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2. Generative Adversarial Networks
■ Definition, drawbacks and improvements
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■ Definition, probabilistic interpretation and known problems
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■ A family of methods for constructing flexible learnable probability distributions

5. Physics use-cases
■ How generative models are used in our field
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A look at academic trends
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Data drawn from Google Scholar using 
Pold87/academic-keyword-occurrence

The interest of Scientific Community 
towards Generative Models has grown 
in recent years thanks to Deep Learning 
developments.

Usage and further improvement of this 
or the other algorithm are driven by how 
much it looks promising to cope a 
specific task.

https://github.com/Pold87/academic-keyword-occurrence


Some applications

05
M. Barbetti (INFN-Firenze) 3rd ML-INFN Hackathon: Advanced Level

Generative modeling algorithms have been mainly developed for applications in Computer Vision to 
create, transform or improve a broad set of images composed of human faces, animals, landscapes, 
cartoons, sketches, photos and much more.

Generative models can be mainly used for:
■ Data augmentation

◻ Creation of new and never-seen instances according to the reference dataset
■ Super resolution

◻ Enhancing the resolution of an input image keeping its quality as high as possible
■ Inpainting

◻ Reconstruction of missing pixels in the input images keeping realism and consistency
■ Denoising

◻ Removing noise from input instances minimizing the loss of information
■ Translation

◻ Creation or transformation of images from a domain to another (i.e. text-to-image translation)



Text-to-image with DALL·E 2
“Teddy bears mixing sparkling chemicals as mad 
scientists as a 1990s Saturday morning cartoon”

Images taken from the OpenAI blog post
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https://openai.com/dall-e-2/


“What I cannot create, 
I do not understand.

– Richard Feynman
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A more general formulation
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Let X and Y be respectively the set of data instances and the 
corresponding set of labels. Considering a Machine Learning 
classification task, the models that we can set up to face the 
problem can be broadly divided into two main categories:

■ Discriminative model – model of the conditional probability of 
the target Y, given an observation x, symbolically P(Y|X=x);

■ Generative model – model of the conditional probability of the 
observable X, given a target y, symbolically P(X|Y=y).
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generative model

well-suited for 
supervised learning

preferred for 
unsupervised learning



Machine-Learnt generative model

Figure stolen from the OpenAI blog post
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(latent space)

https://openai.com/blog/generative-models/


Scheme 
stolen from the 

Lilian Weng’s 
blog post
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Different types of generative models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Different types of generative models

Latent space

Scheme 
stolen from the 

Lilian Weng’s 
blog post

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Different types of generative models

Generative Models

Scheme 
stolen from the 

Lilian Weng’s 
blog post

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Different types of generative models

Synthetic data

Scheme 
stolen from the 

Lilian Weng’s 
blog post

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


The main Machine Learning frameworks (Keras/TensorFlow/PyTorch) offer several tutorial 
to implement vanilla generative modeling algorithms, such as DCGAN or CVAE for the 
creation of digit images from the MNIST dataset.

Since they are quite recent algorithms, high-level solutions for Normalizing Flows are not 
yet available, unless through some custom libraries such as FlowTorch or PZFlow.

Some work is ongoing to provide a package for ready-to-use implementations of 
generative models for Physics applications:

■ TFGenModels is based on TensorFlow 2 (work in progress);

■ TorchGen is based on PyTorch (still to release).
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Ready to use implementations

https://www.tensorflow.org/tutorials/generative/dcgan
https://www.tensorflow.org/tutorials/generative/cvae
https://flowtorch.ai/
https://jfcrenshaw.github.io/pzflow/
https://github.com/mbarbetti/tf-gen-models
https://github.com/mbarbetti/torchgen


2. 
GENERATIVE 
ADVERSARIAL
NETWORKS
Definition, drawbacks and improvements
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Introduction to GANs
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Generative Adversarial Networks (GAN) rely on the simultaneous training of two neural nets:

■ the discriminator network (D) is trained by a classification task to separate the generator 
output from the reference dataset;

■ the generator network (G) is trained by a simulation task to reproduce the reference 
dataset trying to fake the discriminator.

The discriminator goal is to maximize the separation between the generator output and the 
real data, while the generator, driven by the discriminator errors, aims to minimize the 
differences with the data.

This framework corresponds to a minimax two-players game



“ The generative model can be thought of as 
analogous to a team of counterfeiters, trying 
to produce fake currency and use it without 
detection, while the discriminative model is 
analogous to the police, trying to detect the 
counterfeit currency.

– Ian J. Goodfellow et al.
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Schematic representation
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Schematic representation
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Mathematical definition
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The original loss function proposed by Ian J. Goodfellow et al. is

where D outputs the probability that its input comes from the reference dataset. The generator goal is 
that the discriminator makes a mistake, resulting with the following minimax game: 

Theoretically a unique solution exists, with G recovering the 
reference data distribution and D equal to ½ everywhere.



Unstable training dynamics
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Traditional GAN systems suffer from many issues mainly due to an unstable training procedure:

■ the generator may collapse producing only a single sample or a small family of very similar 
samples (problem named mode collapse);

■ the two players may oscillate during training rather than converging to the equilibrium point;

■ if imbalance between the two agents occurs, then the system is incapable of learning at all.

Example of mode 
collapse taken from 
arXiv:1611.02163

All these drawbacks result from the vanishing gradient problem, namely the lack of information for the 
update of the generator parameters. This is due to the saturation of the discriminator that is so good in 
distinguishing the origin of the two samples that no errors remain to the generator to improve the 
synthetic space.

https://arxiv.org/abs/1611.02163


Stabilizing the training procedure
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Stabilizing the training procedure relies on preventing the vanishing gradient problem, that can be achieved 
redefining the loss function to implement the Wasserstein distance to avoid the discriminator saturation.

Figure taken from arXiv:1701.07875

with D parameterizing a 1-Lipschitz function, that leads the 
minimax game to:

Several training strategies have been developed to ensure the 
discriminator lipschitzianity, that can be done indirectly (i.e. with 
WGAN-GP) or directly (i.e. with WGAN-ALP).

https://arxiv.org/abs/1701.07875


References for GANs
■ I. J. Goodfellow et al., “Generative Adversarial Nets”, arXiv:1406.2661

■ M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets”, arXiv:1411.1784

■ A. Radford, L. Metz and S. Chintala, "Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks", arXiv:1511.06434

■ L. Metz, “Unrolled Generative Adversarial Networks”, arXiv:1611.02163

■ M. Arjovsky and L. Bottou, "Towards Principled Methods for Training Generative Adversarial Networks", 
arXiv:1701.04862

■ M. Arjovsky, S. Chintala and L. Bottou, "Wasserstein GAN", arXiv:1701.07875

■ I. Gulrajani et al., "Improved Training of Wasserstein GANs", arXiv:1704.00028

■ M. G. Bellemare et al., "The Cramer Distance as a Solution to Biased Wasserstein Gradients", 
arXiv:1705.10743

■ D. Terjék, “Adversarial Lipschitz Regularization”, arXiv:1907.05681
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https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1705.10743
https://arxiv.org/abs/1907.05681
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VARIATIONAL
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Introduction to VAEs
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A Variational AutoEncoder (VAE) is an autoencoder (AE) whose training is regularized to avoid overfitting 
and ensure that the latent space has good properties that enable generative process. Also VAEs are 
based on the simultaneous training of two neural nets:

■ the encoder network (e) defines a map from the reference space to the latent space with the goal 
of build a low-dimensional representation of the input;

■ the decoder network (d) defines a map from the latent space to the synthetic space with the goal 
of maximize the matching between the output and the reference space.

Contrary to GANs, VAEs training doesn’t rely on an adversarial procedure and the system goal is to 
minimize the distance between encoded-decoded data and the initial data (reconstruction error). 
Moreover, contrary to AEs, VAEs encode an input as a distribution (with good properties) over the 
latent space rather than a single point to enable generative capabilities.



Schematic representation
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Scheme 
stolen from the 
Joseph Rocca’s 

blog post
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https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Schematic representation
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Scheme 
stolen from the 
Joseph Rocca’s 

blog post
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Mathematical details
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latent space
regularized

latent space
not regularized

The VAE training is driven by the following loss function:

where the first term is the reconstruction error, while the second one is a regularization term that forces 
the distribution induced by the encoder to have good properties for the generative process.



Probabilistic interpretation
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Let x be observed variables, z latent variables and let p(x,z) be the parametric model of their joint distribution.
IN

PU
T

TARGETMLE

Typically, this marginal log-likelihood is intractable to compute. Exploiting the Bayes’ Theorem, one should try 
to tackle the MLE maximizing its lower bound, named Evidence Lower Bound (ELBO):

where q(z|x) is an inference model approximating the posterior p(z|x).



Known problems
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Despite their strong probabilistic base, VAEs are and have been less used than GANs since the limited 
capabilities of the generative model provided. The major drawbacks of VAEs results from the approximation of 
the maximum likelihood previously mentioned:

■ blurry or fuzzy generated data – q(z|x) maps multiple x to the same encoding z, making p(x|z) 
non-Gaussian for which the MSE within the loss produces some “average” of p(x|z);

■ posterior collapse (also called optimization challenges or information preference) – the decoder is so 
powerful to minimize “alone” the reconstruction error ignoring the latent space and making collapsing the 
posterior q(z|x) to the prior p(z),  namely q(z|x) ≈ p(z) and DKL(q||p) ≈ 0.

Images stolen from the Enoch Kan’s blog post

Several strategies have been developed to cope these 
drawbacks, most of which based on a change of the loss 
function (i.e. VLAE or beta-VAE), or on a redesign of the VAE 
architecture (i.e. VQ-VAE), or even on a constraint over the 
variational models usable as approximators (i.e. delta-VAE).

https://towardsdatascience.com/what-the-heck-are-vae-gans-17b86023588a


References for VAEs
■ D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes”, arXiv:1312.6114

■ D. J. Rezende, S. Mohamed and D. Wierstra, “Stochastic Backpropagation and Approximate Inference in 
Deep Generative Models”, arXiv:1401.4082

■ X. Chen et al., “Variational Lossy Autoencoder”, arXiv:1611.02731

■ S. Zhao, J. Song and S. Ermon, “Towards Deeper Understanding of Variational Autoencoding Models”, 
arXiv:1702.08658

■ I. Higgins et al., “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, 
ICLR 2017 proceeding

■ A. van den Oord, O. Vinyals and K. Kavukcuoglu, “Neural Discrete Representation Learning”, 
arXiv:1711.00937

■ J. Lucas et al., “Understanding Posterior Collapse in Generative Latent Variable Models”, ICLR 2019 
proceeding

■ A. Razavi et al., “Preventing Posterior Collapse with delta-VAEs”, arXiv:1901.03416
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https://arxiv.org/abs/1711.00937v2
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https://openreview.net/forum?id=r1xaVLUYuE
https://arxiv.org/abs/1901.03416


4.
NORMALIZING
FLOWS
A family of methods for constructing 
flexible learnable probability distributions

F. Vaselli (INFN-Pisa) 3rd ML-INFN Hackathon: Advanced Level
27



Why limit ourselves to just one sample?

from “Why I Stopped Using 
GAN — ECCV 2020”

GAN FLOW



The basic idea: change of variables
We define a transform f such that:

The two pdfs are related:

 

x

z

z



The basic idea: image generation



The basic idea: complex transforms

from Lilian Weng



We need few building blocks
Task

Pieces

Learn the f(z) to send                     into the (unknown) data distribution                       

● Basic distribution              , typically Gaussian

● Function called flow f(z) invertible and differentiable, with tractable jacobian



The usage is straightforward
Density evaluation

Sampling new data

● Sample from                 (Gaussian, trivial)

● Compute                        (fast)



The loss function is intuitive

Invertible 
transform

Jacobian for 
Volume 

Correction

where       are the parameters of f(z) 



Splines are a smart choice for f(z)

Expressive

Admit analytical inverse,
fast to invert AND evaluate

We use ML to learn the optimal disposition
of points and derivatives

(Just one of the possible choices!)

z z

z z



Normalizing Flows are powerful GMs!

Efficient to sample from

Efficient to evaluate 

Highly expressive

Useful latent representation

Straightforward to train



Normalizing Flows are flawed GMs!

Computation of the Jacobian is hard

Not defined to work in a discrete 
contex!



Coupling layers address Jacobian complexity

from Jason Yu
the Jacobian becomes triangular!



Dequantization can be used to tackle discrete 
variables

from arXiv:2001.11235

Apply a gaussian smearing
converting discrete data into
a continuum



References for Normalizing Flows

■ G. Papamakarios et al, “Normalizing Flows for Probabilistic Modeling and Inference”, arXiv:1912.02762

◻ An updated and comprehensive review of Normalizing Flows architectures and applications

■ C. Durkan et al, “Neural Spline Flows”, arXiv:1906.04032

◻ The implementation of Normalizing Flows through Rational Quadratic Splines

■ Pyro Team, “Normalizing Flows-Introduction”, link

◻ A cool hands-on introduction to Normalizing Flow in the Pyro package (python). As of this date, 
there isn’t a definitive package for NF neither for Tensorflow nor for Pytorch
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https://pyro.ai/examples/normalizing_flows_i.html


5.
PHYSICS
USE-CASES
How generative models 
are used in our field
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ML based Fast Simulation: GAN 

from arXiv:1712.10321



ML based Fast Simulation: Flow

from arXiv:2008.03312



Anomaly Detection

Idea: Model pdf of signal and background using 
Normalizing Flows

from LHC Olympics 2020



GW Likelihood Free Inference

from arXiv:2008.03312



ML Generation for Mammograms

from  arXiv:1807.03401



References for Physics use-cases

■ M. Paganini et al., “CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer 
Electromagnetic Calorimeters with Generative Adversarial Networks”, arXiv:1712.10321

■ Claudius Krause, David Shih, “CaloFlow: Fast and Accurate Generation of Calorimeter Showers with 
Normalizing Flows”, arXiv:2106.05285

■ The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics, 
arXiv:2101.08320

■ Stephen R. Green, Jonathan Gair, “Complete parameter inference for GW150914 using deep learning”, 
arXiv:2008.03312

■ D. Korkinof et al., “High-Resolution Mammogram Synthesis using Progressive Generative Adversarial 
Networks”,  arXiv:1807.03401 
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CONCLUSIONS

Generative models are a powerful tool at our disposal, with widespread 
adoption in many Physics use-cases and convincing results

Different models have specific advantages and drawbacks

No readily available implementations for our problems, need to experiment 
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THANKS!
Any questions?

You can find us at:
■ Matteo.Barbetti@fi.infn.it 
■ Francesco.Vaselli@pi.infn.it 
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Pedagogical explanation of GANs training
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1. Minimax game near convergence: Pgen is similar to Ptrue and D is a partially accurate classifier;

2. D is trained to discriminate samples from data, converging to optimality;

3. The G update is driven by D that points to region that is more likely to be classified as data;

4. After several steps of training, the networks will reach a point at which both cannot improve 
because D is unable to differentiate between the two distributions.

Figure 
stolen from

arXiv:1406.2661
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https://arxiv.org/abs/1406.2661


Conditional GANs
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GANs provide an easy extension to the conditional form. 
Considering a training sample composed by multi-variable 
elements, we can imagine to split the variables into:

■ variables whose distributions are the goal of the 
generator (Y)

■ variables that simply conditionate the generator output 
(X)

The generator task remains that of reproducing synthetic 
data (Y), but now the conditional space (X) is joint to the 
latent space (R) to pursue this goal. On the other hand, the 
discriminator uses the generator input/output to infer the 
data origin (real or generated).
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Kullback-Leibler divergence
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The Kullback–Leibler divergence (also called relative entropy) is a measure of how one 
probability distribution is different from a second, reference probability distribution.



Jensen-Shannon divergence
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The Jensen–Shannon divergence is a method of measuring the similarity between two 
probability distributions.



In order to ensure that the error correctly backpropagates through the nets despite the presence 
of a random sampling in the halfway of the VAE architecture, a simple trick (called 
reparameterization trick) is used to make the gradient descent possible:

Backpropagation in VAEs
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