
permutation invariant aggregation function (ex. mean, 
max, …), or with more powerful aggregators, like an 
attention mechanism



TRANSFORMERS EVOLUTIONS
• the original transformer has spawn series of evolutions that today dominate NLP 


• GPT (2018)/GPT2/GPT3 (GPT3: 175B paramaters): unsupervised multitask learned 
based on a decoder transformer (no encoder) that predicts next words based on 
previous words by computing P(xt|x1,…,xt-1) 


• BERT (2019), 340M parameters: unsupervised bi-directional  
encoder transformer that predicts a missing  
word based on surrounding words by computing   
P(xt|x1,…,xt-1,xt+1,…,xN) or the next sentence based  
on a previous sentence
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randomly mask one or multiple 
words in the sentence, the 

associated context is passed to a 
softmax classifier that produce 
the probability of classifying the 

correct missing word  
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Google - PalM (Pathways Language Model): arXiv:2204.02311

- 540B parameters 

- single model that can generalize across different domains and tasks


- highly efficient training across multiple TPUs pods

- tested on hundreds of language understanding and generation tasks: achieves state-of-the-art 

few-shot performance across most tasks, by significant margins in many cases

https://arxiv.org/abs/2204.02311
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some PalM examples …
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OpenAI - DALL•E 2: https://openai.com/dall-e-2/

- scaled down (3.5B parameters) evolution of the first version DALL•E (12B pars) released in 2021 

which in turn is a scaled down evolution from GPT3 (175B pars)

- generative transformer (combines transformers with diffusion models) able to create new 

realistic images and art from based on a text description. It can combine concepts, attributes, 
and styles 

https://openai.com/dall-e-2/
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“A rabbit detective sitting on a park bench and 
reading a newspaper in a victorian setting”

“macro 35mm film photography of a large family of 
mice wearing hats cozy by the fireplace”



Meta - Galactica: http://galactica.org/

- transformer model (125B parameters) trained on a large corpus comprising more than 360 millions in-context 

citations and over 50 millions of unique references normalized across a diverse set of sources. Eenables to suggest 
citations and help discover related papers 


- on technical knowledge probes such as LaTeX equations, outperforms the latest GPT-3 and PaLM 540B on MATH.
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VISION TRANSFORMERS
• the very same philosophy of the Transformer architecture can be applied to vision, signal analysis, 

point-cloud analyst, etc. tasks


• Vision Transformer (ViT) has been proposed in 2021 by A. Dosovitsky et al. in arXiv:2010.11929 


• is based on the same original Transformer architecture of Vaswani et al.


• has shown to be able to surpass SOTA CNN architectures ResNet, but only if the dataset 
needed to re-train the model is large enough (large enough means > 100M images)


• Simple idea:


• split the images into patches


• vectorise the patches into flat vectors


• add positional encodings vectors to preserve patch positions in the original image


• feed the embedding to a transformer encoder tailored for a classification task
30

https://arxiv.org/abs/2010.11929
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IMAGE PATCHING AND VECTORISATION
• patches can overlap or not (the original paper uses not overlapping patches)
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• NOTE: ViT has much less image-specific inductive bias than CNNs. In CNNs, locality, two-dimensional 
neighbourhood structure, and translation equivariance, are baked into each layer throughout the whole 
model. In ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are 
global. The two-dimensional neighborhood structure is only used when cutting the image into patches while 
the position embeddings is only 1D and the 2D spatial relations between the patches have to be learned

d × d × cD × D × c

d2c
LIN

EAR +

positional

embedding

1 2 3

4 5 6

7 8 9



TRAINING AND PERFORMANCE
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JFT  dataset

300M images

18k classes

test

set

training

set

pertained on 
imagenet-21k

14M images

21k classes

pertained on 
JFT



AN EXAMPLE OF PYTORCH IMPLEMENTATION OF VIT
• https://github.com/lucidrains/vit-pytorch

34

https://github.com/lucidrains/vit-pytorch

