
Infla%on	and	CNB	

•  Effects	of	neutrinos	on	gravita1onal	waves	
•  Infla1on	and	neutrinos:	further	connec1ons		
•  For	the	future	(futuris1c	future??):	measuring		
				CNB	and	its	spa1al	anisotropies	
•  Infla1on	&	neutrinos:	isocurvature	modes		
	



The	Cosmic	Neutrino	Background	(CNB)			

Grand	Unified	Neutrino	Spectrum	(GUNS)	at	Earth,	integrated	over	direc1ons	and	summe1d	over		flavors.	Solid	lines	are	for	neutrinos,	
dashed	or	doJed	lines	for	an1neutrinos.	The	CNB	spectrum	corresponds	to	the	masses	(m2=	0,	m3

	
=	8.6,	m

	
=	50)	meV,	resul1ng	in	a	

blackbody	spectrum	plus	two	monochroma1c	lines	of	nonrela1vis1c	neutrinos	with	energies	corresponding	to	neutrinos	with	masses	m2	and	
m3.	Figure	fromE.	Vitagliano,	I.	Tamborra,	and	G.	Raffelt	Rev.	Mod.	Phys.	92	(2020).	
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Figure (3.2) : Grand Unified Neutrino Spectrum (GUNS) at Earth, integrated over directions
and summed over flavors. Solid lines are for neutrinos, dashed or dotted lines for antineutrinos.
The CNB spectrum corresponds to the masses (m1 = 0, m2 = 8.6, m3 = 50) meV, resulting
in a blackbody spectrum plus two monochromatic lines of nonrelativistic neutrinos with energies
corresponding to neutrinos with masses m2 and m3. Figure from [4].

• Atmospheric Neutrinos. The interaction of the cosmic rays with the atmosphere nuclei pro-
duces atmospheric neutrinos. They come mostly from the decays of the pions and muons
that are produced in the cosmic ray interactions. Atmospheric neutrino fluxes span a vast
energy range, like the cosmic rays that generate them: the energy goes from ⇠ 200 MeV to
1020 eV,

• Extraterrestrial High-Energy Neutrinos. At energies from about TeV to PeV, neutrinos are
produced in the source (for instance star-forming galaxies, gamma ray bursts or active galac-
tic nuclei) or around it, or during cosmic ray propagation towards the Earth.

The impressive differentiation in the energies, processes and flux intensities of the neutrino sources
implies, in turn, diversification on the detection side, concerning the technologies and physics
involved. The study of the different GUNS components of Figure (3.2) is important, both from
the point of view of the neutrino physics and the study of the source properties. Typically, we
can simplify the problem in a production-propagation-detection scheme. Neutrino oscillations
certainly play a crucial role in the propagation from the source to the detector. The purpose of
the experiment is to extract the neutrino parameters, masses and mixing, from the data. On the
other hand, the physics of the source is not always sufficiently well known, and the properties
of the source and the neutrino parameters are to be determined at the same time from data, if
possible. The length scale of the neutrino path and the energy set the relevant parameters that can
be extracted from the experimental data at hand.



The	Cosmic	Neutrino	Background	(CNB)			
Ø  	A	sea	of	low	energy	neutrinos	which	decoupled	from	the	primordial	plasma		
						when	the	Universe	was	~	1	s	old	(at	z~1010		at	T~1	MeV)						
	
Ø  	A\er	that	they	just	free-stream	à	they	carry	informa1on	about	the	condi1ons	of		
							the	Universe	when	it	was	1s	old	and	about	neutrino	proper1es.		
	
Ø  The	temperature	of	the	CNB	today	is	expected	to	be		
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Anisotropy of the Cosmic Neutrino Background

R. J. Michney and R. R. Caldwell
Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755

(Dated: November 3, 2018)

The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)
rela1ve	to	CMB	photons	à			
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The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)

Ø  This	in	turns	implies	(under	the	approxima1on	of	massless	neutrinos)			

	

it is safe to say that below 2 MeV neutrino practically became non-interacting and their
number density remains constant in a comoving volume, i.e. n

⌫

⇠ 1/a3.
From these informations about decoupling it is possible to deduce some features of the

neutrino background radiation. A peculiarity of the instantaneous decoupling approach
is that assuming interaction to completely turn o↵ after Td, allow us to describe relics
of massless particle using equilibrium distribution also after decoupling with fictitious
temperature and chemical potential (if not neglected) parameters which are redshifted
by Universe expansion starting from their values at decoupling, namely

T = T
D

a (t
D

)

a (t)
/ a�1 (t) . (10)

This fact can be easily verified solving Eq. (7) with vanishing collision operator. However
there is not an analogous result for massive particles, for which distribution functions may
have an arbitrary form after drop of interaction rate, but given our previous assumptions
we can safely apply it also to light neutrinos case. Particle species remaining in equilibrium
have a di↵erent behaviour because in addition to Boltzmann equation, they have to
satisfy the full entropy conservation of the thermal bath3, so whenever another particle
species becomes non-relativistic and disappears, its entropy is transferred to the bath,
and so to the other relativistic species in thermal equilibrium inside it, causing T to

decrease slightly less slowly, as T / g
�1/3
⇤s a�1.

So now, with the knowledge that all neutrino specie decouple before e± mass, thanks
to previous estimates, we can compute the neutrino to photon temperature ratio as

T
�

T
⌫

=
T after
�

T before
�

=

✓

gbefore⇤s
gafter⇤s

◆1/3

=

✓

11

4

◆1/3

⇡ 1.40102 . (11)

Finally assuming the CMB to be a perfect black body with a temperature of TCMB =
2.7260(13) K (Fixsen 2009) today, we find the cosmic neutrino background temperature
to be TCNB ⇡ 1.9457 K, since no other reheatings occur between e± annihilations and us.
From this value it is also easy to compute the relic number density of neutrinos. From
the relation

n
⌫

↵

+ n
⌫̄

↵

n
�

=
3

11
, (12)

true under the hypothesis of massless neutrinos again, then we find the total number
density of neutrinos today to be n

⌫

=
P

↵

n
⌫

↵

⇡ 336 cm�3. This generates a remarkably
large flux with respect to other astrophysical neutrino sources (e.g. solar neutrinos).
Unfortunately their distribution peaks at a very low energy, making their direct detection
impossible or at least very challenging (see Sec. IV).

B. Numerical approach and spectral distortions

Last way we present to study neutrino decoupling is the numerical solution of Boltzmann
equation. This approach, thanks to powerful calculation techniques, allow to relax

3This does not mean that decoupled particles have not conserved entropy. Merely their entropy is
conserved without sharing it with other particle species.
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N.B.:	remarkably	large	flux	with	respect	to	other	astrophysical	neutrino	sources	(e.g.	
										solar	neutrinos).	Unfortunately	at	a	very	low	energy.		

Ø  Actually	we	know,	based	on	the	measured	neutrino	mass	differences	that	at	least	2	
					neutrinos	are	non-rela1vis1c	today,	and	one	can	be	s1ll	rela1vis1c.					



The	Cosmic	Neutrino	Background	(CNB)			

											Let	us	(briefly)	review	how	to	obtain	the	previous	numbers:	
																																										decoupling	temperature	
	
Ø  	At	T>>	1	MeV	neutrinos	are	kept	in	thermal	equilibrium	because	
						of	their	wek	interac1ons	with	charged	leptons,	baryons	and	photons	
						(e.g.																														)																																											

the CNB and its anisotropies. However we choose to not enter into the details of this
topics for which a complete discussion should be too deep for the purpose of that section.
Taking advantage of this fact we make room for a better discussion on direct detection,
which is one of the big challenge for physics of our days.

II. RELIC NEUTRINOS PRODUCTION

According to the standard cosmological model, the origin of dates back to the time when
Universe had a temperature of the order a of few MeV. This fact can be proved studying
the decoupling of various neutrino species from the primeval plasma. As claimed by the
current formulation of the standard model, neutrino are massless and neutral particles
which can interact with charged leptons via weak interactions. Since in the temperature
regime of interest all neutrino species are still highly relativistic, we can treat it as
massless particles without making significant errors.

In the early Universe, the three left-handed neutrino flavours, ⌫
↵

, and their CP
conjugates states (antineutrinos) are thermally excited in the primeval plasma of particles.
They are maintained in kinetic equilibrium with charged leptons, baryons and photons
by weak interactions. In this regime the (anti)neutrino distribution is of the Fermi-Dirac
type, with a negligible contribution of the mass to the energy, namely

f
(eq)
⌫

↵

,⌫̄

↵

=



exp

✓

p⌥ µ

T

◆

+ 1

��1

; (1)

with p the spatial momentum, µ the chemical potential and T the photon temperature.
The presence of a non vanishing chemical potential is related to a neutrino-antineutrino
asymmetry, but as shown in Dolgov et al. 2002, stringent BBN bounds on µ

⌫

e

apply to
all flavours, since neutrino oscillations lead to approximate flavour equilibrium before
BBN. Thus the contribution of a relic neutrino asymmetry will be safely ignored in what
follows.

A. Neutrino decouping

To give a first rough estimate of the decoupling temperature we can compare the
interaction rate, �, with the Hubble rate, H, indeed these quantities represent the
reciprocal of interaction and expansion time respectively. By imposing the condition
� (T ) ⇠ H (T ) one a find a temperature value, said decoupling temperature, Td, beyond
which the characteristic interaction time start to become greater and greater than the
expansion time, till no interactions are appreciable during one of it (Kolb and Turner 1990).
Below a temperature of T ⇠ 30�40 MeV the leading processes contributing to equilibrium
are scattering over electrons and positrons1, and pair conversions ⌫

↵

⌫̄
↵

$ e+e�. This is
due to the fact that at first perturbative order in weak coupling constant all interactions
involve just 2 particles and that at these temperature all reactions with more massive

1Actually there would be also a baryonic component, however since it is much smaller than the leptonic
one, we can safely neglect its presence.
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Ø 	To	have	a	rough	es1mate	of	the	decoupling	temperature	Td	
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by weak interactions. In this regime the (anti)neutrino distribution is of the Fermi-Dirac
type, with a negligible contribution of the mass to the energy, namely
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with p the spatial momentum, µ the chemical potential and T the photon temperature.
The presence of a non vanishing chemical potential is related to a neutrino-antineutrino
asymmetry, but as shown in Dolgov et al. 2002, stringent BBN bounds on µ

⌫

e

apply to
all flavours, since neutrino oscillations lead to approximate flavour equilibrium before
BBN. Thus the contribution of a relic neutrino asymmetry will be safely ignored in what
follows.

A. Neutrino decouping

To give a first rough estimate of the decoupling temperature we can compare the
interaction rate, �, with the Hubble rate, H, indeed these quantities represent the
reciprocal of interaction and expansion time respectively. By imposing the condition
� (T ) ⇠ H (T ) one a find a temperature value, said decoupling temperature, Td, beyond
which the characteristic interaction time start to become greater and greater than the
expansion time, till no interactions are appreciable during one of it (Kolb and Turner 1990).
Below a temperature of T ⇠ 30�40 MeV the leading processes contributing to equilibrium
are scattering over electrons and positrons1, and pair conversions ⌫

↵

⌫̄
↵

$ e+e�. This is
due to the fact that at first perturbative order in weak coupling constant all interactions
involve just 2 particles and that at these temperature all reactions with more massive

1Actually there would be also a baryonic component, however since it is much smaller than the leptonic
one, we can safely neglect its presence.
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particles are energetically blocked. As long as the temperature remains smaller than the
W and Z boson masses (we focus on low-energy regime), the corresponding thermally
averaged cross section times velocity is on the order of2

h�vi ' G2
FT

2 . (2)

So that we can give an estimate of the interaction rate as

� = n
e

h�vi ' G2
FT

5 . (3)

On the other hand, from the first Friedmann equation, we have that the Hubble parameter
during radiation-dominated epoch is given by

H (T ) =

✓

4⇡3

45

◆1/2

g
1/2
⇤ (T )

T 2

Mpl
, (4)

which together with the interaction rate estimate of Eq. (3), lead us to an approximate
decoupling temperature of

T
⌫,d '
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G2
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⇠ g
1/6
⇤ MeV . (5)

We see that Td is very weakly dependent on the number of relativistic degrees of freedom
g⇤ and that, as claimed to the beginning, it is of MeV order.

The approximation in which we consider neutrino decoupling as an instantaneous event
happening at T

⌫,d is known as the instantaneous decoupling limit. In fact, decoupling takes
place over an extended range of time. Because neutrinos have di↵erent momenta and weak
cross sections grow with energy, more energetic neutrinos will be kept in equilibrium longer
than low-energy ones. This, together with the closeness between decoupling temperature
and electron mass, implies that when e± annihilate, some thermal distortions will be
imprinted in the neutrino distribution with respect to a standard Fermi-Dirac function,
as we will see in the next section.

A slightly more refined computation of the decoupling temperature can be performed
via the Boltzmann equation. In a FRW Universe all distribution functions are homo-
geneous and isotropic, that is f

�

xi, p
j

, t
�

= f (p, t), in order to satisfy the cosmological
principle. In that case the equation of interest is written as (Bernstein 1988)
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�Hp

@f

@p
= Ctot [f ] ; (6)

where on the left-hand side we find the Liouville operator, which takes into account
the space-time evolution of the distribution function, while on the right-hand side we
have the collision operator, which is made up of a sum on di↵erent contributions due to
all possible neutrino interaction. To solve this equation is convenient to introduce the

2Strictly speaking, from dimensional analysis of the electroweak Lagrangian one find h�vi ' G2
FE

2,
where E is a typical energy scale of the problem, which in our case can be taken as thermal energy.
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dimensionless variables x = am0 and y
j

= ap
j

, where a (t) is the scale factor and m0 is
some fixed parameter with dimension of a mass (or energy), which in the following will
be assumed to be m0 = 1 MeV. In these terms, after an appropriate change of variables,
our Boltzmann equation reads

xH
@f

@x
= Ctot [f ] . (7)

For what said before we consider just 2-particle interactions, 1 + 2 ! 3 + 4, so we can
write the collisional operator as (Bernstein 1988)

Ctot [f ] =
1

2E1

X

2,3,4

ZZZ

d3p2

2E2 (2⇡)
3

d3p3

2E2 (2⇡)
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d3p4

2E4 (2⇡)
3⇥

⇥ (2⇡)4 � (p1 + p2 � p3 � p4)⇤ [f1, f2, f3, f4]S |M|212!34 ; (8)

where ⇤ [f1, f2, f3, f4] = f3f4 (1� f1) (1� f2)� f1f2 (1� f3) (1� f4) is the phase space
factor, including Pauli blocking of the final states. S is a symmetrization factor of 1/2! for
each pair of identical particles in initial or final states, and |M|212!34 is the spin-summed
and averaged matrix element squared. The summation is done over all possible sets of
leptons labelled by 2, 3 and 4, where 1 is left for the neutrino; matrix elements for all
relevant processes can for instance be found in Table 1 and Table 2 of Dolgov et al. 1997.

An easy expression for the collisional integral can be found using the Boltzmann
approximation, which in general is good with an accuracy of about 10%. It also simplifying
to assume that particles with which neutrinos interact, are in thermal equilibrium with a
temperature T . After some calculations, keeping only direct reaction term in the collision
integral, one gets (Dolgov 2002)

xH
@f

@x
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80G2
F
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g2L + g2R
�

3⇡3x5
yf ; (9)

where gL,R are the couplings to the left-handed ad right-handed currents respectively,
gL = ±1/2 + sin2 ✓w and gR = sin2 ✓w, plus or minus sign in gL stand respectively for ⌫

e

or ⌫
µ,⌧

. The weak mixing angle ✓w is experimentally determined as sin2 ✓w = 0.2223(21)
(Mohr et al. 2016). Now using the relation in Eq. (4) and integrating over x one find that
solution have an exponential dependence on the combination y/x3, or yT 3. Appealing to
instantaneous decoupling hypothesis again, one can determine the momentum dependent
decoupling temperature from the condition y/x3 ' 1, finding T

⌫

e

,d = 2.7y�1/3 MeV and
T
⌫

µ,⌧

,d = 4.5y�1/3 MeV. Taking the average value of momenta y ' 3, one therefore finds
T
⌫

e

,d = 1.87 MeV and T
⌫

µ,⌧

,d = 3.12 MeV.
The slightly lower value for the ⌫

e

species is simply due to the fact that at the MeV
scale the thermal bath is not flavour blind (there are only electrons and positrons), and ⌫

e

can interact also through charged current processes in addition to neutral currents ones,
so they remain in equilibrium slightly later. The actual decoupling temperatures are
somewhat higher because inverse reactions neglected in this estimate diminish reaction
rates approximately by one half if the distribution is close to the equilibrium one. Anyway,
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Anisotropy of the Cosmic Neutrino Background

R. J. Michney and R. R. Caldwell
Department of Physics & Astronomy, Dartmouth College, Hanover, NH 03755

(Dated: November 3, 2018)

The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)

(couplings	to	le\	and	right-handed	currents)		
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The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)
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The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)
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The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)
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Anisotropy of the Cosmic Neutrino Background

R. J. Michney and R. R. Caldwell
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(Dated: November 3, 2018)

The cosmic neutrino background (CNB) consists of low-energy relic neutrinos which decoupled
from the cosmological fluid at a redshift z ∼ 1010. Despite being the second-most abundant particles
in the universe, direct observation remains a distant challenge. Based on the measured neutrino mass
differences, one species of neutrinos may still be relativistic with a thermal distribution characterized
by the temperature T ∼ 1.9K. We show that the temperature distribution on the sky is anisotropic,
much like the photon background, experiencing Sachs-Wolfe and integrated Sachs-Wolfe effects.

Relic particles from the early universe carry a wealth
of information about the origin and history of the cos-
mos. Relic photons, in the form of the cosmic microwave
background (CMB), have revealed the conditions in the
universe back to a redshift z ∼ 1100, when the universe
was ∼ 400, 000 years old. Relic gravitational waves from
inflation are anticipated to provide a snapshot of the cos-
mos at z ∼ 1027, just ∼ 10−35 seconds after the Big Bang.
In the present investigation, we consider the cosmic neu-
trino background (CNB), a sea of relic neutrinos which
carry information about the conditions in the universe at
a redshift z ∼ 1010 and time t ∼ 1 sec. We expect the
CNB to be characterized by a Fermi-Dirac distribution at
temperature T = 1.9 K, with slight anisotropies owing to
inhomogeneities in the universe at, and since, z ∼ 1010.
Our goal is to calculate the CNB anisotropy spectrum.
The CNB was formed when the neutrino sea dropped

out of thermal equilibrium with the other matter and
radiation of the early universe. The Standard Model
neutrinos, νi for i = {e, µ, τ}, were coupled to the elec-
tron content of the early universe primarily through the
interaction νi + ν̄i ↔ e− + e+, for which the neutrino-
antineutrino cross section is the limiting factor. The av-
erage annihilation rate

Γ =
16G2

F

π3
(g2L + g2R)T

5 (1)

g2L + g2R =

{

sin4 θW + (1
2
+ sin2 θW )2 for νe

sin4 θW + (− 1
2
+ sin2 θW )2 for νµ,τ

kept the neutrinos in good thermal contact with the cos-
mic fluid until Γ ∼ H . (See Refs. [1, 2].) Since the
universe expands with temperature as

H(T ) =
1.66g1/2∗ T 2

MPl
, (2)

we obtain decoupling temperatures of Tνe = 2.4 MeV
and Tνµ,τ = 3.7 MeV, using accepted Standard Model
parameters. These temperatures correspond to a red-
shift z ∼ 1010, occuring very shortly before e−e+ freeze-
out, at T ≃ me / 3. Thereafter, the CNB evolved as
a Fermi-Dirac distribution with a cooling temperature
Tν = (4/11)1/3Tγ relative to photons. The present-day
value is Tν = 1.946 K.

All three species of CNB neutrinos remained relativis-
tic until the temperature dropped below their rest mass.
Cosmological bounds indicate the mass of the heaviest
neutrino to be 0.04 eV ! mνi ! (0.2 − 0.4) eV [3] while
measurements of neutrino mass differences yield ∆m2

12 ≈
8×10−5 eV2 (solar neutrinos) and∆m2

23 ≈ 2.5×10−3 eV2

(atmospheric neutrinos), establishing that at least two
neutrino flavors have masses " 10−2 eV [4, 5, 6]. These
results allow for the possibility that one mass eigenstate
has m < Tν = 1.6 × 10−4 eV and therefore remains rel-
ativistic. For this investigation we assume one surviving
relativistic species.
The predicted variations in the CNB intensity are ob-

tained from its phase-space distribution,

f(xi, Pj , τ) = f0(q)[1 +Ψ(xi, q, nj , τ)], (3)

where f0(q) is the background, Fermi-Dirac neutrino dis-
tribution at momentum q. The neutrino temperature
perturbation is ∆ = −Ψ(d ln f0/d ln ϵ)−1. We assume
that neutrino decoupling takes place instantaneously.
Hence, the perturbation Ψ, at comoving location xi and
conformal time τ for neutrinos moving in the direction
nj , evolves according to the collisionless Boltzmann equa-
tion,

∂Ψ

∂τ
+ i

q

ϵ
(k⃗ · n̂)Ψ+

d ln f0
d ln q

[

φ̇− i
ϵ

q
(k⃗ · n̂)ψ

]

= 0. (4)

We follow the notation of Ref. [7] where ϵ =
√

q2 + a2m2,
a is the expansion scale factor normalized to unity at
present, and φ, ψ are the gravitational potentials in the
conformal-Newtonian gauge. Hereafter we assume that
anisotropic stress perturbations are negligible, so that
ψ = φ. Parametrizing the neutrino’s flight with confor-
mal variable λ, we can write −∂λ = ∂τ + q

ϵ n̂ · ∇⃗ for the
derivative along the path of a neutrino from decoupling
to the observer. Then defining Γ ≡ d ln f0/d ln ϵ, the
Boltzmann equation simplifies to

∂λ (Γ∆) + Γ

[

∂λ +

(

q2

ϵ2
+ 1

)

∂τ

]

φ = 0. (5)

Integrating along the line-of-sight λ from decoupling to
the present, we find the solution

∆0 = −φ0 +
Γdec

Γ0

(∆dec + φdec)

and	therefore		

			

	

it is safe to say that below 2 MeV neutrino practically became non-interacting and their
number density remains constant in a comoving volume, i.e. n

⌫

⇠ 1/a3.
From these informations about decoupling it is possible to deduce some features of the

neutrino background radiation. A peculiarity of the instantaneous decoupling approach
is that assuming interaction to completely turn o↵ after Td, allow us to describe relics
of massless particle using equilibrium distribution also after decoupling with fictitious
temperature and chemical potential (if not neglected) parameters which are redshifted
by Universe expansion starting from their values at decoupling, namely

T = T
D

a (t
D

)

a (t)
/ a�1 (t) . (10)

This fact can be easily verified solving Eq. (7) with vanishing collision operator. However
there is not an analogous result for massive particles, for which distribution functions may
have an arbitrary form after drop of interaction rate, but given our previous assumptions
we can safely apply it also to light neutrinos case. Particle species remaining in equilibrium
have a di↵erent behaviour because in addition to Boltzmann equation, they have to
satisfy the full entropy conservation of the thermal bath3, so whenever another particle
species becomes non-relativistic and disappears, its entropy is transferred to the bath,
and so to the other relativistic species in thermal equilibrium inside it, causing T to

decrease slightly less slowly, as T / g
�1/3
⇤s a�1.

So now, with the knowledge that all neutrino specie decouple before e± mass, thanks
to previous estimates, we can compute the neutrino to photon temperature ratio as

T
�

T
⌫

=
T after
�

T before
�

=

✓

gbefore⇤s
gafter⇤s

◆1/3

=

✓

11

4

◆1/3

⇡ 1.40102 . (11)

Finally assuming the CMB to be a perfect black body with a temperature of TCMB =
2.7260(13) K (Fixsen 2009) today, we find the cosmic neutrino background temperature
to be TCNB ⇡ 1.9457 K, since no other reheatings occur between e± annihilations and us.
From this value it is also easy to compute the relic number density of neutrinos. From
the relation

n
⌫

↵

+ n
⌫̄

↵

n
�

=
3

11
, (12)

true under the hypothesis of massless neutrinos again, then we find the total number
density of neutrinos today to be n

⌫

=
P

↵

n
⌫

↵

⇡ 336 cm�3. This generates a remarkably
large flux with respect to other astrophysical neutrino sources (e.g. solar neutrinos).
Unfortunately their distribution peaks at a very low energy, making their direct detection
impossible or at least very challenging (see Sec. IV).

B. Numerical approach and spectral distortions

Last way we present to study neutrino decoupling is the numerical solution of Boltzmann
equation. This approach, thanks to powerful calculation techniques, allow to relax

3This does not mean that decoupled particles have not conserved entropy. Merely their entropy is
conserved without sharing it with other particle species.
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Neutrino	isocurvature	modes		
Ø  Isocurvature	(or	entropic)	perturba1on	modes	are	defined	as	(ini1al)	

difference	in	the	rela1ve	perturba1ons	of	the	different	species	

SXY = −3 H δρX

!ρX

−H δρY
!ρY

⎛

⎝
⎜

⎞

⎠
⎟

Ø  	Therefore	for	N	species,	you	will	have	N-1	isocurvature	modes,	and	1	
							adiaba1c	(or	curvature)	mode.		
							Here	X,Y=	DM,	Baryons,	photons,	and	neutrinos			

Ø  These	different	perturba1on	modes	can	be	correlated	(or	uncorrelated)			

Ø  Similar	defin1ons	hold	for	velocity	isocurvature	perturba1ons.	
	



Neutrino	isocurvature	modes		
Ø  Equivalently:	photons	are	taken	as	a	reference	species.		
					Then,	adiaba1city	means	that		

δ
ni
nγ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

					remains	spa1ally	constant,	otherwise	isocur.	modes	are	switched	on			

Ø  	Single-field	models	of	infla1on	(one	single	degree	of	freedom)	can		
						generate	only	super-horizon	adiaba1c	perturba1ons					

Ø  	Mul%-field	models	of	infla%on	can	generate	isocurvature	modes		
						(N.B.:	can…...they	do	not	necessarily	prdoduce	them)		
	



It is not obvious that the intrinsic entropy perturbation
for a single scalar field, obtained from Eq. (23),

S =
2Vϕ

3ϕ̇2(3Hϕ̇+ 2Vϕ)

[

ϕ̇
(

˙δϕ− ϕ̇A
)

− ϕ̈δϕ
]

, (28)

should vanish on large scales. Because the scalar field
obeys a second-order equation of motion, its general so-
lution contains two arbitrary constants of integration,
which can describe both adiabatic and entropy perturba-
tions. However S for a single scalar field is proportional
to the comoving density perturbation given in Eq. (10),
and this in turn is related to the metric perturbation, Ψ,
via Eq. (14), so that [39]

S = −
Vϕ

6πGϕ̇2[3Hϕ̇+ 2Vϕ]

(

k2

a2
Ψ

)

. (29)

In the absence of anisotropic stresses, Ψ must be of order
AQ, by Eq. (11), and hence the non-adiabatic pressure
becomes small on large scales [6,39,10]. The amplitude of
the asymptotic solution for the scalar field at late times
(and hence large scales) during inflation thus determines
the amplitude of an adiabatic perturbation.

The change in the comoving curvature perturbation is
given by

Ṙ =
H

Ḣ

k2

a2
Ψ , (30)

and hence the rate of change of the curvature perturba-
tion, given by d lnR/d ln a ∼ (k/aH)2, becomes negligi-
ble on large scales during single-field inflation.

C. Two fields

In this section we will consider two interacting scalar
fields, φ ≡ ϕ1 and χ ≡ ϕ2. The analysis developed here
should be straightforward to extend to include additional
scalar fields, but we do not expect to see any qualitatively
new features in this case, so for clarity we restrict our
discussion here to two fields.

In order to clarify the role of adiabatic and entropy
perturbations, their evolution and their inter-relation, we
define new adiabatic and entropy fields by a rotation in
field space. The “adiabatic field”, σ, represents the path
length along the classical trajectory, such that

σ̇ = (cos θ)φ̇+ (sin θ)χ̇ , (31)

where

cos θ =
φ̇

√

φ̇2 + χ̇2

, sin θ =
χ̇

√

φ̇2 + χ̇2

. (32)

This definition, plus the original equations of motion for
φ and χ, give

σ̈ + 3Hσ̇ + Vσ = 0 , (33)

where

Vσ = (cos θ)Vφ + (sin θ)Vχ . (34)

As illustrated in Fig. 1, δσ is the component of the
two-field perturbation vector along the direction of the
background fields’ evolution. Conversely, fluctuations or-

δσ

Background trajectory

Perturbationδχ

δs

δφθ

χ

φ
FIG. 1. An illustration of the decomposition of an arbi-

trary perturbation into an adiabatic (δσ) and entropy (δs)
component. The angle of the tangent to the background tra-
jectory is denoted by θ. The usual perturbation decomposi-
tion, along the φ and χ axes, is also shown.

thogonal to the background classical trajectory represent
non-adiabatic perturbations, and we define the “entropy
field”, s, such that

δs = (cos θ)δχ− (sin θ)δφ . (35)

From this definition, it follows that s =constant along
the classical trajectory, and hence entropy perturbations
are automatically gauge-invariant [40]. Perturbations in
δσ, with δs = 0, describe adiabatic field perturbations,
and this is why we refer to σ as the “adiabatic field”.

The total momentum of the two-field system, given by
Eq. (9), is then

δq,i = −φ̇δφ,i − χ̇δχ,i = −σ̇δσ,i , (36)

and the comoving curvature perturbation in Eq. (17) is
given by

R = ψ + H

(

φ̇δφ+ χ̇δχ

φ̇2 + χ̇2

)

,

= ψ +
H

σ̇
δσ . (37)
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Isocurvature	modes	during	infla%on		

Adiaba%c	mode	

Isocurvature	mode	

R = ψ +
Hδρ

ρ̇
, (1)

where ψ is the gauge-dependent curvature perturbation
and δρ the total density perturbation in that gauge. The
isocurvature/entropy perturbation is usually defined as
the perturbation in the ratio of the matter and photon
number densities

S =
δnm

nm
−
δnγ

nγ
= −3

(

Hδρm
ρ̇m

−
Hδργ
ρ̇γ

)

, (2)

which is naturally gauge-independent.
The ‘primordial’ adiabatic and isocurvature perturba-

tions on cosmological scales (1 − 104Mpc) are usually
defined in terms of the early-time/large-scale limit deep
in the radiation dominated era [17], e.g., around the
epoch of primordial nucleosynthesis (T ∼ 1010K). The
power spectrum and cross-correlation of the primordial
adiabatic and isocurvature perturbations on cosmologi-
cal scales can then be constrained by observations, such
as the cosmic microwave background angular power spec-
trum [18,10–13].
During two-field inflation the general definition of the

curvature perturbation (1) yields

R ≃
H

(

φ̇δφ+ χ̇δχ
)

φ̇2 + χ̇2
. (3)

where≃ denotes equality in the slow-roll approximation∗.
The generalised entropy (isocurvature) perturbation is
given by [6,9]

S =
H

(

φ̇δχ− χ̇δφ
)

φ̇2 + χ̇2
. (4)

As S is not directly observable during inflation, its nor-
malisation is somewhat arbitrary. This particular choice
keeps the subsequent analysis of power spectra simpler by
giving curvature and isocurvature spectra equal power at
horizon-crossing [see. Eq. (27)]. A different choice for the
normalisation of S would lead to a different overall fac-
tor multiplying the transfer functions TRS and TSS in
Eq. (6).
In order to relate the initial curvature and entropy per-

turbations (3) and (4) generated by a period of infla-
tion in the very early universe, to the observable curva-
ture and entropy perturbations (1) and (2) at much later
cosmic times, we need to model the evolution on large
(“super-horizon”) scales. We will work in a large-scale

∗Although the curvature and field perturbations are, in gen-
eral, gauge-dependent, this gauge-dependence can for most
purposes be neglected at leading order in the slow-roll approx-
imation. For definiteness one can take all field perturbations
to be evaluated in the spatially-flat gauge [19].

limit where the divergence of the velocity field and shear
can be neglected so that the local dynamics are those
of a homogeneous and isotropic FRW model [16]. Dur-
ing slow-roll inflation this becomes a good approximation
soon after a mode leaves the Hubble-scale (k < aH), and
it remains valid up until the mode re-enters the Hubble-
scale during the subsequent radiation or matter domi-
nated eras. Adiabatic perturbations correspond to per-
turbations which locally follow the same trajectory in
phase-space as the unperturbed background, whereas en-
tropy perturbations correspond to perturbations off the
background trajectory [16].
The curvature perturbation R remains constant for

purely adiabatic perturbations in the large-scale limit
simply as a consequence of local energy conservation [16],
irrespective of the physical processes going on during in-
flation or reheating. Purely adiabatic perturbations can
never generate entropy perturbations on large scales, but
entropy perturbations (specifically a non-adiabatic pres-
sure perturbation or energy transfer) can change the cur-
vature perturbation. Moreover, the entropy perturbation
itself can evolve on large scales for imperfect fluids†. One
can thus argue on very general grounds [16] that the time
dependence of adiabatic and entropy perturbations in the
large-scale limit can always be described by

Ṙ = αHS , Ṡ = βHS , (5)

where α and β are in general time-dependent dimension-
less functions. The explicit form of the interaction be-
tween the curvature and entropy perturbations has re-
cently been explicitly demonstrated in the case of in-
teracting scalar fields [9,20,21] and non-interacting flu-
ids [22].
Integrating Eqs. (5) over time we can obtain the gen-

eral form of the transfer matrix relating curvature and
entropy perturbations generated when a given mode is
stretched outside the Hubble scale during inflation (k =
aH , denoted by an asterisk) to curvature and entropy
perturbations at some later time [13]:

(

R
S

)

=

(

1 TRS

0 TSS

)(

R
S

)

∗

, (6)

where

TRS(t∗, t) =

∫ t

t∗

α(t′)TSS(t∗, t
′)H(t′)dt′ ,

TSS(t∗, t) = exp

(
∫ t

t∗

β(t′)H(t′)dt′
)

. (7)

Although the evolution in the large-scale limit is in-
dependent of scale (by definition), the transfer functions

†For the special case of two non-interacting perfect fluids,
such as matter and radiation, the isocurvature perturbation
defined in Eq. (2) is constant on large scales.
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N.B.:	if	the	trajectory	in	field		
space	is	a	curved	one	(i.e.	ϑ	
is	not	costant)	then	a	cross	
correal%on	between	curvature	
and	isocurvature	pertbs.	is	
generated:	<R	S>	≠0		



Isocurvature	modes	a"er	infla%on		
Ø  	The	post-infla1onary	evolu1on	determines	how	the	isocurvature	fluctua1ons		
							generated	during	infla1on	transforms	into	specific	isocurvature	modes	
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isocurvature/entropy perturbation is usually defined as
the perturbation in the ratio of the matter and photon
number densities
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ρ̇γ
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, (2)

which is naturally gauge-independent.
The ‘primordial’ adiabatic and isocurvature perturba-

tions on cosmological scales (1 − 104Mpc) are usually
defined in terms of the early-time/large-scale limit deep
in the radiation dominated era [17], e.g., around the
epoch of primordial nucleosynthesis (T ∼ 1010K). The
power spectrum and cross-correlation of the primordial
adiabatic and isocurvature perturbations on cosmologi-
cal scales can then be constrained by observations, such
as the cosmic microwave background angular power spec-
trum [18,10–13].
During two-field inflation the general definition of the

curvature perturbation (1) yields

R ≃
H

(

φ̇δφ+ χ̇δχ
)

φ̇2 + χ̇2
. (3)

where≃ denotes equality in the slow-roll approximation∗.
The generalised entropy (isocurvature) perturbation is
given by [6,9]

S =
H

(

φ̇δχ− χ̇δφ
)

φ̇2 + χ̇2
. (4)

As S is not directly observable during inflation, its nor-
malisation is somewhat arbitrary. This particular choice
keeps the subsequent analysis of power spectra simpler by
giving curvature and isocurvature spectra equal power at
horizon-crossing [see. Eq. (27)]. A different choice for the
normalisation of S would lead to a different overall fac-
tor multiplying the transfer functions TRS and TSS in
Eq. (6).
In order to relate the initial curvature and entropy per-

turbations (3) and (4) generated by a period of infla-
tion in the very early universe, to the observable curva-
ture and entropy perturbations (1) and (2) at much later
cosmic times, we need to model the evolution on large
(“super-horizon”) scales. We will work in a large-scale

∗Although the curvature and field perturbations are, in gen-
eral, gauge-dependent, this gauge-dependence can for most
purposes be neglected at leading order in the slow-roll approx-
imation. For definiteness one can take all field perturbations
to be evaluated in the spatially-flat gauge [19].

limit where the divergence of the velocity field and shear
can be neglected so that the local dynamics are those
of a homogeneous and isotropic FRW model [16]. Dur-
ing slow-roll inflation this becomes a good approximation
soon after a mode leaves the Hubble-scale (k < aH), and
it remains valid up until the mode re-enters the Hubble-
scale during the subsequent radiation or matter domi-
nated eras. Adiabatic perturbations correspond to per-
turbations which locally follow the same trajectory in
phase-space as the unperturbed background, whereas en-
tropy perturbations correspond to perturbations off the
background trajectory [16].
The curvature perturbation R remains constant for

purely adiabatic perturbations in the large-scale limit
simply as a consequence of local energy conservation [16],
irrespective of the physical processes going on during in-
flation or reheating. Purely adiabatic perturbations can
never generate entropy perturbations on large scales, but
entropy perturbations (specifically a non-adiabatic pres-
sure perturbation or energy transfer) can change the cur-
vature perturbation. Moreover, the entropy perturbation
itself can evolve on large scales for imperfect fluids†. One
can thus argue on very general grounds [16] that the time
dependence of adiabatic and entropy perturbations in the
large-scale limit can always be described by

Ṙ = αHS , Ṡ = βHS , (5)

where α and β are in general time-dependent dimension-
less functions. The explicit form of the interaction be-
tween the curvature and entropy perturbations has re-
cently been explicitly demonstrated in the case of in-
teracting scalar fields [9,20,21] and non-interacting flu-
ids [22].
Integrating Eqs. (5) over time we can obtain the gen-

eral form of the transfer matrix relating curvature and
entropy perturbations generated when a given mode is
stretched outside the Hubble scale during inflation (k =
aH , denoted by an asterisk) to curvature and entropy
perturbations at some later time [13]:

(
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(
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S

)

∗

, (6)

where

TRS(t∗, t) =

∫ t

t∗

α(t′)TSS(t∗, t
′)H(t′)dt′ ,

TSS(t∗, t) = exp

(
∫ t

t∗

β(t′)H(t′)dt′
)

. (7)

Although the evolution in the large-scale limit is in-
dependent of scale (by definition), the transfer functions

†For the special case of two non-interacting perfect fluids,
such as matter and radiation, the isocurvature perturbation
defined in Eq. (2) is constant on large scales.
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From	infla,on		A"er	infla,on		

Transfer	func,ons	



•  	In	par1cular	for	two	field	models	of	infla1on		

		

An	observa%onal	test	of	twofield	infla%on	
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The background slow-roll solution is then given by

σ̇2 ≃
2

3
ϵV , H−1θ̇ ≃ −ησs , (20)

while the perturbations obey

H−1 ˙δσ ≃ (2ϵ− ησσ) δσ − 2ησsδs ,

H−1δ̇s ≃ −ηssδs . (21)

The entropy field perturbation δs evolves independently
of the adiabatic field perturbation δσ on large scales.
However the large-scale entropy perturbations do af-
fect the evolution of the adiabatic perturbations when
ησs ̸= 0.
In terms of the dimensionless perturbations R and S

we have

Ṙ ≃ −2ησsHS ,

Ṡ ≃ (−2ϵ+ ησσ − ηss)HS . (22)

which provides a specific example of the more general
form for the evolution of curvature and entropy per-
turbations given in Eqs. (5). In particular the scale-
dependence of the integrated transfer functions, Eqs. (8),
can be written in terms of the slow-roll parameters when
the mode crosses outside the Hubble-scale:

α∗ ≃ −2ησs ,

β∗ ≃ −2ϵ+ ησσ − ηss . (23)

IV. INITIAL POWER SPECTRA

Weakly-interacting, light fields acquire a spectrum of
vacuum fluctuations at Hubble-crossing (k = a∗H∗) [1]

Pδφ|∗ ≃ Pδχ|∗ ≃
(

H∗

2π

)2

, (24)

which describe independent Gaussian random fields, i.e.
zero cross-correlation

Cδφ,δχ|∗ = 0 . (25)

The local rotation (16) to the instantaneous adiabatic
and entropy field perturbations, gives

Pδσ|∗ ≃ Pδs|∗ ≃
(

H∗

2π

)2

,

Cδσ,δs|∗ = 0 . (26)

Hence, using Eq. (17), the adiabatic and entropy power
spectra at Hubble-crossing are given by

PR|∗ ≃ PS |∗ ≃
(

H2

2πσ̇

)2

∗

≃
8

3ϵ

V∗

M4
P

. (27)

Although, as explained earlier, the normalisation of the
dimensionless entropy perturbation during inflation is ar-
bitrary, it proves convenient to use that given in Eq. (4)
so that R and S have equal power at Hubble-crossing.
The spectral tilts (defined by nx ≡ d lnPx/d ln k) are

given by

nR|∗ ≃ nS |∗ ≃ −6ϵ+ 2ησσ . (28)

Gravitational waves are generated with a spectrum [1]

PT |∗ ≃
128

3

V∗

M4
P

(29)

and spectral tilt

nT |∗ ≃ −2ϵ . (30)

A key observation is that the tensor-scalar ratio at
Hubble-crossing, even in multi-field slow-roll inflation,
can be given from Eqs. (27), (29) and (30) as

(

PT

PR

)

∗

≃ 16ϵ ≃ −8nT |∗ . (31)

V. FINAL POWER SPECTRA

Applying the transfer matrix (6) to the initial scalar
spectra we obtain the resulting curvature and isocur-
vature power spectra at the start of the conventional
radiation-dominated era:

PR =
(

1 + T 2

RS

)

PR|∗ , (32)

PS = T 2

SSPR|∗ , (33)

CRS = TRSTSSPR|∗ . (34)

A dimensionless measure of the correlation can be defined
in terms of a correlation angle ∆ such that

cos∆ ≡
CRS

P1/2
R P1/2

S

≃
TRS

√

1 + T 2
RS

. (35)

Note that the scalar metric perturbation at Hubble-
crossing can thus be reconstructed from the observed
curvature perturbation at late times and the cross-
correlation angle:

PR|∗ ≃ PR sin2 ∆ . (36)

The tensor perturbations, in contrast to the scalar per-
turbations, remain ‘frozen-in’ on large scales, and decou-
pled from the scalar perturbations at linear order. Thus
the primordial perturbation spectrum for gravitational
waves is given by Eqs. (29) and (30)

PT = PT |∗ , nT = nT |∗ . (37)
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Cross-correla1onadiaba1c	&	socurvature	modes		

See	N.B.,	S.	Matarrese	&	A.	RioJo	2022;	D.	Wand,	N.	B.,	S	.	Maatarrese	&	A	.RioJo	2003	



Neutrino	isocurvature	modes		
Ø 	How	these	isocurvature	modes	can	be	set,	ini1ally,	a\er	infla1on		
					(at	energies	as	high	as	1015	GeV)	is	strongly	model	dependent:	
	
					It	depends	on	how	infla1on	ends	through	the	rehetaing	phase:		
					couplings	of	inflatons	with	other	par1cles,	inflaton	decay	channels.	
					Thermaliza%on	processes	in	general	tend	to	damp	any	isocurvature		
					modes	present	during	infla%on			

Ø  	Take-home	message:		
					challenging	but	can	provide	a	unique	inside	into	couplings	at		
					energies	never	achievable	in	labs.			



Neutrino	isocurvature	modes		

Planck Collaboration: Constraints on inflation 43

Fig. 42. Derived constraints on the parameters of the potential, Eq. (109), as well as the predicted resonant NG, f res
NL , using the ana-

lytic template, showing joint 68 % and 95 % CL. The dotted lines mark the frequencies showing the highest-likelihood improvements
(see text).

Planck Collaboration XVII (2016). Indeed, importance sampling
with the likelihood for f inv.dec.

NL , taken to be a Gaussian centred
on the NG estimate f inv.dec.

NL = 22.7 ± 25.5 (68 % CL) (Planck
Collaboration XVII, 2016), changes the limit on ⇠⇤ only at the
second decimal place.

We now derive constraints on model parameters using only
the observational constraint on f inv.dec

NL . The constraints thus de-
rived are applicable for generic p and also to the axion mon-
odromy model discussed in Sect. 10.3, even in the case ⇤0 , 0.
We follow the procedure described in section 11 of Planck
Collaboration XVII (2016). The likelihood for f inv.dec.

NL is taken to
be a Gaussian centred on the NG estimate f inv.dec.

NL = 22.7 ± 25.5
(68 % CL) (Planck Collaboration XVII, 2016). We use the ex-
pression of Eq. (122), where f3(⇠⇤) is numerically evaluated. To
find the posterior distribution for the parameter ⇠⇤ we choose
uniform priors in the intervals 1.5 ⇥ 10�9  P⇤  3.0 ⇥ 10�9 and
0.1  ⇠⇤  7.0. This yields 95 % CL constraints for ⇠⇤ (for any
value of p) of

⇠⇤  2.5 (95 % CL). (124)
If we choose a log-constant prior on ⇠⇤ we find

⇠⇤  2.2 (95 % CL). (125)

For both cases the results are insensitive to the upper limit cho-
sen for the prior on ⇠⇤ since the likelihood quickly goes to zero
for ⇠⇤ > 3. As the likelihood for ⇠⇤ is fairly flat, the tighter con-
straint seen for the log-constant case is mildly prior driven. The
constraints from the bispectrum are consistent with, and slightly
worse than, the result from the power spectrum alone.

Using a similar procedure and Eq. (116) one can also obtain
a constraint on ↵/ f . Adopting a log-constant prior 2  ↵/ f 
10016 and uniform priors 50  N⇤  70 and 1.5 ⇥ 10�9  P⇤ 
3.0 ⇥ 10�9 we obtain the 95 % CL constraints

↵/ f  48M�1
Pl for p = 1, ↵/ f  35M�1

Pl for p = 2,
(126)

and
↵/ f  42M�1

Pl for p = 4/3 . (127)
For example, for a linear potential, p = 1, if ↵ ⇠ 1 as suggested
by effective field theory, then the axion decay constant f is con-
strained to be

f � 0.020MPl (95 % CL) , (128)
16 We give only the results for a log-constant prior on ↵/ f , which is

well-motivated since it corresponds to a log-constant prior on the axion
decay constant for some fixed ↵.
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while for a potential with p = 4/3 we find

f � 0.023MPl (95 % CL). (129)

These limits are complementary to those derived in Sect. 10.3.

11. Constraints on isocurvature modes

In PCI13, we presented constraints on a number of simple mod-
els featuring a mixture of the adiabatic (ADI) mode and one
type of isocurvature mode. We covered the cases of CDM den-
sity isocurvature (CDI), neutrino density isocurvature (NDI),
and neutrino velocity isocurvature (NVI) modes (Bucher et al.,
2000), with different assumptions concerning the correlation
(Langlois, 1999; Amendola et al., 2002) between the primordial
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At	large	scales	βiso	<	7.4%	for	NDI	and	6.8%	for	NVI	
	
Overall	the		the	non-adiaba,c	frac,on	is	below	1.7	%	with	Planck	TT,TE,EE+lowE+	
lensing	data	for	all	three	cases.			
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II. NEUTRINO ISOCURVATURE
PERTURBATIONS

Density perturbations are conveniently described in
terms of the gauge-invariant quantity ⇣ [20–22]

⇣ = � �H
�⇢

⇢̇
, (1)

where  is the (gauge-dependent) curvature perturba-
tion, H the Hubble parameter, ⇢ the total energy den-
sity, and the dot denotes derivatives with respect to the
cosmological time t.

The quantity ⇣ describes the curvature perturbation on
slices of uniform total density. In the case of multicompo-
nent fluids, it is useful to define quantities ⇣

i

describing
the curvature perturbation on slices of uniform density
of the i-th component

⇣
i

= � �H
�⇢

i

⇢̇
i

. (2)

An adiabatic fluctuation is defined as one for which
the ratios �⇢

i

/⇢̇
i

are all the same, so that ⇣
i

= ⇣ for all
components. Correspondingly, a nonadiabatic (or isocur-
vature) fluctuation S

i

in the i-th fluid component is de-
fined as the relative entropy fluctuation with respect to
photons:

S
i

⌘ 3(⇣
i

� ⇣
�

) . (3)

In the following, we shall consider neutrinos with an
equilibrium distribution function

f
i

(E) = [exp(E/T
⌫

⌥ ⇠
i

)]�1

, (4)

where T
⌫

is their temperature, and ⇠
i

= µ
i

/T
⌫

, µ
i

being
the chemical potential. The index i runs over the three
standard model neutrino families, i = e, µ, ⌧ , and the
minus (plus) sign is for neutrinos (antineutrinos). No-
tice that the existence of neutrino isocurvature pertur-
bations necessarily implies a non zero lepton asymmetry
in the neutrino sector, n

L

⌘ n
⌫

�n
⌫̄

, unless the asymme-
tries in the three flavours exactly cancel. At this stage,
we have allowed for the possibility of the three neutrino
families having di↵erent chemical potentials. The neu-
trino temperature is T

⌫

= T
�

until the time of electron-
positron annihilation, occurring at T

�

' 1 MeV (shortly
after neutrino decoupling), while at later times it is given
by T

⌫

= (4/11)1/3T
�

, up to tiny corrections due to neu-
trino reheating at the e± annihilation stage [24].

Given the distribution function Eq. (4), the energy
density ⇢

i

⌘ ⇢
⌫i+⇢⌫̄i in the high-temperature limit T

⌫

�
m

⌫

writes [25]:

⇢
i

=
7⇡2

120
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i

T 4

⌫

=
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where
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i
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#
, (6)

When dealing with cosmological neutrinos, it is cus-
tomary to define the e↵ective number of neutrino families
N

e↵

as the ratio between the total neutrino density and
the density of a single non-degenerate (⇠ = 0) neutrino
species in thermal equilibrium at T

⌫

= (4/11)1/3T
�

. In
the standard cosmological scenario N

e↵

= 3.046, see [24],
and any deviation �N

e↵

from this value indicates the
presence of an extra energy density of relativistic parti-
cles in the early Universe. It is clear, from our definition,
that N

e↵

=
P

i

A
i

. We can thus relate the isocurvature
perturbation in the total neutrino density to the fluctu-

ations �N (i)

e↵

:

S
⌫

= 3(⇣
⌫

� ⇣
�

) '
P

i

�N
(i)

e↵

4N
e↵

. (7)

III. CMB CONSTRAINTS AND FORECAST

In the following, lacking a better theoretical motiva-
tion, for simplicity we shall assume that both the average
values and the fluctuations in the chemical potentials are
flavor blind, i.e. ⇠̄

e

= ⇠̄
µ

= ⇠̄
⌧

= ⇠̄, and similarly for the
�⇠’s. Also, we assume that fluctuations in the neutrino
degeneracy parameter are gaussian distributed with vari-
ance �2

⇠

around the mean ⇠̄. In general, both quantities
can have a scale and epoch dependence.
Conventionally, rather than in terms of S

⌫

of Eq. (7),
in CMB studies the “non-adiabaticity” of perturbations
is expressed in terms of the ratio of the power spec-
trum PS(k) of isocurvature perturbations to the curva-
ture perturbation spectrum P

⇣

(k), evaluated at a fixed
pivot wave number k

0

= 0.002Mpc�1. In particular, one
introduces the quantity ↵ defined by [4, 6]

↵(k
0

)

1� ↵(k
0

)
⌘ PS(k0)

P
⇣

(k
0

)
, (8)

Another necessary ingredient to be taken into account
is the correlation between the adiabatic and isocurva-
ture modes [26–28]. Given the cross-correlation power
spectrum P

⇣S(k), this is parameterized in terms of the
cross-correlation coe�cient �, defined as

� =
P
⇣S(k0)p

PS(k0)P⇣

(k
0

)
. (9)

We remark that we choose the sign convention for the
curvature perturbation such that the temperature fluctu-
ation at large scales is given by �T/T = ⇣/5� 2S/5. In
terms of the variables used in the WMAP analysis [6, 29],
⇣ = R̃ = �R, and our definition of � coincides with the
one used there. In this case, the physically observable

Non-vanishing	chemical	poten1al	
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II. NEUTRINO ISOCURVATURE
PERTURBATIONS

Density perturbations are conveniently described in
terms of the gauge-invariant quantity ⇣ [20–22]

⇣ = � �H
�⇢

⇢̇
, (1)

where  is the (gauge-dependent) curvature perturba-
tion, H the Hubble parameter, ⇢ the total energy den-
sity, and the dot denotes derivatives with respect to the
cosmological time t.

The quantity ⇣ describes the curvature perturbation on
slices of uniform total density. In the case of multicompo-
nent fluids, it is useful to define quantities ⇣

i

describing
the curvature perturbation on slices of uniform density
of the i-th component

⇣
i
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�⇢

i

⇢̇
i

. (2)

An adiabatic fluctuation is defined as one for which
the ratios �⇢
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/⇢̇
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are all the same, so that ⇣
i

= ⇣ for all
components. Correspondingly, a nonadiabatic (or isocur-
vature) fluctuation S
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in the i-th fluid component is de-
fined as the relative entropy fluctuation with respect to
photons:
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In the following, we shall consider neutrinos with an
equilibrium distribution function
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, (4)

where T
⌫

is their temperature, and ⇠
i

= µ
i

/T
⌫

, µ
i

being
the chemical potential. The index i runs over the three
standard model neutrino families, i = e, µ, ⌧ , and the
minus (plus) sign is for neutrinos (antineutrinos). No-
tice that the existence of neutrino isocurvature pertur-
bations necessarily implies a non zero lepton asymmetry
in the neutrino sector, n

L

⌘ n
⌫
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⌫̄

, unless the asymme-
tries in the three flavours exactly cancel. At this stage,
we have allowed for the possibility of the three neutrino
families having di↵erent chemical potentials. The neu-
trino temperature is T

⌫

= T
�

until the time of electron-
positron annihilation, occurring at T

�

' 1 MeV (shortly
after neutrino decoupling), while at later times it is given
by T

⌫

= (4/11)1/3T
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, up to tiny corrections due to neu-
trino reheating at the e± annihilation stage [24].
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When dealing with cosmological neutrinos, it is cus-
tomary to define the e↵ective number of neutrino families
N

e↵

as the ratio between the total neutrino density and
the density of a single non-degenerate (⇠ = 0) neutrino
species in thermal equilibrium at T

⌫

= (4/11)1/3T
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. In
the standard cosmological scenario N

e↵

= 3.046, see [24],
and any deviation �N

e↵

from this value indicates the
presence of an extra energy density of relativistic parti-
cles in the early Universe. It is clear, from our definition,
that N

e↵

=
P
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A
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. We can thus relate the isocurvature
perturbation in the total neutrino density to the fluctu-

ations �N (i)
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III. CMB CONSTRAINTS AND FORECAST

In the following, lacking a better theoretical motiva-
tion, for simplicity we shall assume that both the average
values and the fluctuations in the chemical potentials are
flavor blind, i.e. ⇠̄

e

= ⇠̄
µ

= ⇠̄
⌧

= ⇠̄, and similarly for the
�⇠’s. Also, we assume that fluctuations in the neutrino
degeneracy parameter are gaussian distributed with vari-
ance �2

⇠

around the mean ⇠̄. In general, both quantities
can have a scale and epoch dependence.
Conventionally, rather than in terms of S

⌫

of Eq. (7),
in CMB studies the “non-adiabaticity” of perturbations
is expressed in terms of the ratio of the power spec-
trum PS(k) of isocurvature perturbations to the curva-
ture perturbation spectrum P

⇣

(k), evaluated at a fixed
pivot wave number k
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= 0.002Mpc�1. In particular, one
introduces the quantity ↵ defined by [4, 6]

↵(k
0

)

1� ↵(k
0

)
⌘ PS(k0)

P
⇣

(k
0

)
, (8)

Another necessary ingredient to be taken into account
is the correlation between the adiabatic and isocurva-
ture modes [26–28]. Given the cross-correlation power
spectrum P

⇣S(k), this is parameterized in terms of the
cross-correlation coe�cient �, defined as

� =
P
⇣S(k0)p

PS(k0)P⇣

(k
0

)
. (9)

We remark that we choose the sign convention for the
curvature perturbation such that the temperature fluctu-
ation at large scales is given by �T/T = ⇣/5� 2S/5. In
terms of the variables used in the WMAP analysis [6, 29],
⇣ = R̃ = �R, and our definition of � coincides with the
one used there. In this case, the physically observable
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II. NEUTRINO ISOCURVATURE
PERTURBATIONS

Let us remind the description of density perturbations
in terms of the gauge invariant variable ⇣ that describes
the curvature perturbation on slices of uniform total den-
sity [16–18]:

⇣ = � �H
�⇢

⇢̇
, (2)

where the dot denotes derivatives with respect to the
cosmological time t, H is the Hubble parameter,  is
the (gauge-dependent) curvature perturbation, and ⇢ the
total energy density.

In the case of multiple fluids, it is possible to define
the quantities ⇣

i

for each of the i-th energy component

⇣
i

= � �H
�⇢

i

⇢̇
i

. (3)

For an adiabatic mode the ratios �⇢
i

/⇢̇
i

are all the
same, so that ⇣

i

= ⇣ for all components. At the same
time, an isocurvature fluctuation S

i

in the i-th energy
component is given by the relative entropy fluctuation
with respect to photons:

S
i

⌘ 3(⇣
i

� ⇣
�

) . (4)

The relativistic neutrinos will follow an equilibrium
distribution function as

f
i

(E) = [exp(E/T
⌫

⌥ ⇠
i

)]�1
, (5)

where T
⌫

is their temperature, ⇠
i

= µ
i

/T
⌫

with µ
i

as
the chemical potential, the index i runs over the three
neutrino families, i = e, µ, ⌧ , and the minus (plus) sign
is for neutrinos (antineutrinos). It is important to note
that NID perturbations necessarily implies a non zero
lepton asymmetry for the neutrino, n

L

⌘ n
⌫

�n
⌫̄

, unless
there is an exact cancellation of the asymmetries in the
three flavours.

Given the distribution function Eq. (5), the energy
density ⇢

i

⌘ ⇢
⌫i+⇢⌫̄i in the high-temperature limit T

⌫

�
m

⌫

is given by [19]:
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From our above definition, we have that Ne↵ =
P

i

A
i

.
We can thus relate the isocurvature perturbation in the

total neutrino density to the fluctuations �N (i)
e↵ (see [5]):

S
⌫

= 3(⇣
⌫

� ⇣
�

) '
P

i

�N
(i)
e↵

4Ne↵
. (8)

In summary, a NID component is naturally connected to
a non-standard value forN

eff

. In the next section we will
therefore perform an analysis allowing both components
to vary.

III. ANALYSIS METHOD

Our analysis method is based on the Boltzmann
CAMB code [20] and a Monte Carlo Markov Chain
(MCMC) analysis based on the MCMC package
cosmomc [21].
We sample the following set of parameters:

{!
b

,!
c

,⇥
s

, ⌧, n
s

, log[1010A
s

], N
eff

,↵NID} , (9)

!
b

⌘ ⌦
b

h2 and !
c

⌘ ⌦
c

h2 being the physical baryon
and cold dark matter energy densities, ⇥

s

the ratio be-
tween the sound horizon and the angular diameter dis-
tance at decoupling, ⌧ is the reionization optical depth,
n
s

the scalar spectral index, A
s

the amplitude of the pri-
mordial spectrum, N

eff

the e↵ective neutrino number
and ↵NID is the NID amplitude defined such that the
total CMB power spectrum is given by:

C
`

= (1� ↵NID)Cad

`

+ ↵NIDCnid

`

+

+2sign(↵NID)
q
↵NID(1� ↵NID)Ccorr

`

, (10)

where Cad

`

is the adiabatic component, Cnid

`

is the
neutrino isocurvature density component and Ccorr

`

is
the correlated spectrum. With this convention, when
↵NID < 0 the spectra are totally anti-correlated.
These theoretical power spectra are then compared

with the recent CMB measurements made by the Planck
experiment. For the Planck data, we add the high-` and
low-` TT likelihoods and we also add the low-` TE, EE,
BB WMAP likelihood, see Ref. [1] for details. This cor-
responds exactly to the Planck+WP case presented in
Ref. [1]. Moreover, we have marginalized over all fore-
grounds parameters, using the same procedure and pri-
ors presented in Ref. [1]. We also consider the HST con-
straint on the Hubble constant from [4].

IV. RESULTS

The results of our analysis are reported in Table
1 and Figure 1, in the case of the Planck+WP and
the Planck+WP+HST datasets. As we can see, the
Planck+WP data does not show any indication for NID
or for a larger value for N
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. In practice, a cosmologi-
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The results of our analysis are reported in Table
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I. INTRODUCTION

The recent measurements of the Cosmic Microwave
Background anisotropies provided by the Planck experi-
ment have drastically improved our knowledge about the
inflationary paradigm (see e.g., [1]). In particular, several
inflationary models have been ruled out and the overall
picture presented by Planck is perfectly consistent with
purely adiabatic and gaussian primordial perturbations.

On the other hand, the recent Planck data is also show-
ing some interesting anomaly or tension that, albeit at
small confidence level, is clearly worthwile of further in-
vestigation.

For example, the Planck data is well compatible with a
larger value for the number of relativistic degrees of free-
dom at recombination than what is commonly expected
in the standard scenario ([1]).

Let us remind here that the energy density of relativis-
tic particles in cosmology at the epoch of recombination
is given by:

⇢
r

= (1 +N
eff

7

8

⇣ 4

11

⌘4/3
)⇢

�

, (1)

where N
eff

is the e↵ective number of neutrinos and ⇢
�

is the CMB photon energy density.
It is worthwile to point out that not only additional rel-

ativistic species would a↵ect the value for N
eff

but also
other di↵erent neutrino properties, as a non-zero chemi-
cal potential, would change it from the standard value of
N

eff

= 3.046 (see [2]).
In practice, the N

eff

e↵ective parameter covers a wide
range of physical phenomena and it is therefore extremely
important to check for its consistency with the standard
expectation.

Interestingly enough, the recent Planck data does show
some indication for a non standardN

eff

. For example, in
the analysys of [3], a value of N

eff

= 3.71± 0.40 at 68%
c.l. from the Planck CMB data alone is reported. More
importantly, when the Planck data is combined with the
measurements of the Hubble constant from [4] the con-
straint becomes N

eff

= 3.63 ± 0.27 at 68% c.l., i.e. an

indication for a non standard value at more than 95%
c.l..

The main question that we want to address in this
brief paper is if this anomaly can be connected with a
non-standard inflationary process.

As pointed in previous papers (see, for example, [5]
and references therein), a non zero chemical potential,
and, therefore, a larger value for N

eff

could arise in the
curvaton scenario, proposed by [6, 7].

In this model, while the exponential expansion is
driven by the inflaton field, the primordial fluctuations
are generated by a di↵erent field called ”curvaton”. Af-
ter the inflaton decay, the isocurvature perturbation pro-
duced initially by the curvaton is converted in an adia-
batic component. In this model some residual isocurva-
ture perturbation is therefore expected in the cosmologi-
cal fluids (cold dark matter, baryons and neutrinos) (see,
for example, [8–13]). In case of a non-vanishing neutrino
chemical potential, neutrino density isocurvature pertur-
bations are expected.

In few words, probing neutrino isocurvature density
perturbation (NID hereafter), in the curvaton scenario
is complementary to constrain the lepton number in the
neutrino sector. It is therefore extremely timely to in-
vestigate the current CMB bounds on NID perturbation
component, allowing at the same time a variation in the
neutrino e↵ective number N

eff

.

Bounds on neutrino isocurvature perturbations have
been presented in the past in [14] and [15]. The Planck
collaboration has also provided new and stringent bounds
on NID, but fixing N

eff

to the standard value of 3.046.

In this paper we present, for the first time, a combined
analysis for N

eff

and NID from the Planck data, consid-
ering also the possibility of other datasets as the recent
Hubble constant measurements.

The paper is organized as follows. In Section II we
review the NID perturbations which are generated in the
curvaton scenario, in Section III we describe our analysis
method, while in Section IV we present the corresponding
results. Our conclusions are reported in Sec. V.

ar
X

iv
:1

40
5.

54
18

v1
  [

as
tro

-p
h.

CO
]  

21
 M

ay
 2

01
4

2

II. NEUTRINO ISOCURVATURE
PERTURBATIONS

Let us remind the description of density perturbations
in terms of the gauge invariant variable ⇣ that describes
the curvature perturbation on slices of uniform total den-
sity [16–18]:

⇣ = � �H
�⇢

⇢̇
, (2)

where the dot denotes derivatives with respect to the
cosmological time t, H is the Hubble parameter,  is
the (gauge-dependent) curvature perturbation, and ⇢ the
total energy density.

In the case of multiple fluids, it is possible to define
the quantities ⇣

i

for each of the i-th energy component

⇣
i

= � �H
�⇢

i

⇢̇
i

. (3)

For an adiabatic mode the ratios �⇢
i

/⇢̇
i

are all the
same, so that ⇣

i

= ⇣ for all components. At the same
time, an isocurvature fluctuation S

i

in the i-th energy
component is given by the relative entropy fluctuation
with respect to photons:

S
i

⌘ 3(⇣
i

� ⇣
�

) . (4)

The relativistic neutrinos will follow an equilibrium
distribution function as

f
i

(E) = [exp(E/T
⌫

⌥ ⇠
i

)]�1
, (5)

where T
⌫

is their temperature, ⇠
i

= µ
i

/T
⌫

with µ
i

as
the chemical potential, the index i runs over the three
neutrino families, i = e, µ, ⌧ , and the minus (plus) sign
is for neutrinos (antineutrinos). It is important to note
that NID perturbations necessarily implies a non zero
lepton asymmetry for the neutrino, n

L

⌘ n
⌫

�n
⌫̄

, unless
there is an exact cancellation of the asymmetries in the
three flavours.

Given the distribution function Eq. (5), the energy
density ⇢

i

⌘ ⇢
⌫i+⇢⌫̄i in the high-temperature limit T

⌫

�
m

⌫

is given by [19]:

⇢
i

=
7⇡2

120
A

i

T 4
⌫

=
7

8
A

i

✓
T
⌫

T
�

◆4

⇢
�

, (6)

where

A
i

⌘
"
1 +

30

7

✓
⇠
i

⇡

◆2

+
15

7

✓
⇠
i

⇡

◆4
#

, (7)

From our above definition, we have that Ne↵ =
P

i

A
i

.
We can thus relate the isocurvature perturbation in the

total neutrino density to the fluctuations �N (i)
e↵ (see [5]):

S
⌫

= 3(⇣
⌫

� ⇣
�

) '
P

i

�N
(i)
e↵

4Ne↵
. (8)

In summary, a NID component is naturally connected to
a non-standard value forN

eff

. In the next section we will
therefore perform an analysis allowing both components
to vary.

III. ANALYSIS METHOD

Our analysis method is based on the Boltzmann
CAMB code [20] and a Monte Carlo Markov Chain
(MCMC) analysis based on the MCMC package
cosmomc [21].
We sample the following set of parameters:

{!
b

,!
c

,⇥
s

, ⌧, n
s

, log[1010A
s

], N
eff

,↵NID} , (9)

!
b

⌘ ⌦
b

h2 and !
c

⌘ ⌦
c

h2 being the physical baryon
and cold dark matter energy densities, ⇥

s

the ratio be-
tween the sound horizon and the angular diameter dis-
tance at decoupling, ⌧ is the reionization optical depth,
n
s

the scalar spectral index, A
s

the amplitude of the pri-
mordial spectrum, N

eff

the e↵ective neutrino number
and ↵NID is the NID amplitude defined such that the
total CMB power spectrum is given by:

C
`

= (1� ↵NID)Cad

`

+ ↵NIDCnid

`

+

+2sign(↵NID)
q
↵NID(1� ↵NID)Ccorr

`

, (10)

where Cad

`

is the adiabatic component, Cnid

`

is the
neutrino isocurvature density component and Ccorr

`

is
the correlated spectrum. With this convention, when
↵NID < 0 the spectra are totally anti-correlated.
These theoretical power spectra are then compared

with the recent CMB measurements made by the Planck
experiment. For the Planck data, we add the high-` and
low-` TT likelihoods and we also add the low-` TE, EE,
BB WMAP likelihood, see Ref. [1] for details. This cor-
responds exactly to the Planck+WP case presented in
Ref. [1]. Moreover, we have marginalized over all fore-
grounds parameters, using the same procedure and pri-
ors presented in Ref. [1]. We also consider the HST con-
straint on the Hubble constant from [4].

IV. RESULTS

The results of our analysis are reported in Table
1 and Figure 1, in the case of the Planck+WP and
the Planck+WP+HST datasets. As we can see, the
Planck+WP data does not show any indication for NID
or for a larger value for N

eff

. In practice, a cosmologi-
cal degeneracy exists along the ↵NID-N

eff

direction and
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with the recent CMB measurements made by the Planck
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straint on the Hubble constant from [4].
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II. NEUTRINO ISOCURVATURE
PERTURBATIONS

Density perturbations are conveniently described in
terms of the gauge-invariant quantity ⇣ [20–22]

⇣ = � �H
�⇢

⇢̇
, (1)

where  is the (gauge-dependent) curvature perturba-
tion, H the Hubble parameter, ⇢ the total energy den-
sity, and the dot denotes derivatives with respect to the
cosmological time t.

The quantity ⇣ describes the curvature perturbation on
slices of uniform total density. In the case of multicompo-
nent fluids, it is useful to define quantities ⇣

i

describing
the curvature perturbation on slices of uniform density
of the i-th component

⇣
i
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�⇢

i

⇢̇
i

. (2)

An adiabatic fluctuation is defined as one for which
the ratios �⇢

i

/⇢̇
i

are all the same, so that ⇣
i

= ⇣ for all
components. Correspondingly, a nonadiabatic (or isocur-
vature) fluctuation S

i

in the i-th fluid component is de-
fined as the relative entropy fluctuation with respect to
photons:

S
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⌘ 3(⇣
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) . (3)

In the following, we shall consider neutrinos with an
equilibrium distribution function

f
i

(E) = [exp(E/T
⌫

⌥ ⇠
i

)]�1

, (4)

where T
⌫

is their temperature, and ⇠
i

= µ
i

/T
⌫

, µ
i

being
the chemical potential. The index i runs over the three
standard model neutrino families, i = e, µ, ⌧ , and the
minus (plus) sign is for neutrinos (antineutrinos). No-
tice that the existence of neutrino isocurvature pertur-
bations necessarily implies a non zero lepton asymmetry
in the neutrino sector, n

L

⌘ n
⌫

�n
⌫̄

, unless the asymme-
tries in the three flavours exactly cancel. At this stage,
we have allowed for the possibility of the three neutrino
families having di↵erent chemical potentials. The neu-
trino temperature is T

⌫

= T
�

until the time of electron-
positron annihilation, occurring at T

�

' 1 MeV (shortly
after neutrino decoupling), while at later times it is given
by T

⌫

= (4/11)1/3T
�

, up to tiny corrections due to neu-
trino reheating at the e± annihilation stage [24].

Given the distribution function Eq. (4), the energy
density ⇢
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When dealing with cosmological neutrinos, it is cus-
tomary to define the e↵ective number of neutrino families
N

e↵

as the ratio between the total neutrino density and
the density of a single non-degenerate (⇠ = 0) neutrino
species in thermal equilibrium at T

⌫

= (4/11)1/3T
�

. In
the standard cosmological scenario N

e↵

= 3.046, see [24],
and any deviation �N

e↵

from this value indicates the
presence of an extra energy density of relativistic parti-
cles in the early Universe. It is clear, from our definition,
that N

e↵

=
P

i

A
i

. We can thus relate the isocurvature
perturbation in the total neutrino density to the fluctu-

ations �N (i)

e↵

:
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) '
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III. CMB CONSTRAINTS AND FORECAST

In the following, lacking a better theoretical motiva-
tion, for simplicity we shall assume that both the average
values and the fluctuations in the chemical potentials are
flavor blind, i.e. ⇠̄

e

= ⇠̄
µ

= ⇠̄
⌧

= ⇠̄, and similarly for the
�⇠’s. Also, we assume that fluctuations in the neutrino
degeneracy parameter are gaussian distributed with vari-
ance �2

⇠

around the mean ⇠̄. In general, both quantities
can have a scale and epoch dependence.
Conventionally, rather than in terms of S

⌫

of Eq. (7),
in CMB studies the “non-adiabaticity” of perturbations
is expressed in terms of the ratio of the power spec-
trum PS(k) of isocurvature perturbations to the curva-
ture perturbation spectrum P

⇣

(k), evaluated at a fixed
pivot wave number k

0

= 0.002Mpc�1. In particular, one
introduces the quantity ↵ defined by [4, 6]

↵(k
0

)

1� ↵(k
0

)
⌘ PS(k0)

P
⇣

(k
0

)
, (8)

Another necessary ingredient to be taken into account
is the correlation between the adiabatic and isocurva-
ture modes [26–28]. Given the cross-correlation power
spectrum P

⇣S(k), this is parameterized in terms of the
cross-correlation coe�cient �, defined as

� =
P
⇣S(k0)p

PS(k0)P⇣

(k
0

)
. (9)

We remark that we choose the sign convention for the
curvature perturbation such that the temperature fluctu-
ation at large scales is given by �T/T = ⇣/5� 2S/5. In
terms of the variables used in the WMAP analysis [6, 29],
⇣ = R̃ = �R, and our definition of � coincides with the
one used there. In this case, the physically observable
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Parameter Planck+WP Planck+WP+HST

⌦bh
2 0.02215± 0.00050 0.02260± 0.00033

⌦ch
2 0.1222± 0.0068 0.1273± 0.0056

✓ 1.0405± 0.0010 1.0408± 0.0011
⌧ 0.094± 0.015 0.099± 0.015
ns 0.966± 0.021 0.987± 0.012

log[1010As] 3.115± 0.035 3.122± 0.037
H0[km/s/Mpc] 68.7± 3.9 72.5± 2.2

Ne↵ 3.26± 0.48 3.70± 0.30
↵NID �0.0031± 0.0053 0.0002± 0.0031

TABLE I. Constraints at 68% confidence level on Neff , ↵
NID and the main 6 cosmological parameters from the Planck+WP

and Planck+WP+HST cases.

FIG. 1. 68% and 95% c.l. likelihood contours for Planck+WP
and Planck+WP+HST in the Neff vs. ↵NID plane. Note the
small correlation between the two parameters.

models with smaller values for N
eff

are more consistent
with the CMB observations when ↵NID < 0. The current
Planck+WP data alone does not show any supporting ev-
idence for NID when variations in N

eff

are considered.
Moreover, the standard value of N

eff

= 3.046 is more
consistent with Planck observations, due to the larger
error on this parameter when NID are considered.

The conclusion is slightly di↵erent when also the HST
dataset is included. As we can see, including HST reduces
the error bars on the NID component while providing an
indication for a non-standard value forN

eff

at more than
two standard deviations. Again, this is consistent with
the anti-correlation between N

eff

and ↵NID, mentioned
above (see Figure 1).

Since, as discussed in the previous section, a positive

or a negative value for ↵NID discriminates between very
di↵erent physical mechanisms for this NID component,
it is interesting to repeat the analysis but imposing each
time the ↵NID > 0 or ↵NID < 0 prior. The results for
this analysis are reported in Table 2, for the two datasets:
Planck+WP and Planck+WP+HST.
As we can see, the interesting aspect is that when a

↵NID < 0 prior is imposed, the Planck+WP case pro-
vide a value for the Hubble constant that is in tension
with current HST determinations, even if the N

eff

pa-
rameter is allowed to vary. It is clear from this that a
NID component with ↵NID < 0 can’t resolve the current
tension on the values of H0 between the Planck data and
the HST constraint. On the other hand, the HST prior
is clearly against a ↵NID < 0 component, since including
it drastically improves the constraint on this parameter.
In the case of ↵NID > 0, on the contrary, the con-

straint on the NID component are practically left unaf-
fected by the inclusion of a HST prior. This is evident
from Figure 2, where we report the 2-D constraints on
the H0 vs ↵NID in the case of ↵NID < 0 (Top Panel)
and ↵NID > 0 (Bottom Panel) for the Planck+WP and
Planck+WP+HST datasets.

V. CONCLUSIONS

The recent Cosmic Microwave Background data from
the Planck satellite experiment, when combined with
HST determinations of the Hubble constant, are com-
patible with a larger, non-standard, number of relativis-
tic degrees of freedom at recombination, parametrized by
the neutrino e↵ective number N

eff

. In the curvaton sce-
nario, a larger value for N

eff

could arise from a non-zero
neutrino chemical potential connected to residual isocur-
vature perturbations after the decay of the curvaton
field, which component is parametrized by the amplitude
↵NID. Here we present constraints on a joint analysis of
N

eff

and ↵NID. We found that the Planck+WP dataset
does not show any indication for a neutrino isocurvature
component and that current indications for a non stan-
dard N

eff

component are further relaxed. When the
HST prior on the Hubble constant is included, an anticor-

4

As anticipated above, the parameterization in terms of �,
instead of ↵ = �2 as often seen in the literature, cancels
the divergence of the partial derivative @Cl

@↵

in ↵ = 0.
Thus this parameterization allows us to use the Fisher
matrix formalism for the fiducial value � = 0.

In the present analysis, we take as a fiducial model
a flat ⇤CDM model with parameter values given by
the WMAP7 measurements1, i.e. ⌦

b

h2 = 0.02258
and ⌦

dm

h2 = 0.1109, the optical depth to reioniza-
tion ⌧ = 0.088, H

0

= 71 km/s/Mpc, the spectral index
n
s

= 0.963, and the amplitude of the curvature pertur-
bation �2

R(k
0

) = 2.43⇥10�9. We consider three families
of massless neutrinos, but we checked that taking mas-
sive neutrinos with total mass M

⌫

= 0.6 eV neutrinos did
not a↵ect the results. Finally, we take the fiducial values
�N

e↵

= 0, � = 0.

The results of our analysis are shown in Figure 1,
where we draw the 2-dimensional likelihood in the �N

e↵

-
� plane for Planck, SPIDER and CMBPol. The corre-
sponding 1-� constraints for � and �N

e↵

are reported in
Tab. II.

FIG. 1. 68% and 95% c.l. likelihood contours for Planck (solid
line), SPIDER (dot-dashed line) CMBPol (dashed line).

fiducial value �(Planck) �(SPIDER) �(CMBPol)

� 0.0 5.3 · 10�3 1.2 · 10�2 1.5 · 10�3

�Ne↵ 0.0 0.16 0.40 0.043

TABLE II. 1-� constraints for � and �Ne↵ , for the Planck,
SPIDER and CMBPol experiments.

1
http://lambda.gsfc.nasa.gov/product/map/current/params/

lcdm_sz_lens_wmap7.cfm

IV. COMPARISON WITH BBN CONSTRAINTS

Big Bang nucleosynthesis, and in particular the pri-
mordial helium abundance Y

p

, is recognized to be the
most sensitive cosmic “leptometer” presently available,
see for example [36, 37] or the review [16]. So, it would
be interesting to compare BBN constraints to the ones
derived above. This task is made non-trivial by the fact
that BBN is sensitive to di↵erent parameters than the
CMB in particular, to a combination of the role of N

e↵

,
entering the expansion rate of the universe, and in prin-
ciple to all the parameters describing the distribution of
the ⌫

e

-flavour neutrinos. In the case of interest, which as-
sumes flavour-independent parameters and gaussian dis-
tributions, the only two independent parameters turn to
be ⇠̄ and �

⇠

, with �N
e↵

fully specified in terms of them,
but subleading and essentially negligible for the values
⇠̄ ⌧ 1 of interest here. Even assuming that the av-
erage value ⇠̄ is scale-independent, a slight dependence
on the scale is expected for the width of the distribu-
tion of fluctuations. Let us fix (arbitrarily) �

⇠

at a scale
�
BBN

, roughly corresponding to the horizon size at the
time of BBN, of the order of ⇠ O(100) comoving par-
secs. Namely, we fix �2

⇠

⇠ �2

⇠

(k
BBN

) where k
BBN

=

2⇡/�
BBN

⌘ 6 ⇥ 104 Mpc�1. The CMB constraints can
be translated into �2

⇠

by just evaluating �2

⇣

(k
BBN

) (given

that�2

S has the same scale-dependence). Using WMAP7
best fit values �2

⇣

(k = 0.002Mpc�1) = 2.42 ⇥ 10�9 and

n
s

= 0.966 gives �2

⇣

(k
BBN

) = 1.35 ⇥ 10�9. A first im-
portant consequence of this estimate is that the order
of magnitude of the present constraints from CMB on ↵
also holds for BBN-relevant fluctuations. In turn, it can
be seen that this implies that �

⇠

is very small. This is
an important information, since it allows us to use the
predictions of homogeneous, degenerate BBN to infer the
results of an otherwise inhomogeneous degenerate BBN
scenario (see [38] for an early study of this subject). In
fact, for a gaussian probability distribution for ⇠,

P (⇠) = (2⇡�2

⇠

)�1/2 exp
⇥�(⇠ � ⇠̄)2/(2�2

⇠

)
⇤
, (18)

one can estimate, for a generic nuclide abundance X,

hXi =
Z

P (⇠)[X(⇠̄) +X 0(⇠̄)(⇠ � ⇠̄) +O((⇠ � ⇠̄)2)]d⇠

= X(⇠̄) +O(�2

⇠

) . (19)

The vanishing of the integrand linear in ⇠ depends on the
fact that P (⇠) is an even function of ⇠�⇠̄. Additionally, if
the curvature of the function X(⇠) is relatively small (as
it happens to be, see Fig. 13 in [16]) the approximation
hXi ⇡ X(⇠̄) works even better (see also figs. in [38]). We
estimated that even for a value as large as �

⇠

' 0.1 the
error of the approximation with respect to a proper av-
eraging is of ⇠ 0.6% for deuterium (hence well below the
observational error) or of the order of 0.3% for helium-
4, comparable with the theoretical error and well below
the error on the observations. For smaller �

⇠

, it scales

Here	 γ = βISO

Planck	

CMBPOl	

See,	e.g.	Di	Valen1no,	LaJanzi,	Mangano	et	al.	2012					
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Ø 	You	have	already	seen	how	neutrinos	impact	CMB	and	LSS	

Ø 	Precision	(data-driven)	cosmology	requires	precise	theore1cal		
						predic1ons	

Ø 	Free-streaming	neutrinos	(and	in	general	any	decoupled	rela1vis1c		
						species)	do	influence	the	propaga1on	of	cosmological	gravitatonal		
						waves,	once	the	laJer	are	produced	from	infla1on.	



Neutrinos	and	infla%onary	GWs	
	
				Take	home	messagge:		
	
Ø  anisotropic	stress	of	neutrinos	damp	the	squared	amplitude	of		
					primordial	(infla,onary)	GWs	by	35.6%	for	wavelengths	that	enter	
					the	horizon	long-a"er	neutrino	decoupling	during	the		
					radia,on-dominated	era		
	
Ø  the	suppression	is	9%	for	wavelengths	that	enter	the	horizon	during		
					the	ma`er-dominated	epoch	
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where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh
aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219Ω0h ; (3)

Heq = 5.25× 106 h3 Ω2
0H0 ; (4)

H0 = 1.75× 10−61 hmPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.

Inflation

Rad
iat

ion
Matter

LambdaPresent horizon scale

ln a

Reheating

lnH   /a−1

FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection IID, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of

End	of	infla1on	 Neutrino	decoupling	
T~1	MeV	~	1010	K	

Wavelength	of	GWs		
re-entering	the	horizon		
a\er	neutrino	decoupling,	
during	radia1on	epoch	

Wavelength	of	GWs		
re-entering	the	horizon		
a\er	neutrino	decoupling,	
during	maJer	epoch	
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Damping of tensor modes in cosmology
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An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free
streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological
gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6% for
wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological
parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths
by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest
wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7%
for #Mh2!0.1 to 9.0% for #Mh2!0.15. An appendix gives a general proof that tensor as well as scalar modes
satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not
negligible.

DOI: 10.1103/PhysRevD.69.023503 PACS number!s": 98.80.Cq, 04.30.Nk

I. INTRODUCTION

It is widely expected that the observation of cosmological
tensor fluctuations through measurements of the polarization
of the microwave background may provide a uniquely valu-
able check on the validity of simple inflationary cosmolo-
gies. For instance, for a large class of inflationary theories
with single scalar fields satisfying the ‘‘slow roll’’ approxi-
mation, the wave-number dependence P S$knS"1 and P T
$knT of the scalar and tensor power spectral functions and
the ratio of these spectral functions after horizon exit during
inflation are related by %1&

PT /PS!"nT/2. !1"

But in order to use observations to check such relations, we
need to know what happens to the fluctuations between the
time of inflation and the present. There is a very large litera-
ture on the scalar modes, but ever since the first calculations
%2& of the production of tensor modes in inflation, with only
one exception %3& known to me, the interaction of these
modes with matter and radiation has simply been assumed to
be negligible in studies of the cosmic microwave background
%4&. It is not included in the widely used computer program
of Seljak and Zaldarriaga %5&. As we shall see, the effect is
not negligible even at the relatively low values of ! where
the B-type polarization multipole coefficients CB! are likely
to be first measured, and becomes quite significant for larger
values of ! .

II. DAMPING EFFECTS IN THE WAVE EQUATION

The interaction of tensor modes with matter and radiation
vanishes in the case of perfect fluids, but not in the presence
of traceless transverse terms in the anisotropic stress tensor.
In general, the tensor fluctuation satisfies

ḧ i j#! 3 ȧa " ḣ i j"! '2

a2 " hi j!16(G( i j , !2"

where dots indicate ordinary time derivatives. Here the com-
ponents of the perturbed metric are

g00!"1, gi0!0, gi j!x,t "!a2! t "%) i j#hi j!x,t "& !3"

where hi j(x,t) is treated as a small perturbation; and ( i j(x,t)
is the anisotropic part of the stress tensor, defined by writing
the spatial part of the perturbed energy-momentum tensor as
Ti j! p̄gi j#a2( i j , or equivalently

Ti j! p̄) i j#( i j , !4"

where p̄ is the unperturbed pressure. In these formulas we
are considering only tensor perturbations, so that

hii!0, * ihi j!0, ( ii!0, * i( i j!0. !5"

For a perfect fluid ( i j!0, but this is not true in general.
For instance, in any imperfect fluid with shear viscosity + ,
we have %6& ( i j!"+ ḣ i j . Nevertheless, as we shall show in
the Appendix, even where hydrodynamic approximations are
inapplicable, hi j becomes time-independent as the wave-
length of a mode leaves the horizon, and remains time-
independent until horizon re-entry. All modes of cosmologi-
cal interest are still far outside the horizon at the temperature
,1010 K, where neutrinos are going out of equilibrium with
electrons and photons, so hi j can be effected by anisotropic
inertia only later, when neutrinos are freely streaming.
We can calculate the contribution of freely streaming neu-

trinos to ( i j exactly %7&. We define a density n(x,p,t) as

n!x,p,t "-.
r

! /
i!1

3

) [!xi"xr
i ! t "& " ! /

i!1

3

) %pi"pri! t "& " ,
!6"

with r labeling individual neutrino and antineutrino trajecto-
ries. The relativistic equations of motion in phase space for
any metric with g00!"1 and gi0!0 are

PHYSICAL REVIEW D 69, 023503 !2004"
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Transverse	&	traceless	part	of	the	(spa1al	part	of)	anisotropic-stress	tensor	of	neutrinos		
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1.			We	know	that	the	energy-momentum	tensor	Tμν	can	be	given		
						in	terms	of	the	distribu1on	func1on	
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as

(

dF

dt

)

first order

=
∂δF

∂t
+

γi

a

∂δF

∂xi
− P 0 ∂δF

∂P 0

ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as

∂fk
∂t

−
ȧ

a
P 0 ∂fk

∂P 0
+

ikµ

a
fk = P 0 ∂F̄

∂P 0

1

2

∂hk

∂t
, (D13)

where we have used

hij(t,x) =
∑

λ=+,×

∫

d3k

(2π)3
hλ,k(t)Q

λ
ij(x), (D14)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(t, P

0, µ)γiγjQλ
ij(x). (D15)

Here, tensor harmonics Qλ
ij(x) are solutions of the tensor Helmholtz equation; Qλ

ij|a
|a(x) + k2Qλ

ij(x) = 0, ∂lQλ
ij =

iklQλ
ij . They are symmetric, traceless, and divergenceless; Qλ

ij = Qλ
ji, γ

ijQλ
ij = Qλ

ij
|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ

ij(x) as a plane wave in a
flat geometry case.
Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus

following [28], we introduce the comoving momentum, qµ ≡ aPµ. Regarding F as a function of comoving energy,
q ≡ q0, and conformal time, τ , the third term in Eq. (D5) may be replaced by dq

dτ
∂F
∂q = − 1

2qh
′
ijγ

iγj ∂F̄
∂q up to the

linear order. Then the linearized Vlasov equation, d
dτ F (τ, xi, γi, q) = 0, becomes

∂fk
∂τ

+ ikµfk = q
∂F̄

∂q

1

2

∂hk

∂τ
, (D16)

where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ

′)e−iµk(τ−τ ′), (D17)

where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);

δT (ν)
ij = a2

∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)
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Therefore, there are only three independent components of the momentum vector. One can also relate P i with
P0 = −P 0 as

P i = ±
γiP0

a

(

1−
1

2
hjkγ

jγk

)

, (D4)

where γi = γi’s are directional cosines and P 0 is the energy of neutrinos. We chose positive sign convention for
P 0 ≡ dt

dλ . Note that δijγiγj = 1, and P i ≡ CγiP0, where the coefficient, C, is obtained from Eq. (D3);

0 = P0P
0 + a2P jP j + a2hijP

iP j ,

0 = −(P0)
2 + a2C2P 2

0 + a2hijγ
iγjC2P 2

0 ,

1 = a2C2(1 + hijγ
iγj).

We consider tensor perturbations. Eq. (D1) can be expressed as

dF (t, xi, γi, P 0)

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dP 0

dt

∂F

∂P 0
+

dγi

dt

∂F

∂γi
= 0. (D5)

The last term is negligible in the linear perturbation theory, as ∂F
∂γi is of the first order in perturbations and γ̇i =

− 1
2ahjk,iγjγk.
For the second term ∂F

∂xi is of the first order in perturbations and

dxi

dt
=

dxi

dλ

dλ

dt
=

P i

P 0
. (D6)

Using Eq. (D4), one obtains

dxi

dt

∂F

∂xi
=

γi

a

∂F

∂xi
(D7)

in the leading order, as F̄ does not depend on xi; thus, ∂F
∂xi is a perturbation.

For the third term we use the geodesic equation,

dPµ

dλ
= −Γµ

αβP
αP β , (D8)

Γµ
αβ =

gµν

2

[

∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]

. (D9)

The time component of the geodesic equation is

dt

dλ

dP 0

dt
= −Γ0

αβP
αP β,

= −
g0ν

2

[

2
∂gαν
∂xβ

−
∂gαβ
∂xν

]

PαP β,

= −
ȧ

a
(P 0)2 −

1

2
a2

∂hij

∂t
P iP j, (D10)

where g00 = −1, g0i = 0 were used from the second line to the last line. Up to the first order in perturbations

1

P 0

dP 0

dt
= −

ȧ

a
−

1

2

∂hij

∂t
γiγj , (D11)

where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.
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|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ

ij(x) as a plane wave in a
flat geometry case.
Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus

following [28], we introduce the comoving momentum, qµ ≡ aPµ. Regarding F as a function of comoving energy,
q ≡ q0, and conformal time, τ , the third term in Eq. (D5) may be replaced by dq
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2qh
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where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ
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where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);

δT (ν)
ij = a2

∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)
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where

∆2
h,prim ≡ 4

k3

2π2
|hprim

k |2 =
16

π

(

Hinf

mPl

)2

. (C14)

Here, |hprim
k |2 is the amplitude of gravitational waves outside the horizon, | kτ |≪ 1, during inflation. Well inside

the horizon averaging over several periods, the leading term of [T ′(kτ)]2 is proportional to τ−2 ∝ a−2 during the
radiation era and ∝ τ−4 ∝ a−2 during the matter era. Thus ρh ∝ a−4, which is consistent with the fact that graviton
is massless and thus relativistic.
It is common to define the relative spectral density as the normalized energy density per logarithmic scale.

Ωh(τ, k) ≡
ρ̃h(τ, k)

ρcr(τ)
, (C15)

ρ̃h(τ, k) ≡
dρh(τ)

d ln k
,

where ρcr(τ) is critical density of the universe, and ρ̃h(τ, k) denotes energy density of the gravitational waves per
logarithmic scale. Inserting (C13) into (C15), we obtain

Ωh(τ, k) =
∆2

h,prim

32πGa2ρc(τ)
[T ′(τ, k)]

2
. (C16)

Recalling Friedman equation, H2 = 8πGρc/3, (C16) becomes

Ωh(τ, k) =
∆2

h,prim

12H2(τ)a2
[T ′(τ, k)]

2
. (C17)

In this paper, we shall evaluate this quantity exactly within the Standard Model of elementary particles. For an
analytical model, T ′(τ, k) is given by Eqs. (B11) – (B13).

APPENDIX D: COLLISIONLESS DAMPING DUE TO NEUTRINO FREE-STREAMING

In this Appendix, we review the effect of collisionless particles on gravitational waves. Treating relativistic neutrino
gas by classical kinetic theory, the linearized Einstein-Boltzmann equation (5) can be written as an integro-differential
equation (D23). The derivation of this integro-differential equation is given in the literature, for instance [27, 29, 30, 31]
for both scalar and tensor modes, [28] for scalar modes, and will be reviewed briefly in this Appendix.
At the temperature of ∼ 2 MeV, where neutrinos decoupled and became out of equilibrium with photons, electrons,

or positrons, the number of effective relativistic species is g∗(∼ 2MeV ) = 10.75.2 The free-streaming neutrino gas
after their decoupling satisfies the collisionless Boltzmann equation, i.e. the Vlasov equation,

dF (x, P )

dt
= 0, (D1)

where F (x, P ) = F̄ (P ) + δF (x, P ) is a distribution function. The distribution function of relativistic neutrinos is
given by

F̄ (P 0) =
gν

eP 0/T + 1
, (D2)

where gν denotes the number of helicity states for neutrinos and anti-neutrinos. Here, Pµ ≡ dxµ

dλ and P 0 =
√

gijP iP j ,
which is implied by the constraint for relativistic particles;

gµνP
µP ν = 0. (D3)

2 We have assumed instantaneous decoupling of neutrinos, but this is not true in general.
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analytical model, T ′(τ, k) is given by Eqs. (B11) – (B13).
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At the temperature of ∼ 2 MeV, where neutrinos decoupled and became out of equilibrium with photons, electrons,
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after their decoupling satisfies the collisionless Boltzmann equation, i.e. the Vlasov equation,
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analytical model, T ′(τ, k) is given by Eqs. (B11) – (B13).
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gas by classical kinetic theory, the linearized Einstein-Boltzmann equation (5) can be written as an integro-differential
equation (D23). The derivation of this integro-differential equation is given in the literature, for instance [27, 29, 30, 31]
for both scalar and tensor modes, [28] for scalar modes, and will be reviewed briefly in this Appendix.
At the temperature of ∼ 2 MeV, where neutrinos decoupled and became out of equilibrium with photons, electrons,

or positrons, the number of effective relativistic species is g∗(∼ 2MeV ) = 10.75.2 The free-streaming neutrino gas
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given by

F̄ (P 0) =
gν

eP 0/T + 1
, (D2)
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2

observable today corresponds to the horizon size today, and the interval between the lowest frequency and krh would
give the number of e-holdings, which tells us the duration of inflation between the end of inflation and the time at
which fluctuations having the wavelength of the current horizon size left the horizon during inflation. The slope of
the spectrum provides the power-law index of the tensor perturbation, nT [10, 12]. nT = 0 corresponds to a scale
invariant power spectrum from de Sitter inflation. In a large class of inflationary models |nT | is not zero but much
smaller than unity, and its determination constrains the inflationary models. As the effect of nT has been investigated
by many authors, e.g. [10, 11, 12, 19, 20], and is easy to include, we shall assume de Sitter inflation (nT = 0)
throughout this paper. Our result is general and easily applicable to any kind of models which produce primordial
tensor perturbations. (e.g. Ekpyrotic models [21]).
The primordial gravitational waves not only test and probe the physics of inflation and reheating, but also can

provide the tomography of the standard model of particle physics and models beyond. The study of its spectrum
enables us to probe the very early universe in a truly transparent way. The goal of this paper is to show how the
constituents in the early and very early universe would affect the primordial gravitational wave spectrum, which is
observable in principle and may be observable in the future by the next generation observational projects, such as
the Big Bang Observer (BBO) proposed to NASA [22] and the DECIGO proposed in Japan [23]. We present a new,
rigorous computation of the primordial gravitational wave spectrum from de Sitter inflation with the Standard Model
of particle physics. It is easy to extend our results to non-de Sitter (e.g., slow-roll) inflation models.
The outline of this paper is as follows. In Sec. II, basics about the primordial gravitational waves from inflation

are reviewed. In Sec. III, a crucial quantity during radiation domination, the effective relativistic degrees of freedom,
g∗, is introduced and related to the primordial gravitational wave spectrum in heuristic and intuitive manners to
illustrate the underlying physics. In Sec. IV, we give an improved calculation of the primordial gravitational wave
spectrum in the Standard Model, employing de Sitter inflation. Our final results are summarized in Figs. 4 and 5.
In Appendix A we give useful formulae for the Bessel type functions. In Appendix B we give analytical solutions
of gravitational waves in some limiting cases. We define energy density of gravitational waves in Appendix C. The
effect of neutrino free-streaming on the spectrum is formulated and explained in Appendix D. The numerical solution
to the integro-differential equation is also presented. In Appendix E we give more detailed analytical accounts of
numerical solutions of gravitational waves when the effective number of relativistic species changes. Units are chosen
as c = h̄ = kB = 1 and

√
8πG is retained. Indices λ, µ, ν, . . . run from 0 to 3, and i, j, k, . . . run from 1 to 3.

Over-dots are used for derivatives with respect to time throughout the paper. Primes are mainly used for derivatives
with respect to conformal time, but sometimes with respect to arguments we are focusing on. Barred quantities are
unperturbed parts of variables.

II. WAVE EQUATION, POWER SPECTRUM, AND ENERGY DENSITY

In this section we define the power spectrum, ∆2
h(k), and relative spectral energy density, Ωh(k), of the gravitational

wave background. We do this because some authors use different conventions in the literature. For tensor perturbations
on an isotropic, uniform and flat background spacetime, the metric is given by

ds2 = a2(τ)[−dτ2 + (δij + hij)dx
idxj ], (1)

gµν = a2(τ)(ηµν + hµν), (2)

where

ηµν = diag(−1, 1, 1, 1), h00 = h0i = 0, |hij | ≪ 1. (3)

Here and after we shall work in the transverse traceless (TT) gauge, which leaves only the tensor modes in pertur-
bations, i.e. hij,j = 0 and hi

i = 0. In the linear perturbation theory the TT metric fluctuations are gauge invariant
1. We shall denote the two independent polarization states of the perturbation as λ = +,× and sometimes suppress
them when causing no confusion. We decompose hij into plane waves with the comoving wave number, |k| ≡ k, as

hij(τ,x) =
∑

λ

∫

d3k

(2π)3
hλ(τ ;k)e

ik·xϵλij , (4)

where ϵλij is the polarization tensor and λ = +,×. The equation for the wave amplitude, hλ(τ ;k) ≡ hλ,k, is obtained
by requiring the perturbed metric [Eq. (2)] to satisfy the Einstein equation to O(h). One finds that δGij = 8πGδTij

1 In classic references [24, 25], hij = 2HTij and Πij = p̄πTij for tensor perturbations, which are automatically gauge-invariant.

ü  							is	a	unit	direc1onal	vector	(																					)		such	that		
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Therefore, there are only three independent components of the momentum vector. One can also relate P i with
P0 = −P 0 as

P i = ±
γiP0

a

(

1−
1

2
hjkγ

jγk

)

, (D4)

where γi = γi’s are directional cosines and P 0 is the energy of neutrinos. We chose positive sign convention for
P 0 ≡ dt

dλ . Note that δijγiγj = 1, and P i ≡ CγiP0, where the coefficient, C, is obtained from Eq. (D3);

0 = P0P
0 + a2P jP j + a2hijP

iP j ,

0 = −(P0)
2 + a2C2P 2

0 + a2hijγ
iγjC2P 2

0 ,

1 = a2C2(1 + hijγ
iγj).

We consider tensor perturbations. Eq. (D1) can be expressed as

dF (t, xi, γi, P 0)

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dP 0

dt

∂F

∂P 0
+

dγi

dt

∂F

∂γi
= 0. (D5)

The last term is negligible in the linear perturbation theory, as ∂F
∂γi is of the first order in perturbations and γ̇i =

− 1
2ahjk,iγjγk.
For the second term ∂F

∂xi is of the first order in perturbations and

dxi

dt
=

dxi

dλ

dλ

dt
=

P i

P 0
. (D6)

Using Eq. (D4), one obtains

dxi

dt

∂F

∂xi
=

γi

a

∂F

∂xi
(D7)

in the leading order, as F̄ does not depend on xi; thus, ∂F
∂xi is a perturbation.

For the third term we use the geodesic equation,

dPµ

dλ
= −Γµ

αβP
αP β , (D8)

Γµ
αβ =

gµν

2

[

∂gαν
∂xβ

+
∂gβν
∂xα

−
∂gαβ
∂xν

]

. (D9)

The time component of the geodesic equation is

dt

dλ

dP 0

dt
= −Γ0

αβP
αP β,

= −
g0ν

2

[

2
∂gαν
∂xβ

−
∂gαβ
∂xν

]

PαP β,

= −
ȧ

a
(P 0)2 −

1

2
a2

∂hij

∂t
P iP j, (D10)

where g00 = −1, g0i = 0 were used from the second line to the last line. Up to the first order in perturbations

1

P 0

dP 0

dt
= −

ȧ

a
−

1

2

∂hij

∂t
γiγj , (D11)

where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.
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where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.
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where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.

ü  	Finally:		

BRIEF ARTICLE 31

(15) qµ = a(t)Pµ with			

BRIEF ARTICLE 31

(15) qµ = a(t)Pµ

(15) q = q0 comoving	momenta		
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where g00 = −1, g0i = 0 were used from the second line to the last line. Up to the first order in perturbations
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P 0

dP 0

dt
= −

ȧ

a
−

1

2

∂hij

∂t
γiγj , (D11)

where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.

Ø  Boltzmann	equa1on	for	free-streaming	neutrinos	(Vlasov	equa1on):		

second-order	in	the		
perturba1ons	
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where g00 = −1, g0i = 0 were used from the second line to the last line. Up to the first order in perturbations
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= −

ȧ
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−

1
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∂hij
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γiγj , (D11)

where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.

This	equa,on	describes	the	change	in	the	neutrino	energy	as	it	propagates	in	a		
FRW	universe	with	GWs.			
Case1:	Neutrinos	gain	energy	from	GWs	if																										
	
Case2:	Neutrinos	loose	energy	if			
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where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.
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where we have used Eq. (D4) and neglected higher order terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravitational waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells us that neutrinos lose energy if ∂hij

∂t > 0, or gain energy if
∂hij

∂t < 0 from gravitational waves. This energy flow from neutrinos to gravitational waves causes collisionless damping
(Figs. 8 and 9) and amplification (Fig. 10) of gravitational waves.

(1me-component	of	geodesic	equa1on)		
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Damping	of	GWs				

Case	2:	Emission	of	GWs	(doJed	lines)	by	a	bath	made	of	fermions	à		
Amplifica%on	of	GWs				

Ø  Therefore	there	is	an	energy	flow	from	GWs	to	neutrinos	(and	viceversa)		:	
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as

(

dF

dt

)

first order

=
∂δF

∂t
+

γi

a

∂δF

∂xi
− P 0 ∂δF

∂P 0

ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as

∂fk
∂t

−
ȧ

a
P 0 ∂fk

∂P 0
+

ikµ

a
fk = P 0 ∂F̄

∂P 0

1

2

∂hk

∂t
, (D13)

where we have used

hij(t,x) =
∑

λ=+,×

∫

d3k

(2π)3
hλ,k(t)Q

λ
ij(x), (D14)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(t, P

0, µ)γiγjQλ
ij(x). (D15)

Here, tensor harmonics Qλ
ij(x) are solutions of the tensor Helmholtz equation; Qλ

ij|a
|a(x) + k2Qλ

ij(x) = 0, ∂lQλ
ij =

iklQλ
ij . They are symmetric, traceless, and divergenceless; Qλ

ij = Qλ
ji, γ

ijQλ
ij = Qλ

ij
|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ

ij(x) as a plane wave in a
flat geometry case.
Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus

following [28], we introduce the comoving momentum, qµ ≡ aPµ. Regarding F as a function of comoving energy,
q ≡ q0, and conformal time, τ , the third term in Eq. (D5) may be replaced by dq

dτ
∂F
∂q = − 1

2qh
′
ijγ

iγj ∂F̄
∂q up to the

linear order. Then the linearized Vlasov equation, d
dτ F (τ, xi, γi, q) = 0, becomes

∂fk
∂τ

+ ikµfk = q
∂F̄

∂q

1

2

∂hk

∂τ
, (D16)

where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ

′)e−iµk(τ−τ ′), (D17)

where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);

δT (ν)
ij = a2

∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)

Ø 	Going	to	Fourier	space:		
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Inserting solution of the Vlasov equation (D17) into Eq. (D20) and using equality
∫

dΩqγiγjγlγme−iγ̂·k̂uQλ
lm =

1
8 (δ

ilδjm + δimδjl)
∫

dΩqe−iµu(1− 2µ2 + µ4)Qλ
lm, one obtains

Πk =
1

4a4

∫

d3qq(1 − 2µ2 + µ4)fk,

= −4ρ̄ν(τ)

∫ τ

τν dec

dτ ′
(

j2[k(τ − τ ′)]

k2(τ − τ ′)2

)

h′
k(τ

′). (D21)

Here, q̄i = aqγi and q̄i = a−1qγi, and ρ̄ν(τ) = a−4
∫

d3qqF̄ (q) is the unperturbed neutrino energy density, and a
negative sign appears on the right-hand side of Eq. (D21) because integration by parts has been done. Also, we have
used the identity

1

16

∫ 1

−1
dµ(1− 2µ2 + µ4)e−iµu =

j2(u)

u2
. (D22)

Note that j2(−u)
(−u)2 = j2(u)

u2 ,
∫∞
−∞

j2(u)
u2 du = π

8 , and limu→0
j2(u)
u2 = 1

15 .
3

Then the Einstein-Vlasov equation takes a form of an integro-differential equation;

h′′
k(τ) +

[

2a′(τ)

a(τ)

]

h′
k(τ) + k2hk(τ) = −24fν(τ)

[

a′(τ)

a(τ)

]2 ∫ τ

τν dec

dτ ′
[

j2[k(τ − τ ′)]

k2(τ − τ ′)2

]

h′
k(τ

′), (D23)

and the fraction of the total energy density in neutrinos is

fν(τ) ≡
ρ̄ν(τ)

ρ̄(τ)

=
Ων(a0/a)4

ΩM (a0/a)3 + (Ωγ + Ων)(a0/a)4
=

fν(0)

1 + a(τ)/aEQ
, (D24)

where

fν(0) =
Ων

Ωγ + Ων
= 0.40523. (D25)

The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
during the matter era.
Following [31], we write

hλ(u) ≡ hλ(0)χ(u), (D26)

which gives

χ′′(u) +

[

2a′(u)

a

]

χ′(u) + χ(u) = −24fν(u)

[

a′(u)

a

]2 ∫ u

uν dec

dU

[

j2(u − U)

(u− U)2

]

χ′(U), (D27)

where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be

χ(0) = 1, χ′(0) = 0. (D28)

3 In the references [31, 33], K[u] ≡ −
sinu
u3 −

3 cosu
u4 + 3 sinu

u5 = 1
15

(

j0(u) +
10
7 j2(u) +

3
7 j4(u)

)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
u2 .

Ø Compute	the	anisotropic	stress-tensor:		
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The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
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Following [31], we write
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which gives
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where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be
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3 In the references [31, 33], K[u] ≡ −
sinu
u3 −

3 cosu
u4 + 3 sinu

u5 = 1
15

(

j0(u) +
10
7 j2(u) +

3
7 j4(u)

)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
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N.B.:	here	qμ=	a(τ)	Pμ	is	the	comving	quadri-momentum	
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as

(

dF

dt

)

first order

=
∂δF

∂t
+

γi

a

∂δF

∂xi
− P 0 ∂δF

∂P 0

ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as

∂fk
∂t

−
ȧ

a
P 0 ∂fk

∂P 0
+

ikµ

a
fk = P 0 ∂F̄

∂P 0

1

2

∂hk

∂t
, (D13)

where we have used

hij(t,x) =
∑

λ=+,×

∫

d3k

(2π)3
hλ,k(t)Q

λ
ij(x), (D14)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(t, P

0, µ)γiγjQλ
ij(x). (D15)

Here, tensor harmonics Qλ
ij(x) are solutions of the tensor Helmholtz equation; Qλ

ij|a
|a(x) + k2Qλ

ij(x) = 0, ∂lQλ
ij =

iklQλ
ij . They are symmetric, traceless, and divergenceless; Qλ

ij = Qλ
ji, γ

ijQλ
ij = Qλ

ij
|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ

ij(x) as a plane wave in a
flat geometry case.
Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus

following [28], we introduce the comoving momentum, qµ ≡ aPµ. Regarding F as a function of comoving energy,
q ≡ q0, and conformal time, τ , the third term in Eq. (D5) may be replaced by dq

dτ
∂F
∂q = − 1

2qh
′
ijγ

iγj ∂F̄
∂q up to the

linear order. Then the linearized Vlasov equation, d
dτ F (τ, xi, γi, q) = 0, becomes

∂fk
∂τ

+ ikµfk = q
∂F̄

∂q

1

2

∂hk

∂τ
, (D16)

where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ

′)e−iµk(τ−τ ′), (D17)

where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);

δT (ν)
ij = a2

∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)
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ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4
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d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
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∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
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ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as
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Here, tensor harmonics Qλ
ij(x) are solutions of the tensor Helmholtz equation; Qλ
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|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ
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Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus
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2

observable today corresponds to the horizon size today, and the interval between the lowest frequency and krh would
give the number of e-holdings, which tells us the duration of inflation between the end of inflation and the time at
which fluctuations having the wavelength of the current horizon size left the horizon during inflation. The slope of
the spectrum provides the power-law index of the tensor perturbation, nT [10, 12]. nT = 0 corresponds to a scale
invariant power spectrum from de Sitter inflation. In a large class of inflationary models |nT | is not zero but much
smaller than unity, and its determination constrains the inflationary models. As the effect of nT has been investigated
by many authors, e.g. [10, 11, 12, 19, 20], and is easy to include, we shall assume de Sitter inflation (nT = 0)
throughout this paper. Our result is general and easily applicable to any kind of models which produce primordial
tensor perturbations. (e.g. Ekpyrotic models [21]).
The primordial gravitational waves not only test and probe the physics of inflation and reheating, but also can

provide the tomography of the standard model of particle physics and models beyond. The study of its spectrum
enables us to probe the very early universe in a truly transparent way. The goal of this paper is to show how the
constituents in the early and very early universe would affect the primordial gravitational wave spectrum, which is
observable in principle and may be observable in the future by the next generation observational projects, such as
the Big Bang Observer (BBO) proposed to NASA [22] and the DECIGO proposed in Japan [23]. We present a new,
rigorous computation of the primordial gravitational wave spectrum from de Sitter inflation with the Standard Model
of particle physics. It is easy to extend our results to non-de Sitter (e.g., slow-roll) inflation models.
The outline of this paper is as follows. In Sec. II, basics about the primordial gravitational waves from inflation

are reviewed. In Sec. III, a crucial quantity during radiation domination, the effective relativistic degrees of freedom,
g∗, is introduced and related to the primordial gravitational wave spectrum in heuristic and intuitive manners to
illustrate the underlying physics. In Sec. IV, we give an improved calculation of the primordial gravitational wave
spectrum in the Standard Model, employing de Sitter inflation. Our final results are summarized in Figs. 4 and 5.
In Appendix A we give useful formulae for the Bessel type functions. In Appendix B we give analytical solutions
of gravitational waves in some limiting cases. We define energy density of gravitational waves in Appendix C. The
effect of neutrino free-streaming on the spectrum is formulated and explained in Appendix D. The numerical solution
to the integro-differential equation is also presented. In Appendix E we give more detailed analytical accounts of
numerical solutions of gravitational waves when the effective number of relativistic species changes. Units are chosen
as c = h̄ = kB = 1 and

√
8πG is retained. Indices λ, µ, ν, . . . run from 0 to 3, and i, j, k, . . . run from 1 to 3.

Over-dots are used for derivatives with respect to time throughout the paper. Primes are mainly used for derivatives
with respect to conformal time, but sometimes with respect to arguments we are focusing on. Barred quantities are
unperturbed parts of variables.

II. WAVE EQUATION, POWER SPECTRUM, AND ENERGY DENSITY

In this section we define the power spectrum, ∆2
h(k), and relative spectral energy density, Ωh(k), of the gravitational

wave background. We do this because some authors use different conventions in the literature. For tensor perturbations
on an isotropic, uniform and flat background spacetime, the metric is given by

ds2 = a2(τ)[−dτ2 + (δij + hij)dx
idxj ], (1)

gµν = a2(τ)(ηµν + hµν), (2)

where

ηµν = diag(−1, 1, 1, 1), h00 = h0i = 0, |hij | ≪ 1. (3)

Here and after we shall work in the transverse traceless (TT) gauge, which leaves only the tensor modes in pertur-
bations, i.e. hij,j = 0 and hi

i = 0. In the linear perturbation theory the TT metric fluctuations are gauge invariant
1. We shall denote the two independent polarization states of the perturbation as λ = +,× and sometimes suppress
them when causing no confusion. We decompose hij into plane waves with the comoving wave number, |k| ≡ k, as

hij(τ,x) =
∑

λ

∫

d3k

(2π)3
hλ(τ ;k)e

ik·xϵλij , (4)

where ϵλij is the polarization tensor and λ = +,×. The equation for the wave amplitude, hλ(τ ;k) ≡ hλ,k, is obtained
by requiring the perturbed metric [Eq. (2)] to satisfy the Einstein equation to O(h). One finds that δGij = 8πGδTij

1 In classic references [24, 25], hij = 2HTij and Πij = p̄πTij for tensor perturbations, which are automatically gauge-invariant.
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as
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dt
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first order

=
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∂t
+

γi

a

∂δF

∂xi
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∂P 0

ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as
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−
ȧ

a
P 0 ∂fk

∂P 0
+

ikµ

a
fk = P 0 ∂F̄

∂P 0

1

2

∂hk
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, (D13)

where we have used

hij(t,x) =
∑

λ=+,×

∫

d3k

(2π)3
hλ,k(t)Q

λ
ij(x), (D14)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(t, P

0, µ)γiγjQλ
ij(x). (D15)

Here, tensor harmonics Qλ
ij(x) are solutions of the tensor Helmholtz equation; Qλ

ij|a
|a(x) + k2Qλ

ij(x) = 0, ∂lQλ
ij =

iklQλ
ij . They are symmetric, traceless, and divergenceless; Qλ

ij = Qλ
ji, γ

ijQλ
ij = Qλ

ij
|j = 0, where γij ≡ a2ḡij and |

denotes the covariant derivative with respect to the spatial metric γij . Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of the universe. One can treat Qλ

ij(x) as a plane wave in a
flat geometry case.
Due to the existence of the second term on the left-hand side of Eq. (D13), we cannot solve this equation. Thus

following [28], we introduce the comoving momentum, qµ ≡ aPµ. Regarding F as a function of comoving energy,
q ≡ q0, and conformal time, τ , the third term in Eq. (D5) may be replaced by dq

dτ
∂F
∂q = − 1

2qh
′
ijγ

iγj ∂F̄
∂q up to the

linear order. Then the linearized Vlasov equation, d
dτ F (τ, xi, γi, q) = 0, becomes

∂fk
∂τ

+ ikµfk = q
∂F̄

∂q

1

2

∂hk

∂τ
, (D16)

where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ

′)e−iµk(τ−τ ′), (D17)

where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);

δT (ν)
ij = a2

∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)

ü  		

19

Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as

(

dF

dt

)

first order

=
∂δF

∂t
+

γi

a

∂δF

∂xi
− P 0 ∂δF

∂P 0

ȧ
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where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
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ȧ

a
− P 0 ∂F̄

∂P 0

1

2

∂hij

∂t
γiγj = 0, (D12)

where F = F̄ + δF (t, xi, γi, P 0) and δF is a tensor type perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological redshift, P 0 ∝ a−1, as explained above. Defining µ ≡ γiki/k
and Fourier transforming Eq. (D12), the first order Vlasov equation in the momentum space is given as

∂fk
∂t

−
ȧ
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perturbations in the neutrino distribution function before neutrino decoupling, fk(τνdec, q, µ) = 0.
The right-hand side of the linearized Einstein equation includes anisotropic stress as in Eq. (5);
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∑

λ=+,×

∫

d3k

(2π)3
Πλ,kQ

λ
ij(x), (D18)

where T (ν)
ij denotes the stress energy tensor of neutrinos. Since T (ν)

ij = 1√
−g

∫ d3q
q0 qiqjF (q), its perturbation can be

expressed as

δT (ν)
ij = a−4

∫

d3q

q0
[

q̄iq̄jδF + (δqiq̄j + q̄iδqj)F̄
]

, (D19)

δF =
∑

λ=+,×

∫

d3k

(2π)3
fλ,k(τ, q, µ)γ

lγmQλ
lm(x).

The second and the third terms of (D19) cancel out in linear perturbation theory. Thus

Πλ,kQ
λ
ij(x) = a−4

∫

d3q

q0
q2γiγjγlγmfλ,kQ

λ
lm(x). (D20)
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Finally, by combining Eqs. (D5), (D7), and (D11), the Vlasov equation for the first order perturbations is obtained
as

(

dF

dt

)

first order

=
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∑
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Here, tensor harmonics Qλ
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∂q

1

2

∂hk

∂τ
, (D16)

where fk = fk(τ, q, µ). One finds the solution of Eq. (D16) as

fk(τ, q, µ) = e−iµk(τ−τν dec)fk(τνdec, q, µ) +
q

2

∂F̄

∂q

∫ τ

τν dec

dτ ′h′
k(τ

′)e−iµk(τ−τ ′), (D17)

where the prime on hk(τ) denotes the derivative with respect to the conformal time. As there is no primordial tensor
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Inserting solution of the Vlasov equation (D17) into Eq. (D20) and using equality
∫

dΩqγiγjγlγme−iγ̂·k̂uQλ
lm =

1
8 (δ

ilδjm + δimδjl)
∫

dΩqe−iµu(1− 2µ2 + µ4)Qλ
lm, one obtains

Πk =
1

4a4

∫

d3qq(1 − 2µ2 + µ4)fk,

= −4ρ̄ν(τ)

∫ τ

τν dec

dτ ′
(

j2[k(τ − τ ′)]

k2(τ − τ ′)2

)

h′
k(τ

′). (D21)

Here, q̄i = aqγi and q̄i = a−1qγi, and ρ̄ν(τ) = a−4
∫

d3qqF̄ (q) is the unperturbed neutrino energy density, and a
negative sign appears on the right-hand side of Eq. (D21) because integration by parts has been done. Also, we have
used the identity

1

16

∫ 1

−1
dµ(1− 2µ2 + µ4)e−iµu =

j2(u)

u2
. (D22)

Note that j2(−u)
(−u)2 = j2(u)

u2 ,
∫∞
−∞

j2(u)
u2 du = π

8 , and limu→0
j2(u)
u2 = 1

15 .
3

Then the Einstein-Vlasov equation takes a form of an integro-differential equation;

h′′
k(τ) +

[

2a′(τ)

a(τ)

]

h′
k(τ) + k2hk(τ) = −24fν(τ)

[

a′(τ)

a(τ)

]2 ∫ τ

τν dec

dτ ′
[

j2[k(τ − τ ′)]

k2(τ − τ ′)2

]

h′
k(τ

′), (D23)

and the fraction of the total energy density in neutrinos is

fν(τ) ≡
ρ̄ν(τ)

ρ̄(τ)

=
Ων(a0/a)4

ΩM (a0/a)3 + (Ωγ + Ων)(a0/a)4
=

fν(0)

1 + a(τ)/aEQ
, (D24)

where

fν(0) =
Ων

Ωγ + Ων
= 0.40523. (D25)

The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
during the matter era.
Following [31], we write

hλ(u) ≡ hλ(0)χ(u), (D26)

which gives

χ′′(u) +

[

2a′(u)

a

]

χ′(u) + χ(u) = −24fν(u)

[

a′(u)

a

]2 ∫ u

uν dec

dU

[

j2(u − U)

(u− U)2

]

χ′(U), (D27)

where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be

χ(0) = 1, χ′(0) = 0. (D28)

3 In the references [31, 33], K[u] ≡ −
sinu
u3 −

3 cosu
u4 + 3 sinu

u5 = 1
15

(

j0(u) +
10
7 j2(u) +

3
7 j4(u)

)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
u2 .
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The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
during the matter era.
Following [31], we write

hλ(u) ≡ hλ(0)χ(u), (D26)
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where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be

χ(0) = 1, χ′(0) = 0. (D28)

3 In the references [31, 33], K[u] ≡ −
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u3 −

3 cosu
u4 + 3 sinu

u5 = 1
15

(

j0(u) +
10
7 j2(u) +

3
7 j4(u)

)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
u2 .
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Inserting solution of the Vlasov equation (D17) into Eq. (D20) and using equality
∫

dΩqγiγjγlγme−iγ̂·k̂uQλ
lm =

1
8 (δ

ilδjm + δimδjl)
∫

dΩqe−iµu(1− 2µ2 + µ4)Qλ
lm, one obtains

Πk =
1

4a4

∫

d3qq(1 − 2µ2 + µ4)fk,

= −4ρ̄ν(τ)

∫ τ

τν dec

dτ ′
(

j2[k(τ − τ ′)]

k2(τ − τ ′)2

)

h′
k(τ

′). (D21)

Here, q̄i = aqγi and q̄i = a−1qγi, and ρ̄ν(τ) = a−4
∫

d3qqF̄ (q) is the unperturbed neutrino energy density, and a
negative sign appears on the right-hand side of Eq. (D21) because integration by parts has been done. Also, we have
used the identity

1

16

∫ 1

−1
dµ(1− 2µ2 + µ4)e−iµu =

j2(u)

u2
. (D22)

Note that j2(−u)
(−u)2 = j2(u)

u2 ,
∫∞
−∞

j2(u)
u2 du = π

8 , and limu→0
j2(u)
u2 = 1

15 .
3

Then the Einstein-Vlasov equation takes a form of an integro-differential equation;

h′′
k(τ) +

[

2a′(τ)

a(τ)

]

h′
k(τ) + k2hk(τ) = −24fν(τ)

[

a′(τ)

a(τ)

]2 ∫ τ

τν dec

dτ ′
[

j2[k(τ − τ ′)]

k2(τ − τ ′)2

]

h′
k(τ

′), (D23)

and the fraction of the total energy density in neutrinos is

fν(τ) ≡
ρ̄ν(τ)

ρ̄(τ)

=
Ων(a0/a)4

ΩM (a0/a)3 + (Ωγ + Ων)(a0/a)4
=

fν(0)

1 + a(τ)/aEQ
, (D24)

where

fν(0) =
Ων

Ωγ + Ων
= 0.40523. (D25)

The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
during the matter era.
Following [31], we write

hλ(u) ≡ hλ(0)χ(u), (D26)

which gives
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a

]2 ∫ u

uν dec

dU
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(u− U)2

]

χ′(U), (D27)

where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be

χ(0) = 1, χ′(0) = 0. (D28)

3 In the references [31, 33], K[u] ≡ −
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3 cosu
u4 + 3 sinu
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15
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7 j2(u) +

3
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)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
u2 .

Ø 	Solve	for	χ(u)	where:		
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and the fraction of the total energy density in neutrinos is
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=
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, (D24)

where

fν(0) =
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Ωγ + Ων
= 0.40523. (D25)

The integro-differential equation (D23) was studied in [31, 32, 33, 34] in the cosmological context. Here we shall
solve this equation numerically with all the Standard Model particles participating in the cosmic thermal plasma.
Anisotropic stress, Πk, vanishes during the matter era, as fν → 0. Therefore, the damping effect is unimportant
during the matter era.
Following [31], we write

hλ(u) ≡ hλ(0)χ(u), (D26)

which gives

χ′′(u) +

[

2a′(u)

a

]

χ′(u) + χ(u) = −24fν(u)

[

a′(u)

a

]2 ∫ u

uν dec
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[

j2(u − U)

(u− U)2

]

χ′(U), (D27)

where u ≡ kτ , and derivatives are taken with respect to u. After the end of inflation,τend, the amplitude of cosmological
fluctuations is conserved until the mode re-enter the horizon, hλ(0) = hλ,k(τend). Note that the right hand side of
Eq.(D27) disappears on the super horizon scales — neutrino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to be

χ(0) = 1, χ′(0) = 0. (D28)

3 In the references [31, 33], K[u] ≡ −
sinu
u3 −

3 cosu
u4 + 3 sinu

u5 = 1
15

(

j0(u) +
10
7 j2(u) +

3
7 j4(u)

)

, which is the same function as our kernel,

i.e. K[u] = j2(u)
u2 .

with	ini1al	condi1ons:			

Here	u=k	τ,	τ	is	conformal	1me.			

N.B.:	on	super-horizon	scales	(k	τ	<<1)	h	remains	constant	in	1me;	
										and	the	r.h.s.	vanishes	for		k	τ	<<1	à	free-streaming	neutrinos		
										affects	GWs	only	inside	the	horizon.			
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Ø 	Let	us	consider	wavelengths	that	enter	the	horizon	during	the		
					radia1on	era	and	long-a\er	neutrino	decoupling.		
					No1ce:		very	deep	inside	the	horizon	(k	τ	>>	1)	the	source	term	on		
						the	r.h.s.	becomes	negligible	and	therefore	the	solu1on	approaches		
						a	homegneous	solu1on			
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

Ø 	In	absence	of	neutrinos	the	solu1on	is		
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Ø 	For	wavelengths	that	enter	the	horizon	during	the	radia1on	era	
					and	long-a\er	neutrino	decoupling			
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

Ø 	(Heuris1c)	explana1on:		
						In	absence	of	neutrinos	the	solu1on	is		
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

DAMPING	EFFECT		

So	on	average	hij		(at	leading-order)	decreases	in	1meà		
neutrinos	gain	energy	from	GWs,	and	GWs	are	damped		
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

Without	free-streaming	of	neutrinos		accoun,ng	for	free-streaming	of	neutrinos		
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where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh
aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219Ω0h ; (3)

Heq = 5.25× 106 h3 Ω2
0H0 ; (4)

H0 = 1.75× 10−61 hmPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.
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FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection IID, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of

End	of	infla1on	 Neutrino	decoupling	
T~1	MeV	~	1010	K	

Wavelength	of	GWs		
re-entering	the	horizon		
a\er	neutrino	decoupling,	
during	radia1on	epoch	
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a\er	neutrino	decoupling,	
during	maJer	epoch	
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where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write
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Using the slow-roll approximation during inflation to
write H2
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Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.
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FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection IID, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of
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FIG. 9: Derivatives of modes which entered the horizon before neutrino decoupling. The solid line shows an analytical solution,
χ′ = −j1(u), during the radiation era without neutrino decoupling. The dotted, short-dashed, and dashed lines show numerical
solutions of χ′(kτ ) for which neutrinos decoupled at τνdec given by kτνdec = 1.25, 2.5, 3.75, respectively. They are damped by
giving energy to free-streaming neutrinos. Vertical lines indicate the neutrino decoupling time for each mode.
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FIG. 10: Derivative of a mode which entered the horizon before neutrino decoupling. The solid line shows an analytic
solution,χ′ = −j1(u), during the radiation era without neutrino decoupling. The dashed line shows numerical solutions of
χ′(kτ ) for which neutrinos decoupled at τνdec given by kτνdec = 5.0. The wave is amplified by gaining energy from free-
streaming neutrinos. The vertical line indicates the neutrino decoupling time.

For extremely short wavelength modes which have already been inside the horizon before neutrino decoupling,
kτνdec ≫ 1 or k > 10−9 Hz, the suppression becomes negligibly small; A → 1, but the phase delay, δ, is non-zero.
These modes are undamped as positive and negative contributions of χ′ to the gravitational wave energy cancel out
each other after several periods of χ′. No net energy conversion from gravitational waves to free-streaming neutrinos
would occur.
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For extremely short wavelength modes which have already been inside the horizon before neutrino decoupling,
kτνdec ≫ 1 or k > 10−9 Hz, the suppression becomes negligibly small; A → 1, but the phase delay, δ, is non-zero.
These modes are undamped as positive and negative contributions of χ′ to the gravitational wave energy cancel out
each other after several periods of χ′. No net energy conversion from gravitational waves to free-streaming neutrinos
would occur.

N.B.:	For	extremely	short	wavelength	modes	which	have	already	been	inside	the	horizon		
before	neutrino	decoupling,	kτνdec	≫	1	or	k	>	10−9	Hz,	the	suppression	becomes	negligible:	
these	modes	are	undamped	as	posi1ve	and	nega1ve	contribu1ons	of	χʹ	to	the	gravita1onal		
wave	energy	cancel	out	each	other	a\er	several	periods	of	χʹ.		
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FIG. 5: A blow-up of Fig. 4. Note that density of vertical lines shows density of sampling points at which we evaluate Ωh(τ0, k).
The dashed line shows the envelope of the spectrum in the Standard Model of elementary particles.

they did not include the evolution of g∗. Instead, they explored general possibilities that the equation of state might
be modified by trace anomaly or interactions among particles. They also considered damping of gravitational waves
due to anisotropic stress of some hypothetical particles. Our calculations are different from theirs, as we took into
account explicitly all the particles in the Standard Model and the minimal extension of the Standard Model, but did
not include any exotic physics beyond that.
Let us mention a few points that would merit further studies. At the energy scales where supersymmetry is unbroken

(if it exists), say TeV scales and above, the number of relativistic degrees of freedom, g∗, should be at least doubled,
and would cause suppression of the primordial gravitational waves (Fig. 5 for N = 1 supersymmetry). If, for instance,
N = 8 is the number of internal supersymmetric charges, ∼ 250 copies of standard model particles would appear
in this theory. This would suppress the spectrum by 85% at the high frequency region (above ∼ 10−4 Hz) compare
to the Standard Model, though the details depend on models. Since we still do not have much idea about a true
supersymmetric model and its particle rest mass, the search for the primordial gravitational waves would help to
constrain the effective number of relativistic degrees of freedom g∗(T ) above the TeV scales.
In an extremely high frequency region, krh, the gravitational wave spectrum should provide us with unique infor-

mation about the reheating of the universe after inflation. If the inflaton potential during reheating is monomial,
V (φ) ∝ φn, the equation of state during reheating is given by pφ = α(n)ρφ, where α(n) = n−2

n+2 . Since the equation
of state determines the expansion law of that epoch, one obtains the frequency dependence of the gravitational wave
spectrum as Ωh ∝ k(n−4)/(n−1). In an extremely low frequency region (below ∼ 10−18 Hz), on the other hand, dark
energy dominates the universe and affects the spectrum. Acceleration of the universe reduces the amplitude of gravi-
tational waves that enter the horizon at this epoch; however, we will not be able to observe modes as big as the size
of the horizon today.
The signatures of the primordial gravitational waves may be detected only by the CMB polarization in the low

frequency region, <∼ 10−16 Hz. For the higher frequency region, however, direct detection of the gravitational waves
would be necessary, and it should allow us to search for a particular cosmological event by arranging an appropriate
instrument, as the events during the radiation era are imprinted on the spectrum of the primordial gravitational
waves.

APPENDIX A: SPHERICAL BESSEL TYPE FUNCTIONS

We present some formulae for Bessel type functions used in this paper.
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Impact	of	neutrinos	on	infla%onary	parameters		

Ø  Extended	models	w.r.t	to	the	standard	ΛCDM	cosmological	model		
					can	have	also	an	impact	on	(the	constraints	of)	primordial,	infla1onary	
					parameters	(i.e.	As,	ns	and	the	tensor-to-scalar	perturba1on	ra1o	r).		
	
							Take	home	message		
Ø  		In	par,cular	non-standard	proper,es	of	neutrinos	can	in	principle		
							allow	some	infla,onary	models	currently	excluded	by	data	to	be	s,ll		
							compa,ble	with	present	CMB	&	LSS	constraints.		
	
Ø  	This	happens	indeed	because	of	some	degeneracies	between	the		
							neutrino-extended	parameters	and	the	infla1onary	parameters	
							(e.g.	between	Neff		and	ns,	see	e.g.	Gerbino	et	al.	PRD	9,	2017).		
	
	

								
							



Impact	of	neutrinos	on	infla%onary	parameters		

Ø  Another	example	has	to	do	with	self-interac,ons	of	massive	neutrinos		
	
					For	example		(Majoron	models)**	
	
	

**	e.g.	Barenboim	et	al.	’14;	‘19;	Choudhury	et	al.	‘22	

lower values of ns ' 0.93� 0.94 instead of the preferred region by the ⇤CDM model, which
is around ns ' 0.965. At the same time, the PBH DM related inflationary models can be
accommodated for ns ' 0.95. Preference for such lower ns values is exactly what is possible
with strongly self-interacting neutrinos, where the coupling strength is ⇠109 times that of the
weak interaction. In this work we revisit the self-interacting neutrino model in the context of
these aforesaid inflationary models and test this model with new datasets. Below we briefly
introduce the massive neutrinos and the interaction model.

Neutrinos are massless in the standard model of particle physics, but terrestrial neutrino
oscillation experiments [18, 19] have confirmed that there are 3 non-degenerate neutrino mass
eigenstates (with at least two of the masses being small but non-zero). These mass eigenstates
are quantum super-positions of their flavour eigenstates. Cosmological data is sensitive to
the neutrino energy density, which is proportional to the sum of neutrino masses,

P
m⌫

when all the neutrinos become non-relativistic. At present, the bound on
P

m⌫ is aroundP
m⌫ . 0.12 eV (95% C.L.) [11, 20–25], while the most stringent bounds quoted in literature

is
P

m⌫ < 0.09 eV (95% C.L.) [26–28] under the assumption of a ⇤CDM+
P

m⌫ cosmology
with 3 degenerate neutrino masses. This bound can relax up to a factor of 2 or more in
extended cosmologies [20, 21]. However, physically motivated restrictions to the parameter
space can lead to stronger bounds than the ⇤CDM cosmology [29, 30]. Impact of neutrino
properties like mass and energy density on the ns � r plane has been discussed in [31]. See
[32, 33] for forecasts on constraints on neutrino masses from future cosmological data.

There are a plethora of models that have been proposed to explain the generation of
neutrino masses. Here we consider the majoron model where we consider the neutrinos to
be Majorana particles, and the U(1)B�L [34–38] symmetry is spontaneously broken, leading
to a new Goldstone boson, the majoron. We denote the majoron by �. It couples to the
neutrinos via the Yukawa interaction [39, 40],

Lint = gij ⌫̄i⌫j�+ hij ⌫̄i�5⌫j�, (1.7)

where ⌫i is a left-handed neutrino Majorana spinor, gij and hij are the scalar and pseudo-
scalar coupling matrices, respectively. The indices i, j are used to label the neutrino mass
eigenstates. We note here that in general this kind of interaction is not limited to the
majoron-like model of neutrino mass generation. For instance, � can be linked to the dark
sector [10].

In this paper we consider the two scenarios: i) a flavour universal scenario (all 3 neutrinos
interacting), ii) a flavour specific scenario (only 1 neutrino species interacting). In the flavour
universal scenario we take gij = g�ij and hij = 0, where �ij is the Kronecker delta. Thus,
in both flavour and mass basis gij has the same form. Such a flavour universal interaction
scenario may not be realistic for particle physics models, but it provides a simple method
of testing the sensitivity of cosmological data to such neutrino-majoron interactions. At the
same time, we note that the flavour universal interaction scenario is strongly constrained by
particle physics experiments, and self-interactions among only the ⌧ neutrinos is the least
constrained [41–44]. This motivates us to consider the second scenario which is flavour
specific where we consider only one neutrino species interacting. Here we consider gij to be
diagonal with only one non-zero component, i.e., gij = g�kk�ij , where k is either 1, 2, or 3 (no
sum over k is implied). We note here that unlike the flavour universal case, here a diagonal
gij in the flavour basis with only one non-zero component g⌧⌧ (since only ⌧ neutrinos are
interacting among each other) shall not translate to a diagonal gij in the mass basis with
only one non-zero component. However, we expect the non-diagonal terms or other diagonal
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terms in the mass-basis gij to be small considering that we are dealing with small neutrino
masses, as the neutrino mass bounds from cosmological data are quite stringent as mentioned
above, and these mass bounds almost remain unchanged even with the presence of strong
neutrino self-interactions [45]. Thus we expect that the approximation of only one mass
eigenstate self-interaction to represent the self-interaction among the ⌧ neutrinos to be a
good approximation.

We choose the mass of the scalar m� to be much larger than the energies of neutrinos
during the CMB epoch, so as to be able to consider the interaction to be, e↵ectively, a 4-
fermion interaction during and after the CMB epoch, and the � particles would have decayed
away. A mass ofm� > 1 keV should be enough to ensure this [41], however one might consider
m� > 1 MeV to avoid constraints from the Big Bang Nucleosynthesis as well. We emphasize
here that such a scenario is not limited to scalar particles, and in fact all the results and
conclusions in this paper will be applicable for a heavy vector boson as well [46, 47].

Now we can treat the interaction Lagrangian in equation 1 as a ⌫⌫ ! ⌫⌫ self-interaction
with a self-interaction rate per particle � ⇠ g4T 5

⌫ /m
4
� = G2

e↵T
5
⌫ , where Ge↵ = g2/m2

� is
the e↵ective self-coupling [39]. In such a scenario, the neutrinos as usual decouple from
the primordial plasma at the decoupling temperature T ⇠ 1 MeV. This happens when the
weak interaction rate falls below the Hubble rate, i.e., �W < H, with �W ⇠ G2

WT 5
⌫ . Here

GW ' 1.166 ⇥ 10�11MeV�2 is the standard Fermi constant. However, after decoupling
from the primordial plasma, the neutrinos continue to scatter among themselves, assuming
Ge↵ > GW. They continue to do so until the self-interaction rate � falls below the Hubble
rate, and after that they will free-stream. So by increasing Ge↵ , one can further delay the
neutrino free-streaming. Very strong interactions like Ge↵ ' 109GW can delay free-streaming
till matter radiation equality. 1

See [10, 39, 45, 47, 69–75] for previous studies on cosmological constraints on Ge↵

(specifically, the log10
⇥
Ge↵MeV2

⇤
parameter). Strong interactions like Ge↵ ' 109GW are

allowed in the CMB data mainly through a degeneracy present among Ge↵ , the angular size of
the sound horizon at the last scattering ✓s, and the scalar spectral index ns. This degeneracy
leads to bimodal posterior distributions with distinct modes in these three parameters as
well. Strong interactions due to a large Ge↵ pertain to a lack of anisotropic stress in the
neutrino sector, the e↵ect of which on the CMB power spectra can be compensated partially
by increasing ✓s. At the same time, increasing Ge↵ causes a gradual increase in the power in
small scales of the CMB power spectrum which can be partially compensated by a smaller
ns [39].

As mentioned before, in the context of Natural Inflation, Coleman-Weinberg Inflation,
and PBH DM related inflationary models, a smaller ns is quite useful. To put constraints
on the ns - r0.05 plane, one needs to introduce the tensor perturbation equations as well. In
this work, we introduce modifications to both the scalar and tensor perturbation equations
of neutrinos to take care of the e↵ects of the self-interaction, in the CAMB code [76]. The
background equations remain unchanged as the � particles have decayed away for our epochs
of concern and any possible changes in the neutrino temperature due to the decay is absorbed
into the Ne↵ parameter. We work in the extended ⇤CDM+ r0.05 + log10

⇥
Ge↵MeV2

⇤
+Ne↵

+
P

m⌫ model, where, for our purposes, Ne↵ is the e↵ective number of neutrino species (in

1
When m� ⇠ T or smaller the phenomenology of the model changes significantly: The system undergoes

recoupling instead of decoupling, and a new population of � particles can be built up from neutrino pair

annihilation. We refer the reader to e.g. Refs. [47–54] for a more detailed discussion. See also [55–68] for

discussions in the related fields.
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Neutrinos	decouple	from	the	primordial	plasma	as	usual	(at	T~1	MeV)	but	then	they			
con1nue	to	scaJer	with	themseleves	(if	Geff	>	GW)	un1l		Γ	<	H.	A\er	they	free-stream.		
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Ø  	In	this	specific	scenario	increasing	Geff	brings	to	an	increase	of	the		
						CMB	small-scale	power,	which	can	be	compensated	by	decreasing	ns			
					à		
														degeneracy	between	Geff	&	n_s		
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where � is the inflaton field and V (�) describes its potential. The slow roll parameters
are defined as:
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Here V
0 ⌘ dV

d� , V
00 ⌘ d2V

d�2 , and mpl is the Planck mass. Our interest is in the phe-
nomenological parameters that are cosmological observables, i.e. ns and r. These can be
written in terms of the slow roll parameters as:

ns = 1� 6✏(�s) + 2⌘(�s); r = 16✏(�s). (1.3)

Here �s denotes the value of the � field 40 to 60 e-folds before the end of inflation, as the
fluctuations that are observable in the CMB are created during that time [5]. Conventionally,
we consider that inflation ends when the slow roll parameter ✏(�e) = 1, where �e denotes the
value of � at the end of inflation. The number of e-folds parameter is given by:

N⇤ ' � 8⇡

m2
pl

Z �e

�s

V

V 0 d�. (1.4)

Given a potential V (�) and a particular choice of N⇤, it is straightforward to calculate
�e, and then it is easy to calculate �s from equation 1.4, and hence one can calculate the
predicted ns and r values.

In this work we are interested in two particular inflationary models: the Natural inflation
(NI) [6, 7], and the Coleman-Weinberg Inflation (CWI) [8, 9]. The potentials for these two
models are given as follows:
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Here �, g, A, and f are parameters in the models. It can be shown that for the CWI
inflation, in the small field inflation regime, i.e. (�/f) ⌧ 1, we have N⇤ ' 3/(1 � ns), and
r ' 0 [10].

The latest Planck results rule out NI at more than 2� [4] in the ⇤CDM+ r model, with
Planck 2018 CMB anisotropies [11] combined with the older BICEP/Keck CMB B mode
data, BK15 [12]. The CWI model has been ruled out at more than 2� with Planck data,
much before than NI [13]. In our work, we have also found that both the models are ruled
out at more than 2� with latest cosmological datasets in the ⇤CDM+ r model.

We are also interested in single field inflationary models with an inflection point that can
produce all or majority of the dark matter content in the universe in the form of primordial
black holes (PBHs) [14–16]. Such models require a spectral index value of ns ' 0.95 [15]
which is much lower than the ⇤CDM bounds and hence disfavoured at more than 2� as well.
Hereafter, we shall refer these models as PBH DM related inflationary models.

Augmenting the cosmological model with non-standard self-interactions among all 3
neutrinos with a heavy mediator has been shown to bring back NI and CWI within the
1� region in the ns � r plane [13], using Planck 2015 CMB temperature anisotropies, low-
multipole polarization, and lensing [17]. It is important to note that both NI and CWI
models can be reconciled with cosmological data if the chosen cosmological model prefers
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The latest Planck results rule out NI at more than 2� [4] in the ⇤CDM+ r model, with
Planck 2018 CMB anisotropies [11] combined with the older BICEP/Keck CMB B mode
data, BK15 [12]. The CWI model has been ruled out at more than 2� with Planck data,
much before than NI [13]. In our work, we have also found that both the models are ruled
out at more than 2� with latest cosmological datasets in the ⇤CDM+ r model.

We are also interested in single field inflationary models with an inflection point that can
produce all or majority of the dark matter content in the universe in the form of primordial
black holes (PBHs) [14–16]. Such models require a spectral index value of ns ' 0.95 [15]
which is much lower than the ⇤CDM bounds and hence disfavoured at more than 2� as well.
Hereafter, we shall refer these models as PBH DM related inflationary models.

Augmenting the cosmological model with non-standard self-interactions among all 3
neutrinos with a heavy mediator has been shown to bring back NI and CWI within the
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The	Cosmic	Neutrino	Background	(CNB)			

Ø 	Perhaps	one	of	the	most	important	not	yet	directly	probed	predic,on		
					of	the	standard	cosmological	model			

Ø 		Direct	detec1on	is	extremely	challenging	because	of:		
						the	feebleness	of		the	weak	interac1ons	and	the	smallness	of	relic		
						neutrino	energies,	diluted	by	cosmic	expansion		
	
Ø  		This	is	why	various	indirect	cosmological	signatures	of	neutrinos	are		
							central	to	(cosmologically)	constrain	their	proper1es	(e.g.	their		
							effects	on	CMB	and	Large-Scale	Structures)	and	most	of	the	more		
							cosmologically-oriented	lectures	have	been	dealing	with	them	
	



We	are	here	

Recombina%on	epoch:	CMB	decouples	at	T~0.2	eV	

CNB	decoupes	at	T~	1Mev	

CMB	

CNB	

CGWB	
	



Even	more	science	fic%on?			

					If	yesterady	Douglas	discussed	nicely	about	science-fic,on…...	
					just	wait	for	what	I	am	going	to	discuss	now.......		
	
	
				Here	I’ll	focus	on	a	future	(be`er…..futuris,c)	signature,	related	to		
				an	eventual	direct	detec,on	of	neutrinos:	CNB	spa,al	anisotropies.	



The	CNB:	direct	detec%on?					

Ø  	First	let	me	recall	a	possibility	for	direct	detec1on	of	the	CNB:		
							

CMB anisotropy power spectrum and converted into an independent constraint on the
e↵ective number of neutrinos N ⇠

e↵ = 2.3+1.1
�0.4 (Follin et al. 2015).

With indirect detection it is also possible to detect the presence of anisotropies in the
CNB, whose a direct detection is even more challenging than the CNB one since they
are expected to be of order ⇠ 10�5 in the standard scenario. These anisotropies a↵ect
the CMB angular power spectrum through the gravitational feedback of the neutrino
free-streaming damping and anisotropic stress contribution. The standard way to take
intro account the anisotropies in the CNB has been introduced in Hu 1998 with the
“viscosity parameter”, c2vis, with controls the relationship between velocity/metric shear
and anisotropic stress in the CNB. The physical interpretation of this parameter can be
understood thinking that the anisotropic stress will act to damp out velocity fluctuation
on shear-free frames. In the standard scenario, a value of c2vis = 1/3 is what one expects,
where anisotropies are present and approximate the radiative viscosity of real neutrinos.
On the contrary, the case c2vis = 0, cuts the Botlzmann hierarchy of neutrino background
perturbations at the quadrupole, forcing a perfect fluid solution with no anisotropies
but only density and velocity (pressure) perturbations. Usually in analysis of c2vis is
introduced also another phenomenological parameter, c2e↵, which generalizes the linear
relation between isotropic pressure perturbations and density perturbations, whose value
for relativistic matter, is expected to be 1/3 too. Latest analyses on Planck data strongly
suggest the presence of anisotropies with c2vis = 0.50 (19) and c2e↵ = 0.314 (15) (Gerbino
et al. 2013)14.

B. Direct searches: The PTOLEMY experiment

The PTOLEMY experiment (Princeton Tritium Observatory for Light, Early-Universe,
Massive-Neutrino Yield), currently under development, aims to achieve the sensitivity
required to detect the relic neutrino background through a technique based on neutrino
capture processes on �-unstable nuclei, like the one with tritium

⌫
e

+ 3H ! 3He + e� , (56)

originally proposed in Weinberg 1962, based on the hypothesis that the primordial
neutrino density could be order of magnitude higher than normally assumed due to
the presence of a large chemical potential. Although such a potential has been ruled
out because it is in conflict with BBN and CMB bounds, the method may still work in
some conditions. In fact, tritium has ben chosen among other target candidates because
of its availability, lifetime, high neutrino capture cross section and low Q value. The
smoking gun signature of a relic neutrino capture is a peak in the electron spectrum
above the � decay endpoint. Because flavour neutrino eigenstates are a composition of
mass eigenstates with di↵erent masses, while propagating, relic neutrino quickly decohere

14The best fit obtained by the authors was performed introducing also an additional parameter, AL,
representing a rescaling of the lensing potential, whose value is found to be AL = 1.025 (76) (Gerbino
et al. 2013), against an expected value of AL = 1. Keeping separated the fit of phenomenological neutrino
parameters and AL some anomalous values are obtained. This could be an hint for considerations on
non-standard neutrino properties but we will not explore this possibility here.
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proposed	by	Weinberg	in	1962	

Ø  	See	the	PTOLEMY	proposal	for	a	direct	detec1on	experiment	
						(Princeton	Tri1um	Observatory	for	Light,	Early-Universe,	Massive-Neutrino	Yield)	

Ø  Very	challenging	because	of	a	number	of	reasons:		
					-	backgrounds	to	be	resolved	
					-	energy	resolu1on			
					-	precise	computa1ons	of	neutrino	captures	
					-	quan1ty	of	tri1um	necessary	to	obtain	the	detec1on	is	an	issue	
								



Anisotropies	of	the	CNB			
Ø  	But	le	me	go	to	an	even	more	futuris1c	signature:		
						CNB	spa1al	anisotropies		
Ø  	The	idea	is	very	simple:	as	CMB	photons,	also	the	CNB	has	spa1al		
						anisotropies	imprinted	both	at	the	produc1on	1me	and	by	its		
						propaga1on		through	cosmic	inhomogenei1es	when	neutrinos		
						free-stream	towards	us		
	
	
		

Ø  	Many	studies,	for	what	we	said,	focused	on	measuring	anisotropies		
						of	cosmic	neutrinos	through	their	(indirect)	effects	on	CMB	and	LSS			

N.B.:	no1ce	by	the	way	that	similar	analyses	hold	for	a	stochas1c	background	of	GWs,	see.,	e.g,		
									N.B.,	Bertacca,	Matarrese,	Peloso,	Ricciardone,	RioHo,	Tasinato	’19,	’20;	Valbusa,	Ricciardone,	N.B.	et					
									al.	‘21;	Ricciardone,	Valbusa,	N.B.	et	al.	PRL	‘21;	Schulze,	Valbusa,	Lesgourgues,	Ricciardone,	N.B.	et	al		
								’23;	for	previoius	works:	Alba	&	Maldacena	‘16;	Contaldi	‘17.				
								

Ø  Here	the	approach	is	different,	we	are	talking	about	a	direct			
						measurement	of	the	CNB	temperature	anisotropies,	in	the		
						exactly	same	way	as	for	CMB	temperature	anisotropies.	
	

A"er	all,	CNB	anisotropies	are	out	there….....	
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Figure 1: Traces of early universe physics can be looked for through multiple observational windows.

and it is intriguing that a PT happening at temperatures around the weak scale or TeV scale would give a signal
in the most sensitive region of the upcoming LISA experiment [189]. Higher PT scales could be probed by
LIGO and follow-up experiments such as the Einstein Telescope and Cosmic Explorer, while PTA experiments
are sensitive to PTs at later times that could potentially happen in a hidden sector [190, 191].

2.3 Outlook and Open Problems
We are entering an age of “multi-messenger cosmology", with multiple cosmological probes (CMB, LSS and GWs)
poised to provide new tests of the physics of the early universe (see Fig. 1). In order for these observations to
fulfill their true potential, however, theoretical advances will be crucially needed. The following is a list of some
of the most important open problems for each of the topics described above.

• Inflation: Despite being a very successful phenomenological model, inflation is not yet a complete theory.
In particular, the microscopic origin of the inflationary expansion is still unknown. This challenge can be
addressed through two complementary approaches. On the one hand, it remains important to construct
explicit models of inflation and study their observational predictions, including the effects of UV comple-
tion. On the other hand, we can carve out the space of consistent inflationary correlations starting from
basic physical principles such as locality, causality and unitarity. In this way, we can hope to provide a
systematic classification of the inflationary predictions. At a more phenomenological level, future galaxy
surveys will provide interesting new constraints on non-Gaussian correlations. In order for these obser-
vations to fulfill their true potential, however, the non-Gaussianity associated to nonlinear gravitational
evolution and galaxy biasing must be characterized very accurately, so that the primordial signals can be
extracted reliably. This will require both advances in numerical simulations, as well as improvements in
the theory description of large-scale structure.

• Reheating: Some of the theoretical challenges related to the reheating era include: (1) Delineating the
model dependent vs. relatively universal predictions, both from a model-building perspective and those
resulting from nonlinear phenomena (e.g. [192–196]). (2) Numerically simulating the nonperturbative
physics of this period with increasingly more ‘realistic’ field content – scalars, fermions, Abelian and
non-Abelian fields (see [197–203]) and detailed accounting of metastable/solitonic structures, full quan-
tum and gravitational effects. (3) Performing the numerical simulations long enough to reach full (local)

175] are currently on the brink of discovering a stochastic GW background (SGWB). In 2020, NANOGrav was the first PTA
collaboration to present strong evidence for a new stochastic process affecting its 12.5-year data [176]. Joint PTA analyses based on
larger data sets in the next years, eventually leading up to PTA observations with FAST [177] and SKA [178, 179], will help clarify
whether this process really corresponds to a SGWB signal and shed more light on its origin [180]. Possible explanations include
the mergers of supermassive black-hole binaries [181] on the astrophysical side as well as an abundance of BSM scenarios on the
cosmological side, including but not limited to cosmic strings [150–152], scalar-induced GWs (SIGWs) generated at second order of
perturbation theory in conjunction with the production of primordial black holes [182–185], cosmological phase transitions [162, 186–
188], and axions [162, 163].
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2.				CNB	propaga1on	to	the	observer	
							(model	independent)	
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2.3 Outlook and Open Problems
We are entering an age of “multi-messenger cosmology", with multiple cosmological probes (CMB, LSS and GWs)
poised to provide new tests of the physics of the early universe (see Fig. 1). In order for these observations to
fulfill their true potential, however, theoretical advances will be crucially needed. The following is a list of some
of the most important open problems for each of the topics described above.

• Inflation: Despite being a very successful phenomenological model, inflation is not yet a complete theory.
In particular, the microscopic origin of the inflationary expansion is still unknown. This challenge can be
addressed through two complementary approaches. On the one hand, it remains important to construct
explicit models of inflation and study their observational predictions, including the effects of UV comple-
tion. On the other hand, we can carve out the space of consistent inflationary correlations starting from
basic physical principles such as locality, causality and unitarity. In this way, we can hope to provide a
systematic classification of the inflationary predictions. At a more phenomenological level, future galaxy
surveys will provide interesting new constraints on non-Gaussian correlations. In order for these obser-
vations to fulfill their true potential, however, the non-Gaussianity associated to nonlinear gravitational
evolution and galaxy biasing must be characterized very accurately, so that the primordial signals can be
extracted reliably. This will require both advances in numerical simulations, as well as improvements in
the theory description of large-scale structure.

• Reheating: Some of the theoretical challenges related to the reheating era include: (1) Delineating the
model dependent vs. relatively universal predictions, both from a model-building perspective and those
resulting from nonlinear phenomena (e.g. [192–196]). (2) Numerically simulating the nonperturbative
physics of this period with increasingly more ‘realistic’ field content – scalars, fermions, Abelian and
non-Abelian fields (see [197–203]) and detailed accounting of metastable/solitonic structures, full quan-
tum and gravitational effects. (3) Performing the numerical simulations long enough to reach full (local)

175] are currently on the brink of discovering a stochastic GW background (SGWB). In 2020, NANOGrav was the first PTA
collaboration to present strong evidence for a new stochastic process affecting its 12.5-year data [176]. Joint PTA analyses based on
larger data sets in the next years, eventually leading up to PTA observations with FAST [177] and SKA [178, 179], will help clarify
whether this process really corresponds to a SGWB signal and shed more light on its origin [180]. Possible explanations include
the mergers of supermassive black-hole binaries [181] on the astrophysical side as well as an abundance of BSM scenarios on the
cosmological side, including but not limited to cosmic strings [150–152], scalar-induced GWs (SIGWs) generated at second order of
perturbation theory in conjunction with the production of primordial black holes [182–185], cosmological phase transitions [162, 186–
188], and axions [162, 163].
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Anisotropies	of	the	CNB			
Ø  	Use	the	perturbed	Boltzmann	equa1ons		

Ø  	There	are	however	some	differences	w.r.t.	to	CMB	photons	
							-	neutrinos	are	massive	par1cles		
						-		characterized	by	weak	interac1ons	(à	e.g.	no	equivalent	of			
									reioniza1on	as	for	CMB	photons)		
							-	the	last	scaJering	surface	is	mass	and	momentum	dependent	
							-	neutrinos’	oscilla1ons		
	
Ø  	Despite	these	differences	the	overall	pictue	is	clear:		
						CNB	anisotropies	feature	similar	effects	such	as	CMB	anisotropies,		
						as	Sashs-Wolfe	and	Integrated	Sachs-Wolfe	effects.		
	
Ø  	Pioneering	works:	W.	Hu,	D.	ScoJ	(one	of	your	lecturers!!),	
						N.	Sugiyama,	M	.	White	‘95;	Michney	&	Caldwell	2006		
						More	recent	works:	Hannestad	&	Brandbyge	2009;	Tully	&	Zhang	‘21	



Anisotropies	of	the	CNB			

Ø  	Use	the	perturbed	Boltzmann	equa1ons	

6.2.3 Conti finali in teoria

The starting idea in the Liouville operator is to di↵erentiate with respect to the energy and not

the momentum
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Mo qua ci sono due metodi diversi

Un primo metodo consiste nel valutare le anisotropie della temperatura analogamente a come

si fa per il CMB.

Moreover in the massive case the phase space distribution can be approximated as
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where f
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Where we have used
@f

⌫

@N

���
N=0

= �E2

p

@f
(0)
⌫

@p
= �E @f

(0)
⌫

@E (6.29)

In particular at zero-th order
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Going to Fourier space this becomes
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where µ ⌘ k̂ · n̂. Before finding an explicit solution for this equation, one can exploit the Legendre

Polynomials expansion (2.26) in order to find a relation between the potentials.

PHASE SPACE DISTRIBUTION

Qui il punto è che noi stiamo considerando una phase space distribution con la forma
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At this point we must notice that p/E is the speed of the massive neutrinos and in particular
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Is the comoving distance traveled by the massive neutrino in the (comoving-)time interval (⌘
in

, ⌘).

Then formally integrating equation (6.32) one gets
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Where we integrated by parts
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Free	streaming		 Gravita1onal	effects	that	imprint	anisotropies	during	propaga1on		

Ø  	Solu1on	(along	the	line	of	sight,	as	CMB	photons)	
	
The second term is a monopole term and we neglect it
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One can then proceed with the spherical harmonics decomposition. In particular
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At this point it is convenient to separate the di↵erent components of the expansions
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Sach-Wolfe	effect	 Integrated	Sach-Wolfe	effect	

Going to Fourier space this becomes
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where µ ⌘ k̂ · n̂. Before finding an explicit solution for this equation, one can exploit the Legendre

Polynomials expansion (2.26) in order to find a relation between the potentials.

PHASE SPACE DISTRIBUTION

Qui il punto è che noi stiamo considerando una phase space distribution con la forma
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Is the comoving distance traveled by the massive neutrino in the (comoving-)time interval (⌘
in

, ⌘).
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Where we integrated by parts
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NEW	PROBE	OF	LARGE	SCALE	ANISOTROPIES	(like	CMB	photons)	

CNB	angular	power	spectrum		
3

1 10 100
multipole moment l

200

400

600

800

1000

1200

 l(
l+

1)
C

l/2
π 

[µ
K

2 ]

CMB (SW, late−ISW)
CMB 
CNB

FIG. 1: The temperature anisotropy power spectrum for a
species of relativistic neutrinos is shown for multipole mo-
ments ℓ < 100. The sources of anisotropy are SW and ISW
effects, including intrinsic perturbations of the neutrino spec-
trum at decoupling, which occured at z ∼ 1010. For com-
parison, we also show the SW and late-ISW contributions to
the CMB anisotropy spectrum calculated following the same
method. The amplitude is set by using AWMAP = 0.9 [11, 12].
We also show the full CMB power spectrum calculated using
CMBfast [13].

with a power spectrum Pφ(k) = Akns−4. For the power-
law index, ns = 1. The background cosmology is mod-
eled as a spatially-flat FRW spacetime filled by a three-
component fluid, consisting of radiation, matter, and cos-
mological constant. The Hubble constant evolves as

H(a) = H0

√

Ωm(a0/a)3 + Ωr(a0/a)4 + ΩΛ (14)

where we use H0 = 100 h km/s/Mpc, h = 0.7, Ωm = 0.3,
Ωr = 4.2×10−5/h2, and ΩΛ = 1−Ωm−Ωr. The evolution
of the gravitational potential due to adiabatic density
perturbations is determined by [7, 10]

φ̈+3H(1+c2s)φ̇+
(

2Ḣ+ (1 + 3c2s)H2 + c2sk
2
)

φ = 0 (15)

where the dot indicates the derivative with respect to
conformal time, H = ȧ/a = aH , and the adiabatic sound
speed is c2s = 1

3
/(1 + 3

4

ρm

ρr
). Initial conditions are chosen

so that φ = 1, φ̇ = 0 deep in the radiation era. Last scat-
tering occurs sharply at z = 1010 for the CNB (1100 for
the CMB). Finally, the Cℓ’s are obtained by evaluating

Cℓ = (4π)2A

∫

d ln k

(

1

2
φ(τdec, k)jℓ(k(τ0 − τdec)) + 2

∫ τ0−τdec

0

dλφ,τ (τ0 − λ,λ)jℓ(kλ)

)2

. (16)

To normalize to WMAP, we set the constant A =
200πAWMAP (Tν/TCMB)2µK2. The resulting multipole
spectrum is shown in Figure 1, our main result. It is
interesting to note that, whereas the CNB SW effect
is much stronger than for the CMB, a strong, negative
cross-correlation between the early-ISW and the SW ef-
fects greatly reduces the overall anisotropy power spec-
trum on large angular scales. We limit our power spec-
trum to ℓ < 100; on smaller angular scales we expect the
effects of bulk anisotropic pressure or shear, which we
have ignored, to be important. For comparison, we also
show the SW and late-ISW contributions to the CMB,
as well as the full CMB. These results are consistent
with the earlier results of Hu et al. [14], where the CNB
anisotropy in a SCDM universe was considered. Overall,
the rms temperature fluctuations in the CNB are smaller
than for the CMB.

The anisotropy power spectrum for non-relativisitic
neutrinos is shown in Figure 2. Since the spectrum
depends on the momentum of the neutrinos, we focus
on values of momentum q ∼ Tν for comparison with
anisotropies at the peak of the relativistic neutrino flux

spectrum. We see that the overall amplitude is compa-
rable to the relativistic result at the lowest multipoles,
as seen in Figure 2, but is much smaller otherwise, due
to the suppression of the SW contribution from decou-
pling. The dominant effect is due to the Γ,λφ term in the
line-of-sight integration in equation (8), whereas the φ,τ
term contributes a much smaller fraction than in the rel-
ativistic case. In the limit q ≫ mν > Tν the relativistic
result is obtained. Although low energy neutrino cap-
ture by galaxies is an anisotropic effect which removes
the slowest-moving particles from the power spectrum,
the mass estimates used and the currently favored up-
per bounds predict a negligible amount of gravitational
clustering.

Our analysis thus far treats the primordial neutrinos
analogously to CMB photons. However, there are several
important ways in which neutrinos differ from photons:
exclusive interaction via the weak force, spin-statistics,
mass, and flavor oscillation. The first factor has been
taken into account in determining the neutrino decou-
pling time, and ignoring important CMB phenomena
such as reionization. Even in the early universe, when

2

+
1

Γ0

∫ 0

dec
dλ

[

Γ,λ φ− Γ(
q2

ϵ2
+ 1)φ,τ

]

. (6)

We may neglect φ0, which contributes only to the tem-
perature anisotropy monopole. The remaining terms on
the first line give the anisotropy due to the initial tem-
perature fluctuations and gravitational potential at de-
coupling. In the limit of relativistic particles, for which
Γdec = Γ0 = constant, this last term corresponds to the
Sachs-Wolfe effect (SW) [8]. The terms on the second
line give the anisotropy due to line-of-sight variations in
the spectral shape, Γ, and gravitational potential. In the
relativistic limit only the latter term survives, in the form
of the integrated Sachs-Wolfe effect (ISW) [9].
Decoupling occurs deep in the radiation era when the

neutrinos are relativistic and the neutrino density per-
turbation contrast mirrors the total energy density per-
turbation contrast, δν = δ. In turn, the total density
contrast is proportional to the gravitational potential,
δ = −2φ, which is a constant on large scales. Con-
sequently, the initial perturbations can be expressed in
terms of the gravitational potential at decoupling,

∆+ φ |dec =
1

4
δν + φ |dec =

1

2
φ| dec . (7)

Applying this result to (6), we find that the present-day,
large-angle temperature anisotropy is

∆0 =
1

2

Γdec

Γ0

φdec +
1

Γ0

∫ 0

dec
dλ

[

Γ,λ φ− Γ(
q2

ϵ2
+ 1)φ,τ

]

.

(8)
For relativistic neutrinos, the large-angle temperature
anisotropy is due to SW and ISW contributions, ∆0 =
1
2
φdec − 2

∫ 0

dec dλφ,τ .
Let us consider the anisotropy arising solely from the

gravitational potential at decoupling. In this case, the
temperature pattern in a direction n̂ on the sky is given
by

∆0(n̂) =
1

2

Γdec

Γ0

φdec(n̂) . (9)

The ratio of spectral shape functions is

Γdec

Γ0

≈
q

√

q2 +m2

1− e−
√

q2+m2/kT0

1− e−q/kT0

(10)

where we take madec ≪ q. In the case of neutrinos which
are non-relativistic today, q ≪ m so that Γdec ≪ Γ0.
Hence, the temperature anisotropy is suppressed by a
factor ∼ (q/m)2. However, in the case of relativistic neu-
trinos, Γdec = Γ0, so this contribution to the tempera-
ture anisotropy is similar to the CMB Sach-Wolfe effect,
but with two notable differences. First, the CNB has a
prefactor to the gravitational potential correlation of 1/4
where the CMB has 1/9, reflecting the difference in the
equation of state of the dominant form of energy (mat-
ter in the case of the CMB, and radiation in that of the

CNB) at the time the background is emitted. Second,
although the long-wavelength gravitational potential is a
constant in both the radiation and matter eras, the con-
stant differs by a factor of 9/10 as the potential decays by
10% across the radiation-matter transition. (For simplic-
ity, we ignore the effect of neutrino anisotropic stress on
the evolution of perturbations.) Including the difference
in the mean temperature of the background,

∆T |CNB,SW =
3

2
×
10

9
×
(

4

11

)1/3

×∆T |CMB,SW , (11)

we see that the SW temperature anisotropy in the CNB
is ∼ 1.2 times as strong as in the CMB.
Next consider the anisotropy arising along the neu-

trino path. There are two such terms in equation (6),
one arising from Γ,λ and the second from φ,τ . To esti-
mate the magnitude of the first term, we note that Γ is
nearly a constant while the neutrinos are still relativis-
tic, so the contribution at early times is negligible. At
late times, Γ,λ ∝ HΓ0 where the constant of proportion-
ality is of order unity for neutrinos with q ≃ kT0. The
resulting contribution to the temperature anisotropy is
∆0 ∝

∫ 0
dλφH, very similar to the standard ISW. Con-

sidering the second term, the only significant contribu-
tion to the temperature anisotropy occurs at late times,
when Γ/Γ0 → 1 and the gravitational potential evolves
due to the onset of accelerated cosmic expansion. At
these late times, q ≪ ϵ so the nonrelativistic ISW is ap-
proximately half the amplitude of the standard ISW.
In the case of relativistic neutrinos, the ISW effect is

nearly the same as for photons, with one difference. Neu-
trino decoupling takes place in the radiation era, so neu-
trinos receive an additional ISW contribution due to the
time-varying potential across the radiation-matter transi-
tion. The photons do not fully experience this early-ISW
effect because CMB last scattering takes place at the tail
end of this transition. Considering only the late-time
ISW, after z ! 10,

∆T |CNB,ISW =

(

4

11

)1/3

×∆T |CMB,ISW (12)

so the CNB ISW is smaller by a factor of ∼ 0.7 than the
CMB. However, these rough estimates ignore the early
ISW effect for the CNB, the interference between the SW
and ISW contributions, and the wavelength dependence
of the gravitational potential.
We now present the results of detailed calculations of

the CNB temperature anisotropy spectrum. We assume
relativistic neutrinos, so that the temperature fluctua-
tions are given by

∆0(n̂) =
1

2
φ(τdec, (τ0 − τdec)n̂)

+ 2

∫ τ0−τdec

0

dλφ,τ (τ0 − λ,λn̂). (13)

We assume a primordial spectrum of scale-invariant den-
sity perturbations, where the Fourier modes of the gravi-
tational potential obey ⟨φ(k⃗)φ(k⃗′)⟩ = 4πk3Pφ(k)δ(k⃗+k⃗′),

Due	to	genera1on	of	CNB	taking	place	
during	radia1on-domina1on	

Rescailing	of	temperatures.		
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Figure 1. Primary C⌫B spectrum for di↵erent neutrino masses.

2.2. Gauge e↵ects

As noted we use the conformal Newtonian gauge, since this gauge is directly related to

physically measurable quantities. In the Synchronous gauge the velocity perturbation,

✓, for the CDM component is, by definition, zero. Therefore ✓
⌫

, which is a momentum

integral over  1, is a gauge dependent quantity. In contrast, the anisotropic stress,

which is a momentum integral over  2, is a gauge independent quantity. Since all

moments  
l

with l > 2 is recursively related to  2, these higher order moments are
gauge independent as well.

Since we cannot separate the CMB/C⌫B dipole from our own peculiar motion, we

are only interested in modelling the C⇥
l

’s with l � 2 when comparing with observations.

But C1, the lowest mode containing physically relevant information, is gauge dependent.

We have taken this into account by working in the physical conformal Newtonian gauge.

We also note that the transfer functions are gauge dependent, though for the
Synchronous and conformal Newtonian gauges they are almost identical inside the

horizon for the massive components. Therefore we have calculated the transfer functions

used to get the lensing contribution in the Synchronous gauge with CAMB [33].

2.3. Numerical results

We have used the COSMICS code [34] to solve the Boltzmann hierarchy for the
neutrinos. In practise we have solved the system going up to l = 500 with 64 bins

in q, equally spaced from q/T0 = 0 to 15. In Fig. 1 we show results for C⇥
l

for various

Figure 4: Primary CNB angular power spectrum, C⇥
l

, for five di↵erent values o neutrino masses. We
notice how the spectra for masses m

⌫

 10�4 eV are almost identical. So we can take this value as the
limiting mass to have a relativistic qualitative behaviour. Plot taken from Hannestad and Brandbyge
2010.
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Figure 2. Sky maps of the primary neutrino power spectra, C⇥
l , with the dipole

included, for m⌫ = 10�5 eV (top-left), 10�3 eV (top-right), 10�2 eV (bottom-left) and
10�1 eV (bottom-right). The maps have been generated with the same underlying
random numbers with the HEALPIX package [35].

masses and Fig. 2 shows sky map realisations for these spectra.
The massless case (i.e. 10�5 eV) is consistent with the result of [30]. At high l

the spectra are almost identical, and do not depend on the neutrino mass. The reason

for this can be understood from the following argument: Above a certain k-value, kFS,

neutrinos are completely dominated by free-streaming and this k-value is proportional to

m
⌫

. In order to convert this to an l-value one then uses the relation lFS ⇠ kFS�
⇤ (where

�⇤ is the comoving coordinate from which the neutrinos originate) and since �⇤ / m�1
⌫

for non-relativistic particles [36], lFS does not depend on m
⌫

. Inserting numbers one

finds lFS ⇠ 100 which is in good agreement with Fig. 1. At smaller angular scales,

l >⇠ lFS, the anisotropy comes from the Sachs-Wolfe e↵ect during radiation domination.

For smaller l-values the anisotropy increases dramatically as the mass increases.

This can be understood as follows. As soon as neutrinos go non-relativistic the ✏k

3q 
d ln f0

d ln q

term in  ̇1 begins to dominate the Boltzmann hierarchy evolution. This quickly makes
the higher l modes increase as well, and the final amplitude simply depends on the time

elapsed after neutrinos go non-relativistic.

The e↵ect can be seen in Fig. 3 which shows the evolution of  1,  2 and  10 for

three di↵erent neutrino masses and two di↵erent k-values. As soon as neutrinos go

non-relativistic  1 immediately begins to grow, and the higher  
l

’s follow with a slight

delay for k = 0.1 hMpc�1. This exactly matches the low l behaviour seen in Fig. 1.

Figure 5: Sky map realizations of the primary neutrino angular power spectra, C⇥
l

, with the dipole
included, for m

⌫

= 10�5 eV (top-left), m
⌫

= 10�3 eV (top-right), m
⌫

= 10�2 eV (bottom-left) and
m

⌫

= 10�1 eV (bottom-right). Figures taken from Hannestad and Brandbyge 2010.
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From	Hannestad	and	Brandbyge	2009	

CNB	angular	power	spectrum		

At	high	l	(small	scales):	
weak	dependence	on	mν.	
Why?		
At	small	scales	neutrinos	
are	dominated	by		
free-streaming,	say	k>kFS	
and	in	terms	of	mul1poles	
lFS~	kFS	χ*	
χ*	being	the	comoving		
distance	from	neutrino’s	
last-scaJering	surface.		
But	kFS	~mν,	while	χ*~	1/mν,	

At	low	l,	the	anisotropy	increases	with		
increasing	neutrino	masses			

This could sound strange after the estimate of Eq. (48), which tells us that SW e↵ect in
CNB radiation is much stronger than the one fo the CMB. However a strong negative
cross correlation between the early ISW and the SW e↵ects greatly reduce the overall
anisotropy power spectrum on large scales.

A deeper discussion on angular power spectrum, which take into account also its
mass dependence, can be found in Hannestad and Brandbyge 2010, and their results
are shown in Figures 4 and 5. They develop a full computation of the angular power
spectrum, without any simplifying hypothesis. This was achieved writing the Boltzmann
equation as a moment hierarchy before its resolution, namely

 ̇0 = �k
q

"
 1 + �̇

d log f0
d log q

if l = 0 , (52)

 ̇1 = k
q

3"
( 0 � 2 2)�

"k

3q
 
d log f0
d log q

if l = 1 , (53)

 ̇
l

= k
q

(2l + 1) "
(l 

l�1 � (l + 1) 
l+1) if l � 2 ; (54)

and then solved as a system by numerical integration13. Here the distribution function
perturbations  have been expanded in a way analogous to Eq. (49). Then to obtain
the power spectrum one have just to average the momentum dependence (Eq. (51)), and
convert the distribution perturbations into temperature perturbations. At high l the
spectra are almost identical, and do not depend on neutrino mass. The reason for this
can be understood from the following argument: above a certain value of k, said kFS,
neutrinos are completely dominated by free-streaming, and this value is proportional to
m

⌫

(Ma and Bertschinger 1995). In order to convert this to an l-value one then uses
the relation lFS = kFS�

⇤ (where �⇤ is the comoving coordinate from which the neutrino
background radiation originate, and since �⇤ / m�1

⌫

for non-relativistic particles (??),
lFS does not depend on m

⌫

, and in the case of interest is found to be lFS ' 100. Looking
at Figure 4 we see that near this value there is the typical damping due to free streaming
e↵ects and that the behaviour becomes more or less the same for every mass value. At
smaller angular scales, l > lFS we see the anisotropy starts a slow growth which is due to
early Sachs-Wolfe e↵ect during radiation domination epoch.

For smaller l values the anisotropy increases dramatically as the mass increases. This
can be understood looking at Eq. (54) of the Boltzmann hierarchy. As soon as neutrinos
go non-relativistic, the term / "/q begins to dominate the perturbation evolution. Then
the strong coupling between hierarchy equations quickly makes the higher l modes increase
as well, and the final amplitude simply depends on the time elapsed after neutrinos go
non-relativistic. Indeed, at a given time, heavier neutrinos have been non-relativistic
longer than lighter ones, and so they present the largest anisotropies.

13We notice that in the computation of Hannestad and Brandbyge 2010, the relation used to link the
temperature perturbations to the distribution function perturbations is ⇥ (q) = � (d log f0/d log q)

�1 (q),
which di↵ers from the Eq. (43) for the lack of a v2 factor, which would have suppress the perturbations
for the higher neutrino masses significantly.
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Cross-correla%on	of	CNB	with	CMB		

Ø Within	GR,	the	anisotropies	of	the	CNB	and	CMB	share	the	same	
origin	and	the	same	perturbed	geodesics			

	
Ø  	a	cross-correla,on	among	the	two	backgrounds	naturally	arises	
	

X	

A.	Raffelli,	N.B,	and	J.	Lesgourgues,	in	prepara(on	
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Figure 1. Primary C⌫B spectrum for di↵erent neutrino masses.

2.2. Gauge e↵ects

As noted we use the conformal Newtonian gauge, since this gauge is directly related to

physically measurable quantities. In the Synchronous gauge the velocity perturbation,

✓, for the CDM component is, by definition, zero. Therefore ✓
⌫

, which is a momentum

integral over  1, is a gauge dependent quantity. In contrast, the anisotropic stress,

which is a momentum integral over  2, is a gauge independent quantity. Since all

moments  
l

with l > 2 is recursively related to  2, these higher order moments are
gauge independent as well.

Since we cannot separate the CMB/C⌫B dipole from our own peculiar motion, we

are only interested in modelling the C⇥
l

’s with l � 2 when comparing with observations.

But C1, the lowest mode containing physically relevant information, is gauge dependent.

We have taken this into account by working in the physical conformal Newtonian gauge.

We also note that the transfer functions are gauge dependent, though for the
Synchronous and conformal Newtonian gauges they are almost identical inside the

horizon for the massive components. Therefore we have calculated the transfer functions

used to get the lensing contribution in the Synchronous gauge with CAMB [33].

2.3. Numerical results

We have used the COSMICS code [34] to solve the Boltzmann hierarchy for the
neutrinos. In practise we have solved the system going up to l = 500 with 64 bins

in q, equally spaced from q/T0 = 0 to 15. In Fig. 1 we show results for C⇥
l

for various

Figure 4: Primary CNB angular power spectrum, C⇥
l

, for five di↵erent values o neutrino masses. We
notice how the spectra for masses m

⌫

 10�4 eV are almost identical. So we can take this value as the
limiting mass to have a relativistic qualitative behaviour. Plot taken from Hannestad and Brandbyge
2010.

The Cosmic Neutrino Background Anisotropy - Linear Theory 6

Figure 2. Sky maps of the primary neutrino power spectra, C⇥
l , with the dipole

included, for m⌫ = 10�5 eV (top-left), 10�3 eV (top-right), 10�2 eV (bottom-left) and
10�1 eV (bottom-right). The maps have been generated with the same underlying
random numbers with the HEALPIX package [35].

masses and Fig. 2 shows sky map realisations for these spectra.
The massless case (i.e. 10�5 eV) is consistent with the result of [30]. At high l

the spectra are almost identical, and do not depend on the neutrino mass. The reason

for this can be understood from the following argument: Above a certain k-value, kFS,

neutrinos are completely dominated by free-streaming and this k-value is proportional to

m
⌫

. In order to convert this to an l-value one then uses the relation lFS ⇠ kFS�
⇤ (where

�⇤ is the comoving coordinate from which the neutrinos originate) and since �⇤ / m�1
⌫

for non-relativistic particles [36], lFS does not depend on m
⌫

. Inserting numbers one

finds lFS ⇠ 100 which is in good agreement with Fig. 1. At smaller angular scales,

l >⇠ lFS, the anisotropy comes from the Sachs-Wolfe e↵ect during radiation domination.

For smaller l-values the anisotropy increases dramatically as the mass increases.

This can be understood as follows. As soon as neutrinos go non-relativistic the ✏k

3q 
d ln f0

d ln q

term in  ̇1 begins to dominate the Boltzmann hierarchy evolution. This quickly makes
the higher l modes increase as well, and the final amplitude simply depends on the time

elapsed after neutrinos go non-relativistic.

The e↵ect can be seen in Fig. 3 which shows the evolution of  1,  2 and  10 for

three di↵erent neutrino masses and two di↵erent k-values. As soon as neutrinos go

non-relativistic  1 immediately begins to grow, and the higher  
l

’s follow with a slight

delay for k = 0.1 hMpc�1. This exactly matches the low l behaviour seen in Fig. 1.

Figure 5: Sky map realizations of the primary neutrino angular power spectra, C⇥
l

, with the dipole
included, for m

⌫

= 10�5 eV (top-left), m
⌫

= 10�3 eV (top-right), m
⌫

= 10�2 eV (bottom-left) and
m

⌫

= 10�1 eV (bottom-right). Figures taken from Hannestad and Brandbyge 2010.
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Cross-correla%on	of	CNB	with	CMB		

26

ISW	(CNB)	X	SW	(CMB)		

A.	Raffelli,	N.B,	and	J.	Lesgourgues,	in	prepara(on	



Cross-correla%on	of	CNB	with	CMB		

SW	(CNB)	X	Doppler	(CMB)		
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A.	Raffelli,	N.B,	and	J.	Lesgourgues,	in	prepara(on	



CNB	angular	power	spectrum		

		Other	possible	signals		

Ø 	No1ce	that	indeed	an	anisotropic	signal	is	induced	by	the		
					rela1ve	mo1on	of	the	observer	through	the	CMB	(dipole	contributon)	
	
Ø  Locally,	the	lowest	energe1c	neutrinos	can	be	gravita1onally		
					aJracted	by	galaxies.	
	
	
	



CNB	angular	power	spectrum		
Ø  		I	know	all	this	is	futuris1c,	but	it	might	resemble	the	history	of	CMB		
							discovery,	when	some	first	theore1cal	predic1ons	were	given			
							(by	Peebles	&	Yu	and	Doroshkevich,	Zel'Dovich		
							and	Syunyaev	in	the	70’s)	about	CMB	temperature	anisotropies,		
							even	though	at	that	1me	there	was	no	hope	to	detect	them	
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PRIMEVAL ADIABATIC PERTURBATION 833 

We have shown no values for the expected fluctuations in the background in the open 
general-relativity model for angular resolution Aÿ > 9'. This is because the fluctuations 
are sensitive to very long wavelengths in this case, and our approximation of neglecting 
curvature no longer gives correct results. 

VII. DISCUSSION 
a) Comparison with Previous Results 

It is of interest to compare the results of our numerical integration with the previous 
analytic estimates based on the assumption of a short photon mean free path for photons. 
Michie (1967) found that in a low-density model (p0 = 1 X 10“30 g cm-3), perturbations 
with characteristic mass < 1011 SOÎ© are strongly damped before recombination, while a 
moderate amount of growth is achieved for > 1012 ÜDÎq- Silk (1968) estimated that 
perturbations are damped up to a mass of about 5 X 1011 9Jlö in a low-density model 
(po = 1 X 10~30 g cm-3) and about 7 X 1010 SDÎq in the hat model. We can define a 
characteristic mass for damping at the point where the transfer function falls to one-third 

TABLE 1 
Residual Perturbation 105 X (|ô'o|2)* to the Microwave Background 

Open Flat Closed Flat 
General- General- General- Scalar- 

Relativity Relativity Relativity Tensor 
Model Model Model Model 

0  73.0 9.0 4.40 1.55 
3  16.0 7.8 4.00 1.09 
6  7.4 5.4 3.20 0.44 
9  4.1 3.5 2.45 0.22 

12  2.3 1.80 0.13 
15  1.6 1.30 0.084 

1+Zm=5t  0.61 0.25 0.23 0.20 
1+Zm=2  0.41 0.040 0.026 0.023 

* Equation (65). 
t Angular resolution in minutes of arc if 1+Zm = 10, where the peak value of (Pm atZm is unity. 
X Correction factor to ôo2 when Zm is reduced to the indicated values. 

its maximum value. This characteristic mass is 1014 9JÎ0 h1 the open model and 1012 9K0 
in the flat model (Fig. 3). Both are significantly larger than the corresponding analytic 
estimates. This is to be expected because the analytic approximation is inadequate at 
recombination. 

Field and Shepley (1968) found that when the characteristic mass of a perturbation is 
greater than 9 X 1Ö15 ÜDÎq in a flat general-relativity model, the amplitude grows con- 
tinuously. This critical mass corresponds approximately to the first peak in Figure 5. 
Our value for the mass at this peak is 9ÏÎ ^ 5 X 1016 $Dí0- These two characteristic 
masses are attributable to the same physical effect—the inability of pressure forces to 
stabilize the perturbation. 

Residual perturbations to the microwave background have been computed by Longair 
and Sunyaev (1969). We find that the largest contribution to the residual perturbation 
comes from the first peak in the transfer function. For a mass ÜDÎ ^ 5 X 1016 9W0 (corre- 
sponding to the first peak in the flat general-relativity model), Longair and Sunyaev find 
angular scale ^20', and fractional perturbation bT/T ^ 2 X 10~3 to the microwave- 
background temperature. Our result (Fig. 9) yields characteristic angular scale (width at 
half-maximum) ^7', and bT/T ^ 1.7 X 10“3 at this angular resolution, in agreement 
with Longair and Sunyaev. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

From	Peebles	and	Yu	“Primeval	Adiaba1c	Perturba1on	in	an	Expanding	Universe”,	ApJ	162,	1970			
			



Planck Collaboration: The cosmological legacy of Planck
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Fig. 18. Compilation of recent CMB angular power spectrum measurements from which most cosmological inferences are drawn.
The upper panel shows the power spectra of the temperature and E-mode and B-mode polarization signals, the next panel the
cross-correlation spectrum between T and E, while the lower panel shows the lensing deflection power spectrum. Di↵erent colours
correspond to di↵erent experiments, each retaining its original binning. For Planck, ACTPol, and SPTpol, the EE points with large
error bars are not plotted (to avoid clutter). The dashed line shows the best-fit ⇤CDM model to the Planck temperature, polarization,
and lensing data. See text for details and references.
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CNB	angular	power	spectrum		
Ø  		I	know	all	this	is	futuris1c,	but	it	might	resemble	the	history	of	CMB		
							discovery,	when	some	first	theore1cal	predic1ons	were	given			
							(by	Peebles	&	Yu	and	and	Zel’dovich;	Doroshkevich,	Zel'Dovich		
								and	Syunyaev	in	the	70’s)	about	CMB	temperature	anisotropies,		
							even	though	at	that	1me	there	was	no	hope	to	detect	them	

From	Doroshkevich,	Zel'Dovich		
&	Syunyaev,	Astron.	Zh.,	1978	

Planck Collaboration: The cosmological legacy of Planck
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Fig. 18. Compilation of recent CMB angular power spectrum measurements from which most cosmological inferences are drawn.
The upper panel shows the power spectra of the temperature and E-mode and B-mode polarization signals, the next panel the
cross-correlation spectrum between T and E, while the lower panel shows the lensing deflection power spectrum. Di↵erent colours
correspond to di↵erent experiments, each retaining its original binning. For Planck, ACTPol, and SPTpol, the EE points with large
error bars are not plotted (to avoid clutter). The dashed line shows the best-fit ⇤CDM model to the Planck temperature, polarization,
and lensing data. See text for details and references.
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Planck	2018	results.	I.	Overview	and	the	cosmological	
legacy	of	Planck	



CNB	angular	power	spectrum		
Let	us	recall	Wolfgang	Pauli’s	remark	shortly	a\er	conceiving	of	the	
neutrino	in	1930:	“I’ve	done	a	terrible	thing	today,	something	which	
no	theore1cal	physicist	should	ever	do.	I	have	suggested	something	
that	can	never	be	verified	experimentally.”	Hopefully,	a	discussion	of	
CNB	proper1es	will	someday	cease	to	seem	as	exclusively	theore1cal	
as	it	does	today,	just	as	the	neutrino	itself	once	did	to	Pauli.		

From	Michney	&	Caldwell	2006	



BACK	UP	SLIDES	FOR	SOME	OF	THE	TOPICS	WE	MENTIONED	IN	PREVIOUS	SLIDES	



CMB	&	neutrinos	proper%es:	an	example		
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Fig. 49: Two-dimensional marginalized contour levels at 68% C.L. for ⌧ and the sum of the

neutrino masses as measured by future combinations of CMB and large-scale structure data,

for example including baryonic accoustic oscillation (BAO) from DESI or galaxy lensing and

clustering from LSST, adapted from Ref. [350]. The contours are centered on the fiducial

values ⌧ = 0.054 and
P

m
⌫

= 60meV, as indicated by the cross. A cosmic-variance-limited

measurement of ⌧ is reached with LiteBIRD (i.e., �(⌧) = 0.002). This ⌧ limit will enable a

better neutrino mass measurement, reaching a 5� detection when combined with DESI or

LSST.

cosmic-variance-limited measurement of ⌧ from LiteBIRD will enable a statistically signif-

icant detection of the neutrino mass, even for the minimum value
P

m
⌫

' 60meV allowed

by flavor-oscillation experiments.

The information on the amplitude of fluctuations in the low-redshift Universe might be

provided by the CMB lensing data from observations of the small-scale anisotropies (e.g.,

those of the future Simons Array [357], SO [51, 358], and CMB-S4 [359, 360] experiments),

and/or by data from large-scale structure surveys tracing the matter distribution (e.g.,

galaxy surveys with the Dark Energy Spectroscopic Instrument (DESI) [361] and the Legacy

Survey of Space and Time (LSST) [362]). Distance measurements, such as those coming from

BAO data, will further improve the constraints by adding information about the cosmic

expansion history [355]. To give a specific example, combining a cosmic-variance-limited

measurement of ⌧ (�(⌧) = 0.002) with observations of the small-scale CMB anisotropies from

CMB-S4 and either BAO data from the DESI galaxy survey [361] or galaxy lensing/clustering

data from the LSST survey of the Vera Rubin Observatory [362], will in both cases yield

�(
P

m
⌫

) = 12meV [350]. This will result in a detection of the neutrino mass at the 5�

level, for the minimum value of 60meV, or larger. Fig. 49 shows the constraining power of
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Ø  Determina1on	of	op1cal	depth	τ		impact	the	determina1on	of	the	sum	of	neutrinos	masses:	
					Massive	neutrinos	slow	down	structure	forma1on	and	consequently,	one	can	measure	the		
					neutrino	mass	by	comparing	the	amplitude	of	fluctua1ons	in	the	low-redshi\	Universe	
					with	that	at	the	last-scaJering	surface	(i.e.,	A_s).	However,	we	cannot	determine	A_s	unless		
					we	know	τ.		
			

From		
“Probing	Cosmic	Infla1on	with	the	LiteBIRD		
Cosmic	Microwave	Background	Polariza1on	Survey”	
LiteBIRD	collabora1on,		
hJps://arxiv.org/pdf/2202.02773.pdf						



The	Cosmic	Neutrino	Background	(CNB)			
Ø  N.B:	More	refined	computa1ons	for	neutrino	decoupling	also	means	to	accout	for		
						finest	details	such	as	QED	finite-temperature	correc%ons		and	neutrino	oscilla%ons	
	
				e.g.	QED	finite-temperature	correc1ons	lead	to	a	renormaliza1on	of	the	electron,		
													positron	and	photon	masses.	This	in	its	turn	affect	a	series	of	relevant	quan11es	
													via	the	energy	of	these	par1cles	in	their	distribu1on	func1ons,	e.g.:	
												-	equa1on	of	state	of	the	Erlay	Universe	
												-	the	energy	density	and	eherefore	
												-	the	expansion	rate	H	

(aT
�

)fin. �⇢
⌫

e

/⇢0
⌫

�⇢
⌫

µ

/⇢0
⌫

�⇢
⌫

⌧

/⇢0
⌫

Ne↵

no-QED 1.39910 0.946% 0.398% 0.398% 3.0340
FT-QED 1.39844 0.935% 0.390% 0.390% 3.0395

osc.(✓13 = 0) + QED 1.3978 0.73% 0.52% 0.52% 3.046
osc.(s213 = 0.047) + QED 1.3978 0.70% 0.56% 0.52% 3.045

Table 2: Results of kinetic equations numerical integration for neutrino decoupling in various theoretical
models. First column shows the asymptotic dimensionless photon temperature. Second, third and fourth
ones report the relative energy gain of neutrinos, while the last row presents the e↵ective number of
neutrino species. Data taken from Dolgov et al. 1999, Mangano et al. 2002 and Mangano et al. 2005.

proceed as in vacuum. This behaviour can be easily checked in results of numerical
solutions performed by Mangano et al. 2005 reported in Figure 2: at about x ' 0.3 we
see that di↵erences between vacuum (green) and oscillating (red or blue) solutions start
to become bigger and bigger. As in previous cases same conclusions can be applied to
final frozen values of distortions as reported in Figure 3. From the latter is also clear
that the net e↵ect of oscillations consists in erase flavour di↵erences between non-thermal
distortions, in fact at every comoving momentum value electron neutrino distortions
decrease while muon and tau neutrino distortions increase.

As done before, once found the final neutrino distributions, the frozen values of same
quantities characterizing neutrino heating can be calculated. Results are shown always in
Table 1. We notice that when flavour oscillations are taken into account, modifications in
the individual values of ⇢

⌫

↵

can be clearly seen, but the contribution of neutrino heating
to the total relativistic energy density is almost unchanged, with a value of Ne↵ = 3.046.
This value is fully consistent with the latest analysis of Planck data (Planck Collaboration
2018), even if with the current sensitivity we are still not able to measure such a tiny
deviation.

From the observational point of view both these e↵ects are too small to influence
BBN. Considering only finite temperature corrections we find a change in the 4He mass
fraction �Y

�

4He
�

⇠ 10�4, which is smaller than the actual theoretical (5 · 10�4), and
experimental (& 2 · 10�3), uncertainties on this quantity. This change is actually slightly
larger (it roughly doubles) when one takes into account the e↵ect of flavour neutrino
oscillations, but despite this improvement we are still well below current uncertainties.

Finally we mention that all results aforementioned were computed in NH mass
ordering and with the following reference values for first four PNMS matrix parameters
(Mangano et al. 2005)

✓

�m2
12

10�5 eV2 ,
�m2

31

10�3 eV2 , s
2
12, s

2
23, s

2
13

◆

NH

= (8.1, 2.2, 0.3, 0.5, 0) , (31)

while for ✓13 also the 3� bound value s213 = 0.047 was considered. However these
values are no longer best possible fits. A newer study (Salas and Pastor 2016) aimed to
the introduction of non standard electron-neutrino interactions (not discussed here) in
neutrino decoupling process, starts from a re-computation of standard decoupling with

17

N.B.		



Neutrinos	and	infla%onary	GWs	

Ø 	For	wavelengths	that	enter	the	horizon	during	the	radia1on	era	
					and	long-a\er	neutrino	decoupling			
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

Ø 	In	absence	of	neutrinos	the	solu1on	is		
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FIG. 8: Comparison between numerical solutions and analytical solutions of tensor perturbations. The effect of neutrino
free-streaming is included for numerical solutions, but not for analytical solutions. The dashed and short-dashed lines show
numerical solutions of the high and low frequency modes, respectively. The higher k-modes enter the horizon during the
radiation era after neutrino decoupling, and thus the numerical solution is damped by neutrino free-streaming compared to the
analytical solution, χ(kτ ) = j0(kτ ) (solid line). On the other hand, the lower k-modes enter the horizon much later, and thus
the numerical solution is closer to the analytical solution during the matter era, χ(kτ ) = 3j1(kτ )/kτ (dotted line).

We solve Eq. (D27) numerically by two steps; (i) we obtain a(τ) and a′(τ) from the Friedman equation (26) with g∗(τ)
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decoupling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).
In order to estimate the damping effect, let us consider the radiation era after neutrino decoupling. During the

radiation era, a′(u)/a = 1/u, the analytical solution is given by χ(u) = j0(u) in the absence of neutrino free-streaming
in Eq. (D27). In the presence of neutrino free-streaming, the solution becomes asymptotically (u ≫ 1)

χ(u) → A
sin (u+ δ)

u
, (D29)

where A = 0.80313 and δ = 0 are obtained from our numerical calculations. This asymptotic solution is valid only
for rather long wavelength modes which entered the horizon well after the neutrino decoupling. The suppression
factor A2 = 0.64502 applies to the gravitational wave spectrum of the modes that entered the horizon after neutrino
decoupling but before matter domination.
In order to understand the shape of the spectrum, Figs. 4 and 5, we need to consider shorter wavelength modes

as well. This may be understood as follows. As we saw in Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravitational waves. This is because the contribution is mainly from
the first period of χ′(u), where the first trough is larger than the first peak. In previous paragraph we have considered
the modes with kτνdec < 1. Now let us consider the higher k-modes with kτνdec ∼ 1, or k ∼ 10−10 − 10−9 Hz. Note
that kτνdec = 1 represents the mode which entered the horizon at the neutrino decoupling time, τνdec. The mode with
larger wavenumbers would enter the horizon earlier. Fig. 9 shows numerical solutions of χ′(u) for which neutrinos
decoupled at τνdec given by kτνdec = 1.25, 2.5, or 3.75. For kτνdec = 1.25 and 2.5, neutrinos decoupled at the
first trough of χ′(u), where χ′(u) is negative. Thus their amplitudes are damped by giving energy to free-streaming
neutrinos (see Eq. (D11) and discussion below it). For kτνdec = 3.75, neutrinos decoupled right after the first trough
of χ′(u), where χ′(u) is closer to zero. Thus its amplitude is unchanged, but its phase is delayed. Fig. 10 shows
numerical solutions of χ′(u) with kτνdec = 5.0. For kτνdec = 5.0, neutrinos decoupled at the first peak of χ′(u),
where χ′(u) is positive. Thus the amplitude of gravitational waves is actually amplified by gaining energy from free-
streaming neutrinos, and we can see this feature on the spectrum, Fig. 5, at ∼ 5× 10−10 Hz. Neutrino free-streaming
makes gravitational waves either damp or amplify depending on their frequencies. Note that this feature is generic to
instantaneous decoupling of any kinds of particles, but not realistic for neutrinos as we mentioned in Sec. IV.

DAMPING	EFFECT		



The	Cosmic	Neutrino	Background	(CNB)			

Ø 	Perhaps	one	of	the	most	important	not	yet	directly	probed	predic,on		
					of	the	standard	cosmological	model			

Ø 		Direct	detec1on	is	extremely	challenging	because	of:		
						the	feebleness	of		the	weak	interac1ons	and	the	smallness	of	relic		
						neutrino	energies,	diluted	by	cosmic	expansion		
	
Ø  		This	is	why	various	indirect	cosmological	signatures	of	neutrinos	are		
							central	to	(cosmologically)	constrain	their	proper1es	(e.g.	their		
							effects	on	CMB	and	Large-Scale	Structures)	and	most	of	the	more		
							cosmologically-oriented	lectures	have	been	dealing	with	them		
	
Ø  	Here	I’ll	focus	on	a	future	(be`er…..futuris,c)	signature,	related	to		
					an	eventual	direct	detec,on	of	neutrinos:	CNB	spa,al	anisotropies.		
	
	


