Aldo Ianni, ISAPP 2023

Problem

Determine the solar neutrino capture rate in units of SNU for the following process:
$v_{e}+{ }_{81}^{205} \mathrm{Tl} \rightarrow e^{-}+{ }_{82}^{205} \mathrm{~Pb}$
Assume that ${ }^{205} \mathrm{~Pb}$ goes to the first excited state with $\mathrm{J}^{\pi}=1 / 2^{-}$with energy $\Delta \mathrm{E}=0.002 \mathrm{MeV}$.
Assume that the ground state of ${ }^{205} \mathrm{TI}$ has a 10% component in the configuration:
$p[82]\left(3 s_{1 / 2}\right)^{-1}$ and $n[126]\left(2 f_{5 / 2}\right)^{-2}$ with $J^{\pi}=1 / 2^{+}$.

Solution

The capture rate per target particle is written:
$R_{\text {cap }}=\phi_{v} \cdot \frac{\Gamma}{c}=\phi_{v} \cdot \frac{2 \pi}{\hbar c} \cdot M_{205}^{2} \cdot \frac{d n}{d E_{e}}$ (2)
where E_{e} is the electron energy, $\mathrm{dn} / \mathrm{dE}_{\mathrm{e}}$ the density of states within $\mathrm{E}_{\mathrm{e}}, \mathrm{E}_{\mathrm{e}}+\mathrm{d}_{\mathrm{e}}, \phi_{v}$ the neutrino flux, M_{205} the matrix element for the capture transition.

The $1^{\text {st }}$ excited state in ${ }^{205} \mathrm{~Pb}$ has a configuration equal to: $\mathrm{p}[82]$ and $\mathrm{n}[126]\left(2 \mathrm{f}_{5 / 2}\right)^{-2}\left(3 \mathrm{p}_{1 / 2}\right)^{-1}$. So the capture implies that one neutron in $3 \mathrm{p}_{1 / 2}$ goes to one proton in $3 \mathrm{~s}_{1 / 2}$.

In (2) we have assumed $\sigma=\Gamma / c$ as the cross-section per unit interaction volume. It turns out that $\left[\mathrm{R}_{\text {cap }}\right]=\mathrm{s}^{-1} \mathrm{~cm}^{-3}$

For (1) energy conservation gives:
$E_{e}=E_{v}-\Delta M-\Delta E+m_{e} c^{2}$
where $\Delta \mathrm{M}=\mathrm{M}\left({ }^{205} \mathrm{~Pb}\right)-\mathrm{M}\left({ }^{(205} \mathrm{TI}\right)=0.051 \mathrm{MeV}$ (using the atomic mass table in a.m.u and 931.5 $\mathrm{MeV}=1$ a.m.u.).

Because (1) is sensitive to pp solar neutrinos which are dominant, we know that on average $E_{v}=0.266 \mathrm{MeV}$. Therefore, on average $\mathrm{E}_{\mathrm{e}}=0.72 \mathrm{MeV}$.

It turns out that:
$\frac{d n}{d E_{e}}=\frac{4 \pi p_{e}^{2} d p_{e} V}{(2 \pi \hbar)^{3} d E_{e}}=\frac{\sqrt{E_{e}^{2}-m_{e}^{2} c^{4}} E_{e}}{2 \pi(\hbar c)^{3}} \mathrm{~V}$
(4). We use $V=1$.

Using the electron average energy: $\frac{d n}{d E_{e}} \approx \frac{0.018 \mathrm{MeV}^{2}}{(\hbar c)^{3}}$ per unit interaction volume.

Therefore,
$R_{c a p} \approx 6.5 \cdot 10^{10} \mathrm{~cm}^{-2} s^{-1} \frac{2 \pi}{\hbar c} M_{205}^{2} \frac{0.018 \mathrm{MeV}^{2}}{(\hbar c)^{3}}$
Taking into account that $\left[\mathrm{M}^{2}{ }_{205}\right]=\mathrm{MeV}^{2} \mathrm{~cm}^{3}$ and $\hbar c=197.327 \cdot 10^{-13} \mathrm{MeV} \mathrm{cm}$, the dimensional analysis of (5) gives $\left[R_{\text {cap }}\right]=s^{-1} \mathrm{~cm}^{-3}$ as expected.

We need to determine $\mathrm{M}^{2} 205$.

We notice that in the beta decay: ${ }_{81}^{206} \mathrm{Tl} \rightarrow{ }_{82}^{206} \mathrm{~Pb}+e^{-}+\bar{v}_{e}$ with $\log \mathrm{f}_{\mathrm{t}}=5.2$ the transition from the initial to the final state goes from: $p[82]\left(3 s_{1 / 2}\right)^{-1}$ and $n[126]\left(3 p_{1 / 2}\right)^{-1}$ to $p[82]$ and $\mathrm{n}[126]\left(3 \mathrm{p}_{1 / 2}\right)^{-2}$.

Therefore, in both the beta decay and the capture process one neutron in $3 p_{1 / 2}$ goes to one proton in $3 s_{1 / 2}$. This implies that the two processes have the same transition matrix. From $\log f_{t}$ we obtain that $\mathrm{M}^{2}{ }_{206}=4.4 \times 10^{-88} \mathrm{MeV}^{2} \mathrm{~cm}^{3}$ (see beta decay theory for the relationship between f_{t} and the transition matrix).

In conclusion:
$R_{\text {cap }} \approx 6.5 \cdot 10^{10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \frac{2 \pi}{\hbar c} 0.1 M_{206}^{2} \frac{0.018 \mathrm{MeV}^{2}}{(\hbar c)^{3}} \approx 2.1 \cdot 10^{-36}$ capture/sec/target/unit volume of interaction $=2$ SNU.

NOTE: We notice that the 90% of ${ }^{205} \mathrm{TI}$ ground state is in $\mathrm{p}[82]\left(3 \mathrm{~s}_{1 / 2}\right)^{-1}$ and $\mathrm{n}[126]\left(3 p_{1 / 2}\right)^{-2}$ with $\mathrm{J}^{\pi}=1 / 2^{+}$. From this configuration the neutrino capture discussed above implies one neutron from $2 f_{5 / 2}$ to go to one proton in $3 s_{1 / 2}$ and at the same time one proton from $2 f_{5 / 2}$ to go to one neutron in $3 p_{1 / 2}$. This is a two-particle process and it has a very low probability. Therefore, the capture involves the 10% configuration of the ${ }^{205} \mathrm{Tl}$ ground state.

