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Introduction @

e Domain Adaptation (DA) is a particular case of transfer learning (TL) that
leverages labeled data in one or more related source domains, to learn a
classifier for unseen or unlabeled data in a target domain.

e Source and Target domains are assumed to be related — distributions of
source and target data are not completely different.

e Goal: train a NN in one dataset (source), securing good performance and
accuracy in a different dataset (target).

e Different ways to achieve DA, unsupervised or (semi-)supervised:
o we will focus on an Adversarial Deep Learning approach;
o mainidea: find a representation space that is common to source and
target domains.
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X }inX

e Domain: afeature space X + marginal probability distribution P(x), with x = {x,,...,

e Task: alabel spaceY and a function f: X->Y used to predicted the label y given the input x

e Domain shift: change in the data distribution between training and deployment.
o Common Al algorithms do not perform well when domain shifts are present.
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Domain adaptation classes @
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https://commons.wikimedia.org/wiki/File:Transfer_learning_and_domain_adaptation.png

Domain Adaptation @

e Supervised Learning:
o X input space
o Y output space (or label space)

0 (x,.,y,.)ES i.i.d. from a distribution D (unknown and fixed) of support XxY

o goal:learn h: X =Y from S such that it commits the least error possible for labelling new
examples coming from D

e Domain Adaptation:

o twodifferent (but related) distributions D, (source domain) and D_ (target domain) on
XxY

o objective: learn h from the two domains such that it commits as little error as possible
on the target domain D
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Examples of DA: spam filter
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New user Previous users
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Spam filter
Target domain Source domain

e Assumption: users generally agree on what is spam and what is not

The challenge is that the distributions of emails for the first set of users and for

the new one are different
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Examples of DA in computer vision

arXiv:1612.02649
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https://arxiv.org/pdf/1612.02649.pdf

DA with an adversarial approach

e We will focus on DA obtained with an adversarial approach...

arXiv:1505.0/818
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https://arxiv.org/pdf/1505.07818.pdf

Application of DA in
HEP experiments



The High Energy Physics case @

e Usageof MLin HEP increased immensely in the last decade.

o particle reconstruction;
o eventclassification;
o anomaly detection.

e For measurements and searches, the ML algorithms are commonly trained using
synthetic data corresponding to the best current knowledge of the Standard

Model (SM) physics processes.

o Althoughthe SMis pretty well established, this approach could be problematic because
we don't know which is the real model chosen by Nature.

e Example: which signal do we use in the training, if we are searching
for/measuring a unknown/not well known physics process?
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DA and re-interpretability

(HEP) data, that comprises results related to several thousand

publications, including those from the Large Hadron Collider
(LHC). HEPData

e HEPDatais an open-access repository for High Energy Physics @

e Let’simagine someone in the future who wants to re-interpret a
result from HEPData and compare it with a new physics model.

e |[f the analysis was performed with some physics model
assumptions - which is often the case - the result will be biased
towards that model, spoiling the re-interpretability of the
measurement and leaving our friend confused.

Our goal is to design a measurement that can be easily re-interpreted, and
thus limiting the model dependence as much as possible.
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Some recent results INEN
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LHC “data” spectrum @
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Template fit @

SM Signal

dn A
e Let Obe anobservable with good signal to do { SMBackground
Data
background discriminating power { { i

e The probability density function (PDF) is usually
not known a priori and it is replaced by templates

(\]

Monte Carlo simulations are produced for both
signal and background process

e MCsimulation of the signal isfitted to
experimental data

Sv

The shape of the observable distribution may in general depend on the properties of the
physics theory governing the signal process under consideration

The fit result has a bias toward the prediction of the physics model used to generate the templates
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H=vyy and H—> 11
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The Higgs boson invariant mass can be reconstructed

inH=>vyy

The discriminating variable is model independent

No bias in the fit procedure
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CMS 138 fb™' (13 TeV)
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10t MR can not be reconstructed in H=>WW=2|2v

e Deep Neural Network discriminant as fit
variable

e Training set from Monte Carlo simulation

e Theshape of the discriminant depends on
the physics hypothesis used to generate the

: training set
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Main Objective @

The main goal is to implement a new fit variable y that is agnostic with respect to the signal
hypothesis:

e ymust be able to discriminate signal e ymust not be able to distinguish the
from background events physics model of signal events
dn dn
A .
@ == SM Signal @ 4 — SM Signal
== SM Background — BSM Signal
Y > y
0 1 0 1
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How do we “adapt” our NNs?
The use case of H-WW



The H->WW channel @\,

BRs for the Higgs boson
decay modes
W  zy
0.23%

8.2% 0.15%
0.008% (e u)

e The experimental sensitivity of a decay channel is determined by two factor:
Branching ratio (BR) and composition of the final state

ZZF

e The H—WWdecay channel is suitable for measuring rare Higgs boson e
production modes and differential cross sections:

0.02%

e Besides, considering the purely leptonic decay of the two Ws: Y™

o No access to the full kinematics of the Higgs boson due to neutrinos

W+

sl
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Signal process @

Vector boson fusion (VBF)

e Second most probable Higgs boson
production mode at the LHC

e Allows to test the SM predictions

Experimental signature in H-WW—-2|2v
e -~ collinear charged (ep) leptons due to a spin correlation effect
e missing transverse energy due to neutrinos
e m,<2m ;= 1Wbosonis virtual

e 2 hadronicjets with large pseudorapidity gap
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Anomalous couplings in HVV @

Scattering amplitude of one spin-0 Higgs boson (H) and two spin-1 gauge bosons (V1 V2)
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AC:
e L #0 H-Vffor H-ffff couplings predicted by HOL1 model
loop-induced (HZy, Hyy, Hgg) CP-even coupling predicted by HOPH mode
e a,"V#0threeloopinduced CP-odd coupling predicted by HOM model
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Main backgrounds @

Gluon fusion (ggH) Non-resonant W* W~ Top pair production
g e
° AAVAVARe
t
_______ Y
H

,
B
§

2 jets from ISR e b-tagging algorithms

) +
+ 2jetsfrom ISR to recognize b-jets

e Main H production e Nospincorrelation

e Largecrosssection
mode e Different kinematics

e Dominant
e Largecross section e Whbosons on-shell background
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Adversarial deep neural network (ADNN) @
) < C/a/ss%éw

- a Or - : e Takes as input the measurable kinematic variables of
OEXFO = N sic an event
OfN 77O =+ . . .
e Aimstodetermine if the event is signal- or
background-like
O Z} N ‘ ! e Eachoutput represents the probability that an event
— output 1 utpur 1 belongs to the corresponding class

layer

e Istrained ondatasampleincluding events coming
from different “domains”, i.e. different signal models

1@
e Adversary
EPJC 82 921 (2022) e Istrained only on signal events
19)
e Triesto guess the physics model of signal events,
\m%ef , regressing the domain from the second-to-last layer

of C

> <
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https://link.springer.com/article/10.1140/epjc/s10052-022-10871-3

Competitive learning @

e Theclassifier is penalized if its output contains
too much information on the domain of origin
of signal events

e Thistraining approach fosters the emergence
of features among the classifier input variables
that provide discriminating power for the main 1. LoSs = LOSS(C) — - ,COSS(A)
learning task (signal-to-background separation)
while not relying on the domain shift

2. Loss(/)

e |f Cmanagesto prevent A from identifying the
signal model, then the classification is
independent of the domains of origin of the
events
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Competitive learning @

The parameter O regqulales the
G AiareSin/
A weights fregen in This slep.

\ 1. Loss = Loss(C) — a - Loss(/)

2. Loss(/)

Ay

ompule the gradient of L) with
Mfwmﬂwﬂ wesghls.
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Behavior of the loss functions @

e Example of the typical behavior of the A and C loss functions (categorical cross

entropy in this case) when the two terms are balanced:
o L(C)decreases as usual.

o L(A)saturates to a constant value, meaning that the performance of A is equivalent to
random guessing.

1.1+ —— Training set 0.219 1
—— Validation set
0.218
1.0 1
0.217
0.9
S < 0.216
3081 S 0.215
0.7 0.214
0.213
0.6 A Training set
0.212 A Validation set
0 200 400 600 800 1000 1200 6 260 460 660 860 ldOO 12b0

Epoch Epoch
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Summary



e Domain adaptation is a very active field of Machine Learning, especially in
particular areas (such as computer vision).

e |tisanemerging approach inthe High Energy Physics field!

e We have seen just a specific application, but DA is also promising for a vast range of
other applications currently under study.

e Enjoy (or have alook at) the dedicated hackathon exercise for a deeper immersion

into DA!
e
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