International School of Physics "Enrico Fermi"

K. Scholberg

A couple of back-of-the-envelope calculations ("Fermi problems")

Use information in the lecture slides to estimate the following.

- #1: Estimate the number of solar neutrino interactions occurring in a typical human body over a human lifetime. Consider neutrino-electron elastic scattering only. Assume the human body is made of water and that it has a mass of 80 kg. Assume the solar neutrino flux (⁸B) is $\phi \sim 2 \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$.
- #2: Estimate the number of $\nu_e {}^{40}$ Ar charged-current neutrino interactions in a 40-kton liquid-argon detector for a core collapse at the center of the Milky Way. Estimate also the number for a core collapse in M31. (Do not cheat by reading event rates directly off any plot!)

• #1 SOLUTION

Interaction rate is given by $R_{\text{int}} = \sigma \phi N_t$, where σ is the cross section, ϕ is the flux and N_t is the number of targets. For this back-of-theenvelope estimate we will take the σ and ϕ as constant, although a more accurate calculation would fold both σ and ϕ as a function of energy.

The number of targets is $N_t \sim \frac{MtN_A}{A}$, where M is the mass, N_A is Avogadro's number, A is the molar mass and t is targets per atom or molecule. Plugging in M = 80 kg, t = 10 electrons per water molecule, A = 18 g/mol for water, and $N_A = 6 \times 10^{23}$, and then plugging in (eyeballing from the plots in lecture) $\sigma \sim 5 \times 10^{-44}$ cm² (electron scattering cross-section above a few MeV) and $\phi \sim 2 \times 10^6$ cm⁻²s⁻¹ (flux above a few MeV, mostly from ⁸B neutrinos), and then multiplying by 80 years¹, we get about 7 solar neutrino interactions per lifetime.

• #2 SOLUTION

Here we employ the same relation $R_{\rm int} = \sigma \phi N_t$. For the cross section we take $\sigma \sim 2 \times 10^{-41}$ cm², and for $N_t = 1$ we plug in $M = 4 \times 10^{10}$ g, A = 40 g/mol for argon. To find the total fluence (flux integrated over time) at the center of the Milky Way (~ 8.5 kpc), we assume the neutron star binding energy is about $E_b \sim 2.5 \times 10^{53}$ ergs, and that this energy goes entirely into neutrinos, equally distributed among flavors. If each neutrino has about $E_{\nu} \sim 15$ MeV, then the fluence per flavor is $F = \frac{E_b}{6\cdot 4\pi d^2 E_{\nu}} \sim 2 \times 10^{11}$ cm⁻² at d = 8.5 kpc.

Plugging this in, we get an expected number of neutrino events of 2600. (Note that a high-energy tail in the spectrum will increase this, as cross section goes as E_{ν}^2 .) The distance to M31 is about 770 kpc, so one expects $2600 \times (\frac{8.5}{770})^2 = 0.31$ neutrino events.

¹Useful fact: one year is close to $\pi \times 10^7$ seconds.