Aldo Ianni, ISAPP 2023

Problem

Determine the solar neutrino capture rate in units of SNU for the following process:

$$\nu_e + {}^{205}_{81}Tl \rightarrow e^- + {}^{205}_{82}Pb$$
 (1)

Assume that ²⁰⁵Pb goes to the first excited state with $J^{\pi}=1/2^{-}$ with energy $\Delta E=0.002$ MeV. Assume that the ground state of ²⁰⁵Tl has a 10% component in the configuration: p[82](3s_{1/2})⁻¹ and n[126](2f_{5/2})⁻² with $J^{\pi}=1/2^{+}$.

Solution

The capture rate per target particle is written:

$$R_{cap} = \phi_{\nu} \cdot \frac{\Gamma}{c} = \phi_{\nu} \cdot \frac{2\pi}{\hbar c} \cdot M_{205}^2 \cdot \frac{dn}{dE_e}$$
(2)

where E_e is the electron energy, dn/dE_e the density of states within E_e , E_e+dE_e , ϕ_v the neutrino flux, M_{205} the matrix element for the capture transition.

The 1st excited state in ²⁰⁵Pb has a configuration equal to: p[82] and $n[126](2f_{5/2})^{-2}(3p_{1/2})^{-1}$. So the capture implies that one neutron in $3p_{1/2}$ goes to one proton in $3s_{1/2}$.

In (2) we have assumed $\sigma=\Gamma/c$ as the cross-section per unit interaction volume. It turns out that $[R_{cap}]=s^{-1}$ cm⁻³

For (1) energy conservation gives:

$$E_e = E_v - \Delta M - \Delta E + m_e c^2 \quad (3)$$

where $\Delta M = M(^{205}Pb)-M(^{205}Tl) = 0.051 \text{ MeV}$ (using the atomic mass table in a.m.u and 931.5 MeV = 1 a.m.u.).

Because (1) is sensitive to pp solar neutrinos which are dominant, we know that on average $E_v = 0.266$ MeV. Therefore, on average $E_e = 0.72$ MeV.

It turns out that:

$$\frac{dn}{dE_e} = \frac{4\pi p_e^2 dp_e V}{(2\pi\hbar)^3 dE_e} = \frac{\sqrt{E_e^2 - m_e^2 c^4} E_e}{2\pi(\hbar c)^3} V \quad (4). \text{ We use V} = 1.$$

Using the electron average energy: $\frac{dn}{dE_e} \approx \frac{0.018 MeV^2}{(\hbar c)^3}$ per unit interaction volume.

Therefore,

$$R_{cap} \approx 6.5 \cdot 10^{10} \ cm^{-2} s^{-1} \ \frac{2\pi}{\hbar c} \ M_{205}^2 \ \frac{0.018 \ MeV^2}{(\hbar c)^3}$$
 (5)

Taking into account that $[M_{205}^2] = MeV^2 \text{ cm}^3$ and $\hbar c = 197.327 \cdot 10^{-13} \text{ MeV cm}$, the dimensional analysis of (5) gives $[R_{cap}] = s^{-1} \text{ cm}^{-3}$ as expected.

We need to determine M^{2}_{205} .

We notice that in the beta decay: ${}^{206}_{81}Tl \rightarrow {}^{206}_{82}Pb + e^- + \bar{\nu}_e$ with log f_t = 5.2 the transition from the initial to the final state goes from: p[82](3s_{1/2})⁻¹ and n[126](3p_{1/2})⁻¹ to p[82] and n[126] (3p_{1/2})⁻².

Therefore, in both the beta decay and the capture process one neutron in $3p_{1/2}$ goes to one proton in $3s_{1/2}$. This implies that the two processes have the same transition matrix. From log f_t we obtain that $M^2_{206} = 4.4 \times 10^{-88} \text{ MeV}^2 \text{ cm}^3$ (see beta decay theory for the relationship between f_t and the transition matrix).

In conclusion:

 $R_{cap} \approx 6.5 \cdot 10^{10} \ cm^{-2} s^{-1} \ \frac{2\pi}{\hbar c} \ 0.1 \ M_{206}^2 \ \frac{0.018 \ MeV^2}{(\hbar c)^3} \approx 2.1 \cdot 10^{-36} \ \text{capture/sec/target/unit}$ volume of interaction = 2 SNU.

NOTE: We notice that the 90% of ²⁰⁵Tl ground state is in p[82]($3s_{1/2}$)⁻¹ and n[126]($3p_{1/2}$)⁻² with J^π=1/2⁺. From this configuration the neutrino capture discussed above implies one neutron from $2f_{5/2}$ to go to one proton in $3s_{1/2}$ and at the same time one proton from $2f_{5/2}$ to go to one neutron in $3p_{1/2}$. This is a two-particle process and it has a very low probability. Therefore, the capture involves the 10% configuration of the ²⁰⁵Tl ground state.