QUICK INTRODUCTION TO
TRANSFORMERS

S. Giagu - 319 ML_INFN Hackathon: Advanced Level

INFN & Universita di Bari - 23.11.2022

ATTENTION MECHANISM

Several examples in DNN in which the whole task to be learned is subdivided in sub-tasks which apply to local elements of
the input:

* RNN example: to translate each element of a sequence
* CNN example: to classify each pixel in a image segmentation (eg classification pixel by pixel)
 GNN example: to predict the target for each node in a graph

to solve the sub-task in all these cases the model learns to form an internal representation of the input that acts as context
for the sub-task

ideally this context vector should contains information from the entire input, however:
 fixed length vectors scales quite poorly with input size (number of subtasks grow), like in the analysis of long sequences

* either the size of the context vector grows or it will not have the capacity to represent all the relevant information leading
to a degradation in performance

this clash with computational resources

idea: even Iif the model may need to draw upon information from the entire input, however some parts of it will be more
relevant than others. The attention mechanism provides a way to identify such parts ...

REMINDER: SEQ-TO-SEQ LSTM/GRU

Encoder-Decoder RNNs

...............................

...

seg2seg models (used for example in machine translation
tasks) represents a first example of such attempt to create

a context vector (the cell state of the LSTM/GRU) from the
input a

use of LSTM o GRU cells allows to
“memorise” relevant terms that are far from
the current element in the sequence and
that are crucial to solve the task

71’“ ; limitation: LSTM/GRU becomes ineffective for

very long sequence, unless implemented In
: complex StackedRNN architectures that are
encoder impossible to train in an acceptable time due
' to the recursive (i.e. non parrallelizable)
intrinsic structure of a RNN

L
..

ATTENTION

e ntuitive idea: one forms a representation for the entire input, but different parts of the input are
weighted differently according to the task at hand. By making the weights a learnable component, the

network can learn to attend to the relevant parts of the input

 example: in a NLP translation task, attention will works by aligning each words in the output
seqguence (translated text) with some words in the input sequence that give context to the translation.
These words are not necessarily aligned in the original order, they can aligned in different order to
take into account that words order may be for example different in different languages ...

a suitable alignment function:

context vector for the i-th output word C. = 2 a.h ex. alignment(s;, h,) = sl.Thj
(or sequence element in general) LT i P 4
j)

explalignment(s;, ;)]

input encoding h; and output / A (@9 (55, 1)) 2., explalignment(s;,)]

encoding S; |
guarantees a ;> 0; Z a; = 1
convex combination 7 - Y
J

decoder

J

encoder

RNNSearch: BIDIRECTIONAL RNN WITH ATTENTION

» attention idea implemented for the first time in a model (RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR
2015) which made a breakthrough in machine translation by combining a bi-directional RNN with an additive
attention mechanism

U W,W,b.

alignment(s;, h) = Utanh(Ws,_; + Wh +b;) learnable weights

accord zone économique européenne a signé aolt 1992 <end>
Itt =[] Hﬁf
| | | |
the agreement European Economlc Area was signed August 1992 <end>

attention weights in a seqg-to-seq problem of translation from ENG to FR

4+
-
0
-
O
Q
—
o
©

on
the

European
Economic

accord

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

Area

was

signed

alignment matrices

in

August
1992

<end>

La
destruction
de

I
équipement
signifie

c
o
=
U
-
| -
.
n
v
()

Syrie

ne

peut

plus
produire
de
nouvelles
armes
chimiques

<end>

of

the

equipment
means
that

Syria
can
no

longer

produce
new

RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR 2015

chemical
weapons

] score

BLET

10

D

0

<end>

BLEU score: percentage of
translated words that appear in the
ground truth

T T ’ T
................................... \\ P © 80 800600060680 ce0060600000006006s e
. F S
| N e a
... T.in...“...“.\.gui.“...“..._,..“...”...“._
. N L
CoN DN 29
: ; : : - “;
- _— . N
| — RNNsearch-50 F................ AP S 5 55 550 ™ lteedesieieeeieann, i
----- RNNsearch-30 [z O NS e
| — = RNNenc-50 ‘, d
-+ - RNNenc-30 | § i S
1 | i i i
0 10 20 30 40) H() 00

Sentence length 7

DIGRESSION: ATTENTION AND NOTION OF SPARSITY OF INTERACTIONS

* the attention mechanism is a generalisation of the assumption of locality used in CNN with the
concept of sparsity of interactions

* this can be intuitively understood by considering the k-NN algorithm:

1 In a regression task returns the average of the
g(x) = ; Z Yi values of the closest k-points according to a
i€ k—nn(x) defined distance d(x, x;)

* g(x) is considered “sparse” as only depends on k points of the entire dataset

* the attention makes the operation of selection the k-nn points differentiable and useable by summing
over all points and weighting them with the distance d-

2(x) = 2 d(x, x;)y; = Z e—ﬁﬂx—xiﬂzyi Nadaraya-Watson kernel estimator
l l

the attention mechanism makes this estimator a convex sum using the softmax

SCALED DOT-PRODUCT ATTENTION AND TRANSFORMERS

* [ransformers are recent DNN architectures based on the attention mechanism that have gradually
replaced RNNs in mainstream NLP tasks, and that can also often compete/surpass (when trained
with very large datasets) CNNs and RNNs in vision and in time-domain related tasks

» Compared to RNN, Transformers:

 facilitate the learning of long range sequences

e don’t need recurrence:

* no gradient vanishing or explosion problems

» typically need fewer training steps (contrarily to RNNs that due to recurrence when unrolled are

very deep networks), and can be easily parallelised on GPUs (while recurrence is intrinsically
serial)

* The core ingredient of Transformers is the so called multi head (self) attention layers based on
scaled doct-product alignment

ATTENTION MECHANISM AS A DB RETRIEVAL TECHNIQUE

* the attention mechanism can be also seen in a different way, as a technique that
mimics the retrieval in a database of a value v based on a query g and on a key k

* |INn a database retrieval process the query is used to identify a key that allows to
retrieve a given value associated to that key:

query: aligns with
one of the keys —_—

database
keyl | valuel |
key2 | value2 |
key3 | value3 -

the key Is aligned
with one of the
values of the
database and
produce in output
that value

10

e the dotted attention mechanism mimics this via a neural network architecture:

attention(q, k,v) =) similarity(q - k) x v,

e N\

a way to measure how similar the value associated to the
(“aligned’) are g and k; key Ki

* In a db normally the query returns one value, and this corresponds to use a similarity
function that produce a one-hot encoding [0,0,0,...,1,0,...,0] that effectively return just one
value vk

e the dotted attention generalise this by using a distribution, e.g. weights € [0,1] that sum up to 1

11

A4 similarity measures

A1 A2 A3
. /%//AK/‘/
query q: =
K1 Ko Ks

K4
'k d
- ot product
9% P much more efficient
qu. than additive similarity
several : scaled dot product
possibilities for 1. = f(q k~) — \/Zl’ project the query on a new space (for
the similarity l ol example to be in the same space from
measure W qTWkk- general (scaled) the point of view of the similarity as
9 l dot product the key) via a learnable transformation
W q + Wik; additive similarity (as in the RNNSearch)

* as example in a machine translation task we may have: this way the attention allows to

* query I: hidden representation vector for the i-th output word: si compare each output word with a

 key j: hidden representation vector for the j-th input word: h; context vector that takes into

account all the input words

* value |: again the hidden representation vector for the j-th input word: h; 15

values v

weight combination:

weight calculation:
iImplemented as a softmax
layer, I.e. like a dense layer
but w/o weights

|

® + ®

V2

|

query q: =

keys

a1 Qo 03
K X
[>T
A1 Ao A3
K- ko ks

1]
o L4
1] .
13
o ¢

.....

*

L g
Y

L

.....

attention
score/value

l

softmax weights - €
(scalars) L A
e’

2,

similarity measures
(scalars)

A

l

/li — f(qa kl)

13

TRANSFORMER
ARCHITECTURE

e A. Vaswani et al. “Attention is All You
Need” (2017) arXiv:1706.03762

e Encoder-decoder architecture for
sequence analysis fully based on
attention w/o recurrence

* Joday has substantially replaced any
other DNN model for NLP tasks

encoder
Feed
l

Add & Norm
Multi-Head
Attention
1 J

Positional
Encoding

N x

O
Input

Inputs

Output
Probabilities

Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

decoder

Add & Norm

Masked
Multi-Head
Attention

Positional
& c Encoding
OQutput
Embedding

Qutputs
(shifted right)

14

https://arxiv.org/abs/1706.03762

encoder:
encode the input sequence, output will be
an embedding for each word (position) in
the input

there are N of these blocks
organised as a stack »

Add & Norm
Feed
Forward

positional encoding:
allows the sentence not
to be treated as a bag of ——
words

== T —

Positio.nal e o

Encoding

: : . Input
input is the entire sequence of Embedding
words ~—

(not one by one like ina RNN) 2 |1t

Output @
F’robaloilitiesﬂ

Multi-Head &

Attention

Masked

Multi-Head |
Attention |

TR AR

OQutput
Embedding

Qutputs
(shifted right)

Positional
Encoding

output: distribution over
the words dictionary

decoder:

looks at the correlations from

the output words and between
them and the encoded input to
produce the translated text

—. attention layer that combines

output words embedding with
input words embeddings

self attention layer that
combines output words with
previous output words
(w/ teacher forcing)

15

WORD EMBEDDING (I.E. LEARN REPRESENTATIONS OF WORDS)

to be understood by a NN a text must be vectorized + represented effectively

two main technigues typically used:

1-hot representation

(0,0,1)
teddy bear

example: (0,1,0)
a 3 words soft
dictionary (1,0,0)

book

* simple
* naive approach, no similarity information

doesn’t scale well with the dictionary dimension ...

Word embedding

(X3,Y3,23)
teddy bear

book (x1,y1,21)

* more complex, more powerful
- takes into account words similarity
» dense vectors can be learned with a NN

scale well with dimensionality

16

MULTI HEAD (SELF) ATTENTION

* it is the core of the Transformer architecture, the structure is the same of the attention layer we have just discussed:
* feed with a vector made by the embedding vectors of every words in the sentence

* the MH attention compute the self attention between every position and every other position in the input vector, treating each
word as a query and find some keys that corresponds to the other words on the sentence and make a weighted convex sum
of the values (taken to be equal to the keys) to produce a better embedding that merge informations from pair of words

* to increase the expressive power, in a way similar to the convolution filters in a CNN, multiple sets i=1,...,h of keys, querys,
and values are computed:

O, = XWq,i K; = XWk,i Vi= XWv,i

T
for each one a dot product attention is computed: ~ h,(Q, K., V,) = attention(Q, K., V,) = softmax | —— | V.

Vi)

and finally all of them are concatenated |
before to apply a final projection: MultiHead(Q, K, V) = concat[hy, hy, ..., hy]W,

* NOTE: in the Transformer there are N of these multi head attention blocks organised in stacks, the first one capture correlations

between pair of words, second between pair of pair of words, and so on so eventually all the words in the sentence will be
combined together ...

schema of a MH Attention layer

concat[hy, h,, ..., ;]

H,(Q;, K., V;) = softmax V.
V4
K; =X Wk,i

V= XW,,

MultiHead(Q, K, V) = concat[hy, h,, ..., h,]W,

T

—

scaled dot product attention /
ot 1

T T- T-//h: # of heads

Queries Keys Values

18

MASKED MH ATTENTION

* IS a masked version of the MHA layer in which some values are masked to prevent
them to be selected

* in the decoder the first MHA combines output words with previous output words (a
given output cannot depends on future outputs), so future outputs will be masked

T
H(O, K, V) = softmax (oR) V

vy with M a mask matrix with

* zero’s for unmasked
OK” + M elements and - for
Masked H(Q, K, V) = softmax /a V masked elements

(exp(-oe) = 0)

LAYER NORMALIZATION

 normalize values in each layer to have 0 mean and 1 variance to reduce covariate shifts
(eg gradient correlations/dependences between each layer) , making training faster

* for each hidden unit h substitute h with y(h-p)/oc with y a “gain” hyper parameter that
compensate for the fact that we are normalising:

H
ﬂ=EZhi 0:\%§(hi_ﬂ)2

* |s very similar to a batch normalisation layer, with the difference that here the
normalisation is done at the level of the layer (hormalising across hidden units) while in
BN is done for each units normalising across batch elements, so it is no sensitive to

small batch sizes

20

POSITIONAL EMBEDDING

IS used in both encoder and decoder modules just right after the input
allows the words in the sentence not to be treated as a bag of words, e.g. takes into account the position in the sentence of each word

this is needed as the attention mechanism is equivariant to the ordering of the elements (e.g. MH(PX) = P MH(X) with P permutation matrix)
and this is not what we want for an input that is a sequence in which order is important (PE can be omitted in case we want to retain
permutation equivariance in the transformer model)

iImplemented with a trick:
e use a vector that embed the position and add or concatenate this to the word embedding vector: MH(Pconc(X,E)) # P MH(conc(X,E))

e empirically using as positional embedding vector a position integer or a one-hot encoding of the position has been shown to not perform
always well, instead very good performances have been obtained using a sinusoidal embedding:

word position in the input embedding

J . . pos
E = SIn(pos X w;) = sin ()

Posw 100002i/d
I: from O to d-1 B/

for each position (scalar) a vector is produced E:
¢ pOs d = dimension of the
E 5 1 = COS embedding vector

g 1000024

and added to the embedding (X = X+E) instead of concatenating
it to reduce the number of parameters (this is debatable) 21

PERFORMANCES

e original transformer
J BLEU score: percentage of

translated words that appear in the
ground truth

Model BLEU Training Cost (FLOPs)
N EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%°
MOE [32] 2603 40.56 2.0-101° 1.2.1020
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1020
GNMT + RL Ensemble [38] 2630 41.16 1.8-1020 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 7.7-10° 1.2.10%

65 Mpar Transformer (base model) 27.3 38.1 3.3 - 10'® largest of the two

213 Mpar Transformer (big) 28.4 41.8 2.3-10" EN-DE/EN-FR

22

TRANSFORMERS AND GNN

* there is a strong link between Graph Neural Networks and Transformers

* in the most simple form a GNN update the hidden feature of a given node, by message passing, i.e. by a non
linear transformation of the node feature added to an aggregation of the features of the neighbouring nodes:

hif+1 h;/”+1

: : t+1 _ 11,1 11,1 i A
JENG) h*'=¢WUhi+ Y (V)
non linear function N. JENG)/ e MH Attention Layer | s
(i.e. ReLU, o, ...) | | T 1
learnable weight matrices Sum GNN/|layer sofuTnax,. —0)
A A
* the sum over the neighbours node can be replaced by a Sum, B S S
permutation invariant aggregation function (ex. mean, A o | [
mayx, ...), or with more powerful aggregators, like an v Ve A)
attention mechanism T T
ht {h Vj e N()} hy {h] Vj € S)

* replacing the summation over the neighbours j with the attention mechanism, i.e., with a weighted sum, we'd get the Graph Attention
Network (GAT), adding normalisation and an MLP we get something formally equivalent to a graph transformer

* a Transformer is a GNN with a multi-head attention as aggregation function

 while a GNN aggregate features from their local neighbourhood nodes j € N(i), transformers treat the whole input sequence as the
local neighbourhood, aggregating features from each element of the sequence at each layer 23

TRANSFORMERS EVOLUTIONS

* the original transformer has spawn series of evolutions that today dominate NLP

« GPT (2018)/GPT2/GPT3 (GPT3: 175B paramaters): unsupervised multitask learned
based on a decoder transformer (no encoder) that predicts next words based on
previous words by computing P(xt|x1....,Xt-1)

 BERT (2019), 340M parameters: unsupervised bi-directional
encoder transformer that predicts a missing p

word based on surrounding words by computing T

Softmax Classifier
P(xi|[x1,...,Xt-1 Xt+1,... XN) OF the next sentence based 1

on a previous sentence F S S S S

Transformer's Encoder

T T I T I T

randomly mask one or multiple

words in the sentence, the X4 X X3 X, Xs Xg

associated context is passed to a [[[[| [
softmax classifier that produce Embedding Layer

the probability of classifying the] | |] ! |

correct missing word the [MAsK] sat on the mat

24

Google - PalM (Pathways Language Model): arXiv:2204.02311
- 540B parameters
- single model that can generalize across different domains and tasks

- highly efficient training across multiple TPUs pods
- tested on hundreds of language understanding and generation tasks: achieves state-of-the-art
few-shot performance across most tasks, by significant margins in many cases

+10

‘ LOGICAL INFERENCE CHAINS
SEMANTIC PARSING COMMON-SENSE REASONING +8
PROVERBS PATTERN RECOGNITION >
0]
ARITHMETIC TRANSLATION
CODE COMPLETION DIALOGUE % +4
|h JOKE EXPLANATIONS &
IEADIN IMPREHENSION N - DHYS|CS (]'& ';_g_ +2
SUMMARIZATION LANGUAGE UNDERSTANDING -
Natural Common-sense In-context Question Winograd-style Cloze and
opgge Language Reasoning Reading Answering Completion
940 billion parameters inference Comprehension

25

https://arxiv.org/abs/2204.02311

Prompt

// Translate from C to Python
int add_one (int x){
intme= 1;
while (x &m) {
X=X "m;
m <<= 1;
}
X=XxX""m
return x;)

Prompt

def exerciseS():

“"“Marie ordered one chicken meal that
costs $12, 5 packs of milk that cost $3
each, 4 apples that cost $1.58 each, and
some boxes of pizza. Marie paid a total of
$50. How many boxes of pizza did Marie

order if box costs $8.50?"""

|||II'>» Model Response
def add_one(x: int):
m=1
while (x & m):
X = (x*m)
m <<= 1
x = (x *m
return Xx

|||II')> Model Response

total_paid = Se

cost_of _pizza per box = 8.50
cost_of _meal = 12
cost_of milk per pack = 3
cost_of_apples_per_apple = 1.50
packages _of milk = 5

return float(total_paid - cost_of_meal-
cost_of milk per_pack * packages_of milk -

cost_of_apples_per_apple * 4)/
cost_of_pizza_per_box

some PalM examples ...

62bmodel

Q: Tracy used a piece of wire 4 feet long

‘g", to support tomato plants in the garden.
9

'@ long. How many pieces did she obtain?

The wire was cut into pieces 6 inches

.
.
.
.
»
.
.
.
.
.
'
3
.
.

A

She cut the wire into 6 inch pieces. This
. means she got 4 * 6 = 24 pieces. The
answer is 24. X

The wire was 4 feet long. This means it
was 4 * 12 = 48 inches long. It was cut
into pieces 6 inches long. This means

62omodel

Q: Tom's ship can travel at 10 miles per

'% hour. He is sailing from 1 to 4 PM. He
S

'@ How long does it take him to get back?

 then travels back at a rate of 6 mph.

A

He travels from 1 to 4 PM. That means
he travels for 3 hours. He travels back at
6 mph. That means he travels for 3 * 6 =

18 miles. The answer is 18. X

He travels at 10 mph from 1 to 4 PM.
This means he travels 3 hours. 3 hours
at 10 mph means he travels 3 * 10 = 30
miles. He then travels back at 6 mph.

she obtained 48 / 6 = 8 pieces. The
answer is 8.

This means he travels 6 miles per hour.
He has to travel 30 miles, so it takes him
- 30/6 =5 hours. The answer is 5.

__540bmodel |
_ 540bmodel :

Explaining a joke

Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two
different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod"” is a group of TPUs. A "pod" is also a
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker is
pretending that the whale is able to communicate between two
groups of TPUs.

20

OpenAl - DALL-E 2: https://openai.com/dall-e-2/

- scaled down (3.5B parameters) evolution of the first version DALL-E (12B pars) released in 2021
which in turn is a scaled down evolution from GPT3 (175B pars)

- generative transformer (combines transformers with diffusion models) able to create new
realistic images and art from based on a text description. It can combine concepts, attributes,
and styles

= ppe —

//' B—

1} TEXT DESCRIPTION

Teddy bears

27

https://openai.com/dall-e-2/

TEXT DESCRIPTION

An astronaut

= =

(/ T =
|

- riding a horse

“A rabbit detective sitting on a park bench and

. . . . o “macro 35mm film photography of a large family of
reading a newspaper in a victorian setting

mice wearing hats cozy by the fireplace”

28

Meta - Galactica: http://galactica.org/

- transformer model (125B parameters) trained on a large corpus comprising more than 360 millions in-context
citations and over 50 millions of unigue references normalized across a diverse set of sources. Eenables to suggest

citations and help discover related papers

- on technical knowledge probes such as LaTeX equations, outperforms the latest GPT-3 and PaLM 540B on MATH.

Input: GALACTICA Output:

Question: Translate the following Math formula: The Riemann zeta function is the sum of the reciprocals of the
positive integers to the power of s.

Answer: The Riemann zeta function is the sum of the reciprocals of
the positive integers to the power of s.

into plain English.

Answer:

Input: GALACTICA Suggestions:

A paper that suggested to initialize model weights of linear layers Delving Deep into Rectifiers: Surpassing Human-Level

with n inputs and m outputs using the following formula: Performance on {ImageNet} Classification
He et al., 2015
numpy . random.normal(@, numpy.sqrt(2 / n))

29

VISION TRANSFORMERS

* the very same philosophy of the Transformer architecture can be applied to vision, signal analysis,
point-cloud analyst, etc. tasks

* Vision Transformer (ViT) has been proposed in 2021 by A. Dosovitsky et al. in arXiv:2010.11929

* |s based on the same original Transformer architecture of Vaswani et al.

* has shown to be able to surpass SOTA CNN architectures ResNet, but only if the dataset
needed to re-train the model is large enough (large enough means > 100M images)

* Simple idea:
* split the images into patches
» vectorise the patches into flat vectors
* add positional encodings vectors to preserve patch positions in the original image

* feed the embedding to a transformer encoder tailored for a classification task

30

https://arxiv.org/abs/2010.11929

Patch + Position
Embedding

* Extra learnable
[class] embedding

SN B

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

-~ IIIIEII 80 6

Linear Projection of Flattened Patches

H R
s A

~ 8 I e O e

Transformer Encoder

Embedded
Patches

31

IMAGE PATCHING AND VECTORISATION

e patches can overlap or not (the original paper uses not overlapping patches)

DX DXc dXdXc

positional
embedding

>

NOTE: ViT has much less image-specific inductive bias than CNNs. In CNNs, locality, two-dimensional
neighbourhood structure, and translation equivariance, are baked into each layer throughout the whole

model. In VIT, only MLP layers are local and translationally equivariant, while the self-attention layers are

global. The two-dimensional neighborhood structure is only used when cutting the image into patches while

the position embeddings is only 1D and the 2D spatial relations between the patches have to be learned -

TRAINING AND PERFORMANCE

Randomly
Initialized

S

—

JFT dataset
300M images
18k classes

Pretrained

Fine-tuned

Test
—_—n —_—>
((Accuracy
- pertained on
training test imagenet-21k
set set pertained on 14M images
- - g JFT 21Kk classes
Ours-JFT Ours-JFT Ours-121k BiT-L
\. (ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNetl152x4)
ImageNet 88.55 +0.04 87.76+0.03 85.30%0.02 87.54 4+ 0.02
~ ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54
CIFAR-10 99.50 +0.06 99.42+0.03 99.15+0.03 99.37 + 0.06
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 + 0.08
Oxford-IIIT Pets 97.56 +0.03 97.32+0.11 94.67+0.15 96.62 + 0.23
Oxford Flowers-102 99.68 +0.02 99.74+0.00 99.61+0.02 99.63 + 0.03
VTAB (19 tasks) 77.63+023 76.28+046 T72.72+ 7 70
TPUv3-core-days | 2.5k |

0.68k

’\\\; _ _ i

0.23k

33

AN EXAMPLE OF PYTORCH IMPLEMENTATION OF VIT

https://qithub.com/lucidrains/vit-pytorch

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):

class Transformer(nn.Module):
def __init__ (self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init_ ()

super().__init__() self.layers = nn.ModuleList([])
inner_dim = dim_head * heads for _ in range(depth):
project_out = not (heads == 1 and dim_head == dim) self.layers.append{nn.ModuleList([

PreNorm(dim, Attention{(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
1))
def forward(self, x):

_ for attn, ff in self. layers:
self.attend = nn.Softmax(dim = -1) x = attn{x) + x

self.dropout = nn.Dropout(dropout) x = Ff(x) + x

self.heads
self.scale

heads
dim_head **x -8.5

class ViT(nn.Module):
def __init__ (self, %, image_size, patch_size, num_cla
super().__init_ ()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)

return Xx

self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

self.to_out = nn.Sequentiall(

nn.Linear(inner_dim, dim),

def forward(self, img):
x = self.to_patch_embedding{img)
b, n, _ = X.shape

nn.Dropout(dropout)

) if project_out else nn.Identity()

MatMul
def forward(self, x):

qkv = self.to_gkv(x).chunk(3, dim = -1) SoftMax

q, k, v = map(lambda t: rearrange(t, 'b n (hd) => b hn d',-"'

cls_tokens = repeat(self.cls_token, 'l nd -> b nd', b =b)
x = torch.cat((cls_tokens, x), dim=1)

x += self.pos_embedding[:, :(n + 1)]

x = self.dropout(x)

Mask (opt.)

dots = torch.matmul(q, k.transpose(-1, -2).}"% self.scale

attn = self.attend(dots) self.transformer(x)

attn = self.dropout(attn)

X = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]

out = torch.matmul(attn, v)

x = self.to _latent(x)
return self.mlp_head(x)

out = rearrange(out, 'b hnd->bn (h d)')

return self.to_out(out)

https://github.com/lucidrains/vit-pytorch

