Solar and Supernova neutrinos

Aldo Ianni ISAPP 2023 27 Jun – 6 Jul Varenna, Italy

Outline of lectures

- solar neutrinos and historical remarks
- Brief digression on geo-neutrinos
- detection techniques for solar neutrinos
- solar neutrinos: results
- detection of neutrinos from core collapse supernovae

Email: aldo.ianni@lngs.infn.it

Solar Neutrinos

Fundamental paradigm:

The source of energy in the sun makes neutrinos:

 $4p \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + (24.69 + 2.1.022)MeV$

Hydrogen burning works through: pp-chain reactions CNO bi-cycle

Observations of the sun and the solar energy paradigm

- Sometime around 300 B.C., Hellenistic scholars
- **1610** Galileo Galilei observes sunspots and determines the rotational velocity: 1st experimental study of the Sun
- William Herschel (1738-1822) believes the Sun has a solid surface with a shining atmosphere
- 1862, Hermann von Helmholtz proposes the energy of the Sun is due to gravitation and makes an estimation for the age of 20×10⁶ years
- **1868**, Jules Janssen and Joseph N. Lockyer, independently, discover a new element on the surface of the Sun. Lockyer names it helium after Helios.
- **1905**, Einstein E = mc²
- **1920**, Arthur Eddington proposes hydrogen to helium fusion as the main source of energy in the Sun
- **1928**, George Gamow proposes the tunneling effect
- **1938**, Hans Bethe in *"Energy production in stars"* proposes the reaction chains to transform hydrogen into helium
- **1956**, the age of the Earth is established to be $(4.55\pm0.07) \times 10^9$ years and v observed

A few fundamental numbers

Solar luminosity: $L_{sun} = 3.8275 \times 10^{26} \text{ W} = 2.389 \times 10^{39} \text{ MeV/s}$

Solar Mass: $M_{sun} = 2x10^{30}$ kg

```
Solar radius: R_{sun} = 6.957 \times 10^8 \text{ m}
```

```
1 A.U. = 1.495978707 10<sup>11</sup> m
```

Sun's fluence at Earth = 8.4946x10¹¹ MeV/cm²/s

The pp-chain

- 26.2 MeV effective thermal energy/termination (pp-I)
- 9.2x10³⁷ hydrogen/sec
- 612x10⁶ ton/sec of H into He
- assuming 10% of solar mass involved in energy production: timescale ~ 10¹⁰ years
- Dominant in 1st generation stars
- 2nd generation stars might have a different mechanism at work

Berkeley Minglingtor Halmbakta-Gemeinschaft

Energy spectrum of pp solar neutrinos

•
$$p+p \rightarrow d + e^+ + v_e + Q_{pp}$$

•
$$Q_{pp} = 2m_p - m_d - 2m_e = 0.42 \text{ MeV}$$

•
$$\frac{d\Gamma}{dE_{\nu}} \propto E_{\nu}^{2} (Q_{pp} - E_{\nu} + m_{e}c^{2}) \sqrt{(Q_{pp} - E_{\nu} + m_{e}c^{2})^{2} - m_{e}c^{2}}$$

• Fraction of energy carried by neutrinos:
$$\frac{2 \ 0.27 \ MeV}{26.74} \sim 0.02$$

• Neutrino flux:
$$\phi_{\nu} = \frac{2 L_{sun}}{4\pi AU^2 (26.74 MeV - 2 \ 0.266 MeV)} = 6.5 \cdot 10^{10} cm^{-2} s^{-1}$$

• Problem: determine the energy dependence of the pp solar neutrinos

Solar neutrino fluxes if pp-chain dominates

• pp-II side chain $(1v_{pp} + 1v_{Be})$ reduces pp flux by 0.15.0.5=7.5%

✓
$$\phi_{pp}$$
~ 6.0·10¹⁰ cm⁻² s⁻¹
✓ ϕ_{Be} ~ 5.0·10⁹ cm⁻² s⁻¹
✓ ϕ_{B} ~ 6·10⁶ cm⁻² s⁻¹

- A different hydrogen burning mechanism in 2nd generation stars may involve light elements such as carbon and nitrogen
- This idea was originally introduced independently by von Weizsaker and Bethe between 1937 and 1939
- Idea based on the fact that second or third generation stars contain some «heavy» elements such as ¹²C
- ¹²C can indirectly induce fusion of 4 protons to form helium
- The total energy released is the same as for the pp-chain

The CN cycle

- $p + \frac{12}{6}C \rightarrow \frac{13}{7}N + \gamma$ • ${}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^+ + \nu_e \ (\leq 1.199 \ MeV, \tau \sim 860 \ s)$ • $p + {}^{13}_{6}C \rightarrow {}^{14}_{7}N + \gamma$ • $p + \frac{14}{7}N \rightarrow \frac{15}{8}O + \gamma$ • ${}^{15}_{8}O \rightarrow {}^{15}_{7}N + e^+ + \nu_e (\leq 1.732 \, MeV, \tau \sim 180 \, s)$
- $p + {}^{15}_{7}N \rightarrow \begin{cases} {}^{12}_{6}C + \alpha \\ {}^{16}_{8}O + \gamma \end{cases}$
- This cycle consumes only hydrogen
 It starts and ends with ¹²C which is used as a catalyst
- It transforms 4p into helium producing the same energy as • from the pp-chain
- It produces two electron neutrinos
- More efficient at higher internal energy ٠

- Slowest reaction from ¹⁴N interaction since it has the highest Coulomb barrier
 - pp: ${}^{12}C(p,\gamma)$: ${}^{14}N(p,\gamma) = 1: 3.5: 4.2$
- In addition (p, γ) slower than (p, α)
- Till 1950 CN cycle was considered the primary energy source in the sun
- Later it was understood that:
 - This cycle is not dominat in the sun
 - There exist additional cycles

Stellar interaction rates

•
$$\sigma(E) = \frac{S(E)}{E} e^{-2\pi\eta} \operatorname{con} \eta = Z_1 Z_2 e^2 / \hbar v \propto E^{-1/2}$$

- Interaction rate = $n\langle \sigma v \rangle \propto \int_0^\infty dE S(E) e^{-b/\sqrt{E}-E/kT}$
- $\tau \sim \frac{1}{n \langle \sigma v \rangle}$
- Determine S(E) below 100 keV is a hard experimental work ($T_{sun} \simeq 1.4 \text{ keV}$)
- S(E \approx 0) depends on extrapolation and tail of high energy broad resonances

•
$$\langle \sigma v \rangle = 2.802 \times 10^{-16} \left(\frac{Z_1 Z_2}{A T_7^2} \right)^{\frac{1}{3}} S(0) f_e e^{-3E_0/kT} \text{ cm}^3/\text{s}$$

- f_e accounts for electron screening
- E_0 is the Gamow peak energy (6-30) keV (for pp v is about 6 keV)
- Timescale for ${}^{12}C(p,\gamma)$ and ${}^{14}N(p,\gamma)$ of order 10⁷ and 10¹⁰ years at T_{\odot}

some thoughts

- Photons travelling to the surface of the sun
- How hot is the center of the sun?
- pp scattering vs pp fusion inside the sun
 - use S(0) = 4.0x10⁻²² keV barn

The CNO bi-cycle
•
$$p + {}^{15}_{7}N \rightarrow \begin{cases} {}^{12}_{6}C + \alpha \\ {}^{16}_{8}O + \gamma \end{cases}$$

• $p + {}^{16}_{8}O \rightarrow {}^{17}_{9}F + \gamma$
• ${}^{17}_{9}F \rightarrow {}^{17}_{8}O + e^+ + \nu_e \ (\leq 1.740 \ MeV, \tau \sim 90 \ s)$
• $p + {}^{17}_{8}O \rightarrow \begin{cases} {}^{14}_{7}N + \alpha \\ {}^{18}_{9}F + \gamma \end{cases}$
• The relative probability of (p, α) to (p, γ) in the sun is of order 2×10^3
• ${}^{14}_{7}N$ produces ${}^{15}_{8}O$ and carbon again
• This branch

Negligible contribution to energy production
 Important for nucleosynthesis of ¹⁶O and ¹⁷O

The CNO «cold» bi-cycle

Additional cycles

• $p + {}^{17}_{8}O \rightarrow \begin{cases} {}^{14}_{7}N + \alpha \\ {}^{18}_{9}F + \gamma \end{cases}$ • ${}^{18}_{9}F \rightarrow {}^{18}_{8}O + e^+ + \nu_e$

- The ratio of stellar reaction rates for ${}^{17}O(p,\alpha){}^{14}N$ and ${}^{17}O(p,\gamma){}^{18}F$ is ~ 1 for $T_6 < 25$ and $T_6 > 80$ [Ap J 194, 1974]
- The CNO cycle is tri-cycling

The CNO tri-cycle

The CNO four cycles

CNO bi-cycle H burning in the Sun

Solar neutrinos and energy production

Energy conservation

 $\frac{L_{\odot}}{4\pi (A.U.)^2} = \sum_i a_i \phi_i^{\nu}$ L_{\odot} =3.846±0.015 erg/s

At solar temperature

- $\epsilon_{pp} \propto T^4$ $\epsilon_{CNO} \propto T^{18}$

Stars mass-luminosity relationship

Fundamental conjecture

Properties and evolutions of stars are fully determined by its initial mass and chemical composition

Application of this conjecture allows to determine stars observable parameters: surface temperature radius luminosity surface metal abundace

The Solar Standard Model (SSM)

- Assumptions of the SSM
 - Hydrostatic equilibrium
 - Energy generation by H burning
 - Homogeneous zero-age Sun: primordial core metal abundance equal to today's surface metal abundance
 - Boundary conditions: present luminosity, radius, (Z/X)_{surf}
 - Fixed parameters: age, mass
 - evolution should match age and mass

Output of SSM

- Neutrino production region, neutrino fluxes
- Depth of convection zone, \mathbf{R}_{cz}
- Surface helium abundance, \mathbf{Y}_{surf}
- Profile of X(r), Y(r) and Z(r)
- density and sound speed profiles

SSM solar neutrino fluxes predictions

Within the SSM solar neutrino fluxes are written as:

$$\begin{split} \phi_{\rm pp} &\propto S_{11}^{+0.14} \cdot S_{33}^{+0.03} \cdot S_{34}^{-0.06} \cdot S_{1,14}^{-0.02} \cdot L_{\odot}^{+0.73} \cdot \tau_{\odot}^{-0.07} \\ &\quad \cdot Op_{\odot}^{+0.14} \cdot (Z/X)^{-0.08}, \\ \phi_{\rm Be} &\propto S_{11}^{-0.97} \cdot S_{33}^{-0.44} \cdot S_{34}^{+0.88} \cdot L_{\odot}^{+3.56} \cdot \tau_{\odot}^{+0.69} \\ &\quad \cdot Op_{\odot}^{-1.49} \cdot (Z/X)^{+0.59}, \\ \phi_{\rm B} &\propto S_{11}^{-2.59} \cdot S_{33}^{-0.40} \cdot S_{34}^{+0.81} \cdot L_{\odot}^{+6.76} \cdot \tau_{\odot}^{+1.28} \\ &\quad \cdot Op_{\odot}^{-2.93} \cdot (Z/X)^{+1.36}. \end{split}$$

Solar neutrino spectra

A. Serenelli et al, Astrophys.J. 835 (2017) no.2, 202 10¹³ 10¹² pp [± 0.6%] 10¹¹ ⁷Be [± 6%] 10¹⁰ Solar neutrino flux [cm⁻² s⁻¹] 10 pep [± 1%] 10^{8} 107 ⁸B [± 12%] 10⁶ 17F[±20%] 10⁵ 104 hep [± 30%] 10³ 10² Ē 10¹ 1 Neutrino energy [MeV] 10

The solar abundace problem

- Since 2005 best determination of surface metallicity gives a strong tension between data from helioseismology and SSM predictions
- CNO solar neutrino observation could shed light on this controversy

Solar neutrinos from SSM 2016

v source	SSM-HZ SSM-LZ
	[cm ⁻² s ⁻¹]
рр	5.98(1±0.006)x10 ¹⁰ 6.03(1±0.006)x10 ¹⁰
рер	1.44(1±0.01)x10 ⁸ 1.46(1±0.01)x10 ⁸
⁷ Be	4.93(1±0.06)x10 ⁹ 4.50(1±0.06)x10 ⁹
⁸ B	5.46(1±0.12)x10 ⁶ 4.50(1±0.12)x10 ⁶
hep	7.98(1±0.30)x10 ³ 8.25(1±0.30)x10 ³
CNO	4.88(1±0.16)x10 ⁸ 3.51(1±0.14)x10 ⁸

Paradigm of the Luminosity Constraint

Spiro and Vignaud, 1990

$$4p \rightarrow \begin{cases} \frac{4}{2}He + 2\nu_{pp} + 26.20 \ MeV \\ \frac{4}{2}He + \nu_{pp} + \nu_{Be} + 25.60 \ MeV \\ \frac{4}{2}He + \nu_{pp} + \nu_{B} + 19.70 \ MeV \end{cases}$$

 $\frac{L_{sun}}{4\pi d^2} = 8.4946 \cdot 10^{11} \frac{MeV}{cm^2 s} = \sum_i a_i \phi_i = 19.7 \ MeV \ \phi_B + 25.6 \ MeV \phi_{Be} + \frac{26.2 \ MeV}{2} \left(\phi_{pp} - \phi_{Be} - \phi_B\right)$

1 = 0.922 f_{pp} + 0.07 f_{Be} + 0.00004 f_B with $f_i = \phi_i / \phi_{SSM}$

Luminosity constraints and CNO neutrinos

 $\begin{array}{c} {}^{12}_{6}C~(p,\gamma)~{}^{13}_{7}N \\ M({}^{12}_{6}C) + M({}^{1}_{1}H) - M({}^{13}_{7}N) = 1.944~MeV \\ {}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e} \\ M({}^{13}_{7}N) - M({}^{13}_{6}C) - \langle E_{\nu} \rangle = 2.22~MeV - 0.707~MeV = 1.513~MeV \\ a_{N} = 3.457~MeV \end{array}$

Luminosity constraint refined

Bahcall, 2002; Vissani et al 2020

 1 H(p,e⁺v_e)²H and 1 H(p e⁻, v_e)²H have time scale of order 10¹⁰ yr and 10¹² yr, respectively

²H(p, γ)³He and ³He(³He,2p)⁴He have time scale of order 10⁻⁸ yr and 10⁵ yr, respectively So both ²H and ³He are in kinetic equilibrium, dn/dt = 0. This implies that:

 $R_{pp} + R_{pep} = R_{33} + R_{34} + R_{31}$ with $R_{ij} = \frac{\langle \sigma v \rangle_{ij} n(i)n(j)}{1 + \delta_{ij}}$ the reaction rate

$$\frac{L_{sun}}{4\pi d^2} = a_{pp}\phi_{pp} + a_{pep}\phi_{pep} + \frac{a_{33}}{2}(\phi_{pp} + \phi_{pp} - \phi_{hep} - \phi_{Be} - \phi_B) + a_{hep}\phi_{hep} + (a_{34} + a_{e7})\phi_{Be} + (a_{34} + a_{17})\phi_B + a_N\phi_N + a_0\phi_0$$

 $1 = 0.922f_{pp} + 0.002f_{pep} + 0.073f_{Be} + 0.00004f_B + 0.0011f_N + 0.0052f_O$

Detection of solar neutrinos

Experimental Search of Solar Neutrinos: early days

- 1946, B. Pontecorvo proposes a method to measure neutrinos by ³⁷Cl(v,e)³⁷Ar
- **1948**, H.R. Crane proposes the search of solar neutrinos
- **1949**, L. Alvarez proposes to make use of Pontecorvo's method to search for solar neutrinos
- **1963**, J. Bahcall determines the solar neutrino fluxes
- **1964**, J. Bahcall and R. Davis propose the Homestake experiment
- **1968**, the first experiment to search for solar neutrinos (Homestake) is in operation
-
- 1996, SuperKamiokande stars data taking
- ...
- 2002, Nobel Prize to Homestake and Kamiokande
- ...
- 2005, Solar Abundace Problem
- ...
- 2007, Borexino starts data taking
- ...
- **2015**, Nobel Prize to SNO and SuperKamiokande
- 2020, CNO solar neutrinos observation by Borexino

A proposed experimental test of the neutrino theory Luis Alvarez, 1949

problem to be worked out in class: explain in details the proposal goal: underline main difficulties in detecting low energy neutrinos

In Alvarez's proposal underlined all fundamental ideas to make the future first solar neutrino observation

- The radioactive isotope selected should decay mainly by emitting very short-range electrons
- It should exist in a gaseous molecule, preferably be a noble gas
- The substance from which it is produced by neutrino capture should be available in liquid form in large quantities
- The mass difference between initial and final state should be small
- The half-life should be long
- The decay rate should be well known
- Extraction technique feasible and established

^{37}Ar is well justified as main choice to search for low energy ν $^{37}\text{Cl}(\nu_e,e^\text{-})^{37}\text{Ar}$
Neutrino capture on ³⁷Cl

- Cross section to ground state ~ 3.3 x 10^{-45} cm² at 2 MeV
- $\sigma_{gs} = \frac{2\pi^2 \ln 2 (\hbar c)^3}{f_t (m_e c^2)^5} E_e p_e F(Z, E_e) \frac{2J_f + 1}{2J_i + 1}$
- Log $f_t = 5.1$ for ³⁷Ar
- GT matrix elements to excited states from mirror beta decay of ³⁷Ca

Detecting Solar Neutrinos

- Electron capture: $v_e + (A,Z-1) \rightarrow (A,Z) + e^- (\sigma^2 10^{-42} \text{ cm}^2)$
 - charged-current interaction
 - can be associated with a correlated delayed event from the produced (A,Z) nucleus
- Elastic Scattering: $v_x + e^- \rightarrow v_x + e^- (\sigma^{-44} \text{cm}^2)$
 - neutral-current interaction
 - Specific signature for monenergetic neutrinos
- $v_e + d \rightarrow e^- + p + p (E_v \ge 1.44 \text{ MeV}) (\sigma^{-42} \text{ cm}^2)$
- $v_x + d \rightarrow v_x + p + n \ (E_v \ge 2.74 \ MeV)$
 - − Associated with n+d→³H+γ(6.25 MeV) or n+³⁵Cl→³⁶Cl+ Σ γ(8.6 MeV)

Solar Neutrino Experiments: past and present

Detector	Target mass	Threshold [MeV]	Data taking
Homestake	615 tons C ₂ Cl ₄	0.814	1967-1994
Kamiokande II/III	3kton H ₂ O	9/7.5 / 7.0	1986-1995
SAGE	50tons molted metal Ga	0.233	1990-2007
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003
Super-Kamiokande	22.5ktons	5 7 4.5 3.5 3.5 Gd loading 0.01% Gd loading 0.03%	1996-2001 2003-2005 2006-2008 2008-2018 2019-2020 2020-2022 2022-present
SNO	1kton D ₂ O	6.75/5/6/3.5	1999-2006
Borexino	300ton C_9H_{12}	0.2 MeV	2007-2019

Detection of solar neutrinos

- $v_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar} (E_{th} = 0.814 \text{ MeV})$
- v_e + ⁷¹Ga \rightarrow e⁻ + ⁷¹Ge (E_{th} = 0.233 MeV)

•
$$v_x + e^- \rightarrow v_x + e^- (\sigma_{\nu_e e} \sim 9 \cdot 10^{-45} cm^2 \frac{E_\nu}{MeV} \sim 6 \sigma_{\nu_{\mu,\tau} e})$$

- $v_e + d \rightarrow e^- + p + p$ (E_{th} = 1.442 MeV)
- $v_x + d \rightarrow v_x + n + p$ (E_{th} = 2.224 MeV)

Geochemical detection of solar neutrinos

- $v_e + \frac{98}{42}Mo \rightarrow e^- + \frac{98}{43}Tc$, Q = 1.68 MeV abundance 24.3% (also ⁹⁷Mo to ⁹⁷Tc, Q=0.32 keV, abundance = 9.6%))
 - ${}^{98}_{43}Tc \rightarrow {}^{98}_{42}Mo + e^+ + v_e$, $\tau \sim 6 \cdot 10^6 \ yr \ (\sim 3.8 \cdot 10^6 \ yr \ for \ {}^{97}Tc)$
 - Proposal submitted in 1982 and crucial tests carried out in 1985-86
 - Identified a commercial site in Colorado with formation time about 25 My ago with depth of order 1-1.5km
 - 2600 tons of ore to extract 13 tons of MoS₂ which is turned to MoO₃
 - by floating separation 90 to 99% concentrate of MoS₂ can be produced
 - Available industrial processing at 50 tons/day to produce MoO₃
 - Chemical separation (ion exchange) to collect some 10⁷ atoms to be detected by a mass spectrometer (10⁶ atoms sensitivity)
 - In the chemical processing Tc forms volatile compound and can be separated
 - Test of stability of technetium in the ore is performed by demonstrating that ⁹⁹Tc is in secular equilibrium with uranium in MoS₂

• $v_e + \frac{205}{81}Tl \rightarrow e^- + \frac{205}{82}Pb$, Q = 0.05 MeV

- $^{205}_{82}Pb \rightarrow ^{205}_{81}Tl + e^+ + \nu_e$, $\tau \sim 2.5 \cdot 10^{10} yr$
- Need geological stability of ore
- Sensitivity to average neutrino flux over millions of years
 - Sensitivity to solar energy production stability

Geochemical experiment on ²⁰⁵TI

problem to be worked out in class determine the capture rate to the 1st excited state in ²⁰⁵Pb goal: underline main difficulties in capture cross section calculation and detection in such type of experiments

Classification of radio-isotopes

- <u>Primordial</u>: longlived, ²³⁸U, ⁸⁷Rb, ⁴⁰K, ²³²Th...
- <u>Cosmogenic</u>: produced by cosmic rays (primary and secondary) interactions, ¹⁴C, ³H, ⁷Be, ¹¹C, ³⁹Ar, ...
- <u>Antropogenic</u>: produced by nuclear tests, ⁸⁵Kr, ⁹⁰Sr, ¹³¹I, ¹³⁷Cs...

²³⁸U radioactive chain

- ²³⁸U is one of the longlived radioactive elements on Earth
- T_{1/2} = 4.47x10⁹ anni
- 238 U--> 206 Pb+8 α +6 β +51.7MeV
- ²²²Rn (noble gas) -> ²¹⁴Bi (3.2MeV β with many γ-rays)

²³²Th radioactive chain

• ²³²Th is another of the long-lived radioactive elements on Earth

(b)

²³²Th

1.41 x 10¹⁰ y

α.

²²⁸Ra 5.75 y

- $T_{1/2} = 14 \times 10^9$ years
- 232 Th--> 208 Pb+6 α +4 β +42.8MeV
- ²³²Th -> ²⁰⁸Tl (2.6 MeV γ-ray largest in natural radioactivity 5 MeV β)

235U radioactive chain

 $T_{1/2} = 7.04 \times 10^8$ anni

α

Radiogenic heat from the Earth

- How much of the heat released by the Earth is radiogenic?
- Geo-neutrinos can answer this question
- Geo-neutrinos are electron anti-neutrinos emitted by ²³⁸U, ²³²Th, and ⁴⁰K within the Earth (radiogenic elements)

Decay	$T_{1/2}$	E_{\max}	Q	$arepsilon_{ar{ u}}$	$arepsilon_{H}$
	$[10^9 {\rm ~yr}]$	[MeV]	[MeV]	$[\mathrm{kg}^{-1}\mathrm{s}^{-1}]$	[W/kg]
$^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8 ^{4}\text{He} + 6e + 6\bar{\nu}$	4.47	3.26	51.7	7.46×10^7	0.95×10^{-4}
232 Th $\rightarrow ^{208}$ Pb + 6 4 He + 4 e + $4\bar{\nu}$	14.0	2.25	42.7	1.62×10^7	0.27×10^{-4}
$^{40}\text{K} \rightarrow ^{40}\text{Ca} + e + \bar{\nu} 89\%)$	1.28	1.311	1.311	2.32×10^8	0.22×10^{-4}

 40 K + e⁻ \rightarrow 40 Ar + ν_e + 1.505MeV (10.7%)

A worked out example with uranium

• ²³⁸U \rightarrow ²⁰⁶Pb + 8 α + 6 β + 6 $\overline{\nu}_{e}$ + 51.7MeV

•
$$A_U = 0.9927(N_A/238)(1/6.45x10^9y)=1.23x10^4Bq/g(U)$$

•
$$L_v = 6 \times A_U = 7.4 \times 10^4 \text{ Bq/g(U)}$$

• Heat = 51.7MeV – (average v energy) = 51.02 MeV

Geo-neutrinos as a unique probe for the interior of the Earth

- Geo-neutrinos offer a <u>new and unique</u> method to probe the interior of the Earth
 - Determine abundance and distribution (in the crust and mantle) of Heat Pproducing Elements
 - Determine radiogenic heat

Geo-neutrino history

 The idea of geo-neutrinos was conceived in 1953 by George Gamow while Reines and Cowan were attempting to measure anti-neutrinos from a reactor

• A possible source of background

- In 1966 and 1969 Eder and Marx wrote papers on geoneutrinos
- In 1984 Kraus et al. published a comprehensive review on geoneutrinos in Nature
- In 1998 R. Raghavan et al. and F. Calaprice et al. published two independent papers discussing about detection of geoneutrinos in Borexino and KamLAND
- 2000-present pleanty of literature on geo-neutrinos flux calculation
 - Fiorentini et al. introduced the term TNU (SNU for solar neutrinos)
- In 2005 1st experimental investigation in KamLAND (25⁺¹⁹-18)
- In 2010 1st observation of geo-neutrinos in Borexino

Detection of geo-neutrinos

• Electron anti-neutrinos can be detected by the inverse-beta decay reactions:

$\bar{\nu}_{e}$ + p \rightarrow e⁺ + n (E_{th}=1.806 MeV)

• Two signals:

• **Prompt** from positron with

 $E_{visible} = E_v - (m_n - m_p) - m_e c^2 + 2 m_e c^2 = E_v - 0.782 MeV$

Delayed from neutron capture

 $n + p \rightarrow d + \gamma$ (2.22MeV)

Topology of an anti-v event in LS

Reactors in the World

Total antineutrino flux from the Earth (U + Th + reactors)

S.M. Usman, G.R. Jocher, S.T. Dye, W.F. McDonough & J.G. Learned Scientific Reports, 1 September, 2015

1st Borexino measurement of geo-v

Secular equilibrium: ²³⁵U

$$N_{Ac}(t) = N_U(0)e^{-\lambda_U t} \left(1 - e^{-\lambda_P a t}\right)$$
 1.0

HPGe detector: gamma spectroscopy

Best sensitivity of order 10 $\mu\text{Bq/kg}$

1ppt ²³⁸U = 12.35 μBq/kg 1ppt ²³²Th = 4.06 μBq/kg 1ppb K_{nat} = 31 μBq/kg

With ICP-MS one can probe fraction of ppt in U and Th (~ 1μ Bq/kg)

Natural background gamma-radiation in Ann Arbor, MI

Bi-Po tagging

• Exploit $\beta - \alpha$ decay sequence to infer ²³⁸U and ²³²Th contamination to very low levels (~ 10⁻⁶ µBq/kg) assuming secular equilibrium

An example from Borexino: ²³⁸U from ²¹⁴Bi-²¹⁴Po correlated events: $(7\pm2) \times 10^{-18}$ g/g

Homestake experiment

- $v_e + \frac{37}{17}Cl \rightarrow e^- + \frac{37}{18}Ar$, Q = 0.814 MeV
- ³⁷Ar decays back to ³⁷Cl with $T_{1/2}$ = 35 days
- 615 tons of C₂Cl₄ (tetracloroethylene) in the Homestake mine (1500m depth) in South Dakota, USA
- 40 days exposure followed by ³⁷Ar extraction
- $N(_{17}^{37}Cl)\sum_{i}\int_{0.814 \ MeV}^{15 \ MeV} dE_{\nu}\phi_{i}(E_{\nu})\sigma(E_{\nu}) = \frac{\lambda N(_{18}^{37}Ar,t_{run})}{\varepsilon_{e}\varepsilon_{c}(1-e^{-\lambda t_{run}})} b$
 - ✓ ϵ_{e} = extraction efficiency
 - $\checkmark \epsilon_{c}$ = counting efficiency
 - ✓ b = Ar background rate
- Within the exposure time 41 atoms are expected in 2x10³⁰

 \checkmark this corresponds to 8 SNU (1 SNU = 10⁻³⁶ captures/target nucleus/sec)

Background and operation for the Homestake experiment

- Cavity around the tank can be flooded with water for n shielding
- 0.2 cm³ of ³⁶Ar / ³⁸Ar (~10¹⁹ atoms) added before each run
- 40 days exposure
- Purging with helium for 20h which carries gas to a condenser to freeze C₂Cl₄ vapors
- Gas is sent to a charcoal trap at 77K to adsorb argon (melting point 83.8K)
- Extraction of Ar from the charcoal (heating a 200C) and purification (exposure to hot metal surface for O and N)
- Remove heavy elements (Xe, Kr, Rn) by gas chromatography
- Gas into small charcoal trap to remove traces of helium by pumping off at 77K
- Gas into a 0.5 cm³ proportional counter

Signal vs background in the Homestake experiment

- Extraction efficiency measured through ³⁶Ar, ~96%
- Counter looks for 2.8 keV Auger electrons with expected rate of 1cpd
 - ✓ background of counter ~ 1/month
 - \checkmark counting efficiency 40%
- Capture cross section
 - ✓ use mirror process: ${}^{37}_{20}Ca \rightarrow {}^{37}_{19}K + e^+ + \nu_e$ ✓ $\langle \sigma \phi \rangle = (1.14 \pm 0.03) \cdot 10^{-42} cm^2$
- Background mainly due to (α ,p) and (p,n) reactions to make $^{37}\mathrm{Ar}$
- Capture rate = 0.478±0.030(stat)±0.029(sys) day⁻¹

Background	³⁷ Ar atoms/day	
Cosmic rays Fast neutrons Radioactive contaminants in tank and in C_2Cl_4	0.047 ± 0.013 0.03 ± 0.025 < 0.017	
Signal	³⁷ Ar atoms/day	
Expected solar neutrino rate	1.5 ± 0.2	
Measurement	³⁷ Ar atoms/day	
	0.48 ± 0.04	

Gallium experiments

- $v_e + \frac{71}{31}Ga \rightarrow e^- + \frac{71}{32}Ge, \ Q = 0.233 \ MeV$
 - ✓ threshold is below pp neutrinos maximum energy
 - ✓ ground-state transition well known; transition to 1st excited state gives only a minor contribution to pp rate
- ⁷¹Ge decays back to ⁷¹Ga with $T_{1/2}$ = 11 days
- Two experiments: GALLEX at LNGS and SAGE at Baksan
- Expected rate ~0.04 events/ton of Ga/day with 56% from pp neutrinos
- **Minimum** predicted **rate** due only to pp and pep neutrinos
 - This rate comes to be 80 SNU larger than the «standard» rate due to the fact that only pp-I is taken into account
 - Any measurement below this value implies a physics modification of solar neutrino propagation to Earth
- In Gallex 100 tons of gallium chloride with 30.3 tons of Ga and 12 tons of ⁷¹Ga
 - 16 atoms in 20 days exposure: 1 in 10²⁹
 - Main background source from ⁷¹Ga(p,n)⁷¹Ge
- Ge produced is in the form GeCl₄ which is volatile and can be extracted by purging with nitrogen
 - A non-radioactive Ge isotope at 1 mg level is added before the run to determine the extraction efficiency
 - Extraction efficiency is 99.8%
- In 1998 GALLEX was upgraded to GNO (improved DAQ)
- Combined GALLEX + GNO result is 67±5 SNU, which is significantly smaller than the minimum predicted rate based on solar luminosity

65 solar neutrino runs in GALLEX Expected rate in detector ~ 0.5 event/day

- GNO energy specturm of selected ⁷¹Ge events in counter
- The empt histogram shows counts occurring in first 50 days (3τ).
- L-peak at 1.2 keV and K-peak at 10.4 keV are visible.
- Filled histogram counts after first 50 days.

The GALLEX source experiment

- To very the extraction procedure a neutrino source experiment was carried out in GALLEX
- A ⁵¹Cr neutrino source was was twice in 1994 and 1995
 - ⁵¹Cr is produced by neutron activation on CrO₃ enriched in ⁵⁰Cr at 38.6% level
 - Neutron activation was done at Grenoble with a 35 MW reactor
 - ${}^{51}Cr$ decays with $T_{1/2}$ = 27.7 days emitting neutrinos at 746(81%)keV
 - The source activity was ~65 PBq
 - The source was located at the center of the detector in a special hole
 - Result: A_{measured}/A_{predicted} = 0.882±0.078

Gallex coll., PL B 420 (1998) SAGE coll., PRC 59 (1999) 2246

The SAGE detector

- It made use of 30 tons of liquid metallic gallium in 4 containers holding 7 tons of target mass
- Metallic gallum is kept at 30C to remain molten
- A runs starts by adding 160 μg of stable Ge into each container
- After 3 weeks exposure hydlochloric acid solution is mixed with the metallic gallium
- Ge is extracted into aqueous phase and later vacuum evaporated
 - Extraction efficiency is ~95%
- GeH₄ is mixed with Xe and measured for six months in a proportional counter
- SAGE has also performed a calibration with a ⁵¹Cr source of 19 PBq giving A_{measured}/A_{predicted} = 0.95±0.12±0.03
- Combined all gallium measurements give: 66.2±3.1 SNU

813 keV (9.8%) 811 keV (90.2%)

From irradiation of CaO using fast neutrons ${}^{40}Ca(n,\alpha){}^{37}Ar$

No gamma ray in the decay as in ⁵¹Cr

Used in SAGE with ~0.4 MCi

~80% extraction efficiency

~16 W/MCi from 2.6 keV X-rays

SAGE coll., PRC 73 (2006) 045805

³⁷C'

Kamiokande-II experiment

- Exploit neutrino-electron ES in a water Charenkov detector underground
- $R = A \int_{T_{th}}^{T_{max}(E_{\nu})} dT \eta(T) \int_{E_{\nu}in(T)}^{E_{\nu}^{max}} dE_{\nu} \phi(E_{\nu}) \frac{d\sigma}{dT}(E_{\nu},T)$
- High radio-pure water required ~ 10^{-14} g/g
- Main backgrounds from 222 Rn and 208 Tl and from muon spallation on $^{16\circ}$ producing β decays from 8 B, 8 Li, 16 N, 12 B
 - ✓ Threshold > 7 MeV due to Radon background
- In water dN/dx ~ 210 photons/cm
- $N_{phe} \sim (210 ph/cm) L(cm) e^{-l/\lambda} \eta Q_{PMT} C \sim 40$ for 10 MeV electron
 - ✓ L = 5cm electron range for 10 MeV e⁻
 - ✓ I = 10m detector size
 - ✓ η =0.9 collection efficiency for PMT
 - ✓ λ = 50m light attenuation length
 - ✓ Q_{PMT} = 0.25 PMT quantum efficiency
 - ✓ C = 0.2 PMT coverage
 - ✓ $\Delta E/E \simeq 16\%$ at 10 MeV

The Super-Kamiokande experiment

- World leading water Cherenkov detector
- 50 kton of water in total and 32 kton in inner detector
- 22.5kton Fiducial Volume
- 11,146 50cm PMTs with 40% coverage
- Outer detector with 3m water and 1885 20cm PMTs
- Energy scale, angular distribution, and vertex position calibrate by a LINAC, injecting e⁻ from 5 to 16 MeV
- ${\rm ^{16}O}(n,p){\rm ^{16}N}$ and ${\rm ^{16}N}$ decay (Q_{\beta}=10.4 MeV) used for energy calibration
- Initial threshold at 5 MeV was reduced to 4 MeV by removing convection currents in inner detector, reducing Radon propagation
- In 2020 detector loaded with Gd₂(SO₃)₃ at 0.01% wt

Expected events in Super-Kamiokande

- Rate = Flux(E) × Cross-Section × Target
- For Super-K: 22.5 kton of water
- 8B neutrinos on average ~ 7.6 MeV above 5 MeV
- Flux ~ $5x10^6$ cm²/s, fraction above 5 MeV = 0.7
- Cross-section ~ 6.8x10⁻⁴⁴ cm² @ 7.6 MeV
- Target electrons: (N_A/18)×10×22.5×10⁹=7.5×10³³
- ~ 150 cpd/FM

$$\frac{data}{theory} = 0.44486 \pm 0.0062$$

Most precise ⁸B flux measurement, 1.4%

Day-Night asymmetry = -3.3±1.0±0.5 %

Sun through the neutrinos light from Super-Kamiokande

Sudbury Neutrino Observatory

- Build at 6000 m.w.e.
- 1kton D₂O in 12m acrylic vessel
- 9456 20cm PMTs
- 55% coverage
- 7kton H₂O shielding with 91 PMTs
- 3 phases
 - Pure D₂O
 - Salt
 - 40 vertical Neutral Current Detectors

SNO Neutral Current Trilogy

Pure D ₂ O	Salt	³ He Counters
Nov 99 – May 01	Jul 01 – Sep 03	Nov 04 – Nov 06
$n+d\tot+\gamma$	$n + {}^{35}CI \rightarrow {}^{36}CI + \Sigma \gamma$	$n + {}^{3}\text{He} \rightarrow t + p$
(E _γ = 6.25 MeV)	$(E_{\Sigma\gamma} = 8.6 \text{ MeV})$	proportional counters
	enhanced NC rate	σ = 5330 b
PRL 87, 071301 (2001)	and separation	event-by-event
PRL 89, 011301 (2002)		separation
PRL 89, 011302 (2002)	PRL 92, 181301 (2004)	 Backware Backware<
PRC 75, 045502 (2007)	PRC 72, 055502 (2005)	PRL 101, 111301 (2008)

"long" archival papers with complete details

PRC 81, 055504 (2010)

combined analysis with lower energy threshold ARXIV: 1109.0763 (2011) combined analysis of all three phases with pulse shape discrimination for ³He counters

A few considerations on SNO

- Probe at the same time CC, ES, and NC
- $\phi_{\nu_e}^{CC} \leq \phi_{\nu_e}^{ES}$
- $\phi_{\nu_x}^{NC} \leq \phi_{\nu_e}^{SSM}$

In 2001 combining SK and SNO data it was possible to establish a flavor change in solar neutrino propagation

<u>Solar Neutrino Problem (SNP)</u>

How to detect sub-MeV solar neutrinos in real time

- Make use of an organic liquid scintillator
- Material reach in hydrogen and electrons
 - Good for neutrino-electron ES and inverse-beta decay
- Scintillator = solvent(bulk) + solute
 - Solvent needs to be transparent (low light quenching), high radio-purity
- Light yield ~ 10⁴ photons/MeV
 - $N_{p.e.} \sim 10^4 e^{-6/10} 0.25 0.9 0.3 = 370 p.e./MeV$
 - Energy resolution ~ $0.05/\sqrt{T_e}$

What level of radio-purity ?

- <u>Goa</u>l: observe ⁷Be solar neutrinos
- σ ~ 5x10^{-45} cm^2 and ϕ ~ 5x10^9 cm^{-2} s^{-1}
- Use 100 tons of C_9H_{12} with $4.2x10^{31}$ electrons
- Expected events ~ 70 cpd
- With 100% PSD and 10⁻¹⁶ g/g of ²³⁸U and ²³²Th: ~76 cpd
- S/B ~ 1 requires extreme radio-purity

Beyond U and Th: ³⁹Ar, ⁸⁵Kr, ²¹⁰Pb

All spectra normalized to 1

Asking for 1 cpd/100tons $[0.1 \ \mu Bq/m^3 in LS]$ it implies:

- System sealed against ²²²Rn ~10⁻⁴ Bq/ton 1.
- 0.4 ppm 39 Ar in N₂ 2.
- 3. 0.2 ppt 85 Kr in N₂

²¹⁰Pb and ²¹⁰Po are often found not in equlibrium due to a different chemistry

The idea of Borexino

- In late 1980s it was proposed the idea that an organic liquid scintillator could have been purified to levels below 10⁻¹⁵ g/g
- This idea was put forward in an experimental effort running a 4 ton liquid scintillator detector at the Gran Sasso Laboratory: The Counting Test Facility (CTF)
- The success of the CTF paved the way to build Borexino
- The CTF showed that 10⁻¹⁶ g/g radiopurity was feasible and that the ¹⁴C contaminations was low enough to set a threshold at 200 keV

The BOREXINO detector

Borexino: nylon vessel installation

Borexino: liquid scintillator filling

Borexino Expected Solar v Spectrum

Spectrum with irreducible backgrounds 10^{7} All 10^{6} pp ⁷Be Events/(MeV x 100t x day) 10⁵ pep CNO 10^{4} ¹¹C 10^{3} 10 C 10^{2} 10^{1} $\mathbf{10}^{0}$ ¹⁴C 10⁻¹ 0.5 1.0 1.5 2.0 E_{visible} [MeV]

Borexino strategy

- Careful cleaning of as-built systems
- Purification of the liquid scintillator
- Use of the CTF detector to assess good performance of the proposed strategy:
 - test cleanlinesss
 - test purification and filling strategy

Borexino operations and achievements

Background in Phase-II

After 6 cycles of Water Extraction purification (May 2010 – August 2011)

- ⁸⁵ Kr reduced below sensitivity (Kr-Rb tagging)
- ²¹⁰Bi reduced to 20 cpd/100ton from about 100 cpd/100ton
- ²³⁸U (from ²¹⁴BiPo tagging) < 1.2x10⁻¹⁹ g/g at 95% CL
- ²³²Th (from ²¹²BiPo tagging) < 1.2x10⁻¹⁸ g/g at 95% CL (2 events in 600 days)
- ²²²Rn (5.8±1.2)x10⁻² cpd/100ton (< 1 atom in 100 tons)
 - ✓ Rn is not the source of 210 Pb

Borexino radio-purity

lsotope	Spec. in LS	After filling	After purification
²³⁸ U	≤ 10 ⁻¹⁶ g/g	(5.3±0.3) 10 ⁻¹⁸ g/g	≤ 9.4 10 ⁻²⁰ g/g
²³² Th	≤ 10 ⁻¹⁶ g/g	(3.8±0.8) 10 ⁻¹⁸ g/g	< 5.7 10 ⁻¹⁹ g/g
¹⁴ C/ ¹² C	≤ 10 ⁻¹⁸	(2.7±0.1) 10 ⁻¹⁸ g/g	no change
⁴⁰ K	≤ 10 ⁻¹⁸ g/g	≤ 0.4 10 ⁻¹⁸ g/g	
⁸⁵ Kr	≤ 1 cpd/100ton	30± 5 cpd/100ton	≤ 5 cpd/100ton
³⁹ Ar	≤ 1 cpd/100ton	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po	not specified	~ 8000 cpd/100ton	no change
²¹⁰ Bi	not specified	~ 20-70 cpd/100ton	20±5 cpd/100ton

 $A_{BX} \sim 40 \text{ cpd/100ton}$ in ⁷Be ROI

$$A_{BX} \sim 5 \times 10^{-9} \text{ Bq/kg}$$

The β-like energy spectrum

Pulse Shape Discrimination

Tagging and removing ¹¹C cosmogenic background

Remove ¹¹C and ²¹⁰Po

Background from nylon vessel

Convective currents can carry radioactive isotopes from the nylon vessel into the Fiducial Mass

Nylon vessel has ppt level of U, Th plus out-of-equilibrium ²¹⁰Pb and surface ²¹⁰Po contamination

Some isotopes can leach off the surface and move to the FM

²¹⁰Po in LS has two components:

- 1. Intrinsic (supported by ²¹⁰Pb)
- 2. Due to convection

Multivariate fit example

102

Thermal insulation and temperature control

Borexino Water Tank with insulation

Temperature as a function of time in different volumes of the detector

Goal: reduce seasonal and external activity effects to avoid convective currents

²¹⁰Po background in Borexino

 $R(^{210}Po_{min}) = R(^{210}Bi) + R(^{210}Po^{Vessel})$

- ²¹⁰Po rate in Borexino in cpd/100tons from bottom to top
- 3 tons cubes within 3m sphere
- 1. Beginning of thermal insulation
- 2. Water re-circulation loop in Water Tank off
- 3. Active temperature control system on
- 4. Change set point in the active control system
- 5. Air temperature control system in underground Hall

Aldo Ianni

CNO solar neutrinos

107

Solar neutrinos: observations vs theory

Sorgente	Flusso [cm ⁻² s ⁻¹] SSM-HZ	Flusso [cm ⁻² s ⁻¹] SSM-LZ	Flusso [cm ⁻² s ⁻¹] Data
pp (BX)	5.98(1±0.006)×10 ¹⁰	6.03(1±0.005)×10 ¹⁰	6.1(1±0.10)×10 ¹⁰ w/o luminosity constraint
pep (BX)	1.44(1±0.009)×10 ⁸	1.46(1±0.009)×10 ⁸	1.27(1±0.17)×10 ⁸ (HZ CNO) 1.39(1±0.15)×10 ⁸ (LZ CNO)
⁷ Be (BX)	4.93(1±0.06)×10 ⁹	4.50(1±0.06)×10 ⁹	4.99(1±0.03)×10 ⁹
⁸ B (SK+SNO)	5.46(1±0.12)×10 ⁶	4.50(1±0.12)×10 ⁶	5.35(1±0.03)×10 ⁶
CNO (BX)	4.88(1±0.11)×10 ⁸	3.51(1±0.10)×10 ⁸	6.6 ^{+2.0} -0.9×10 ⁸
p-value (pp, Be, B)	0.96	0.43	

CNO luminosity from Borexino

- Luminosity constraint: $\frac{L_{\odot}}{4\pi A.U.^2} = \sum_i \alpha_i \phi_i$
- In the assumption of luminosity constraint:

$$\frac{L_{CNO}}{L_{\odot}} = \phi_{CNO}^{BX} \sum_{i=\{N,O,F\}} \alpha_i f_i = 1.0^{+0.4}_{-0.3} \%$$

- α_i taken from F. Vissani, 2020
- Borexino has proven CNO is at work in the Sun as predicted by SSM, only metallicity is still unknown

Solar neutrinos in LXe

- pp neutrinos in [1,10] keV ~ 26/ton/yr
- ~2% stat in 100 ton x year
- Sensitivity to CNO and pep neutrinos limited by ¹³⁶Xe
- Possible 3σ CNO neutrinos measurement with x1000 reduction of 136 Xe and 1000 ton x year
- In LAr ^{39}Ar plays a role similar to $~^{136}\text{Xe}$ but at low energy, Q_{\beta} = 0.565 MeV

Solar neutrinos in LAr

For E > Q_β pep ~ 5% and CNO ~6% stat in 100 ton x year

Next future for solar neutrino detection

JUNO 20 ktons of LAB Calibration -Тор Filling + Tracker overflow **Central Detector** Water ro. 35 4 n 43.5m Cherenkov 20kt Liquid Scintillator ~2000 20" Connecting ~17000 20" PMT РМТ bars: ~600 -34000 3" PMT Pillar D43.5m

HyperKamiokande 187kton H_2O FM

 $\nu_e + {}^{40}Ar \rightarrow e^- + {}^{40}K$

Solar neutrino measurements in HK

Adapted from M. Shizowa

113

The Selena proposal

Detection of neutrinos from a core collapse supernova

Nucleon binding energy

- On average $\varepsilon_N \sim 8$ MeV/nucleon
- Maximum for ⁵⁶Fe
- Short range interaction
 - Binding energy ~ 8A
 - Not ~ A(A-1) ~ A²
- A massive start (>10M_{sun}) burns silicon at T~4x10⁹ K (0.3 MeV) and make iron
- No other fusion process is possible
- When the iron core exceeds 1.4M_{sun} gravity is no longer sustained by internal pressure

© 2012 Encyclopædia Britannica, Inc.

General picture

- Internal pressure cannot balance gravity, the core shrinks and becomes hotter
- Whent the temperature reaches 10¹⁰K, photons in the tail of the distributin have enough energy to rip nuclei apart
 - The fusion nucleosynthesis is undone
- Photodisintegration of iron nuclei takes a lot of energy and boost the collapse
- At the onset of the gravitational collapse neutrinos are produced through: $e^- + p \rightarrow v_e + n$
 - This process follows the photodisintegration of Fe, reduces the number of e⁻, reducing the electron pressure and boosting the collapse
 - When $\rho > 10^{11} \text{ g/cm}^3$ neutrinos are trapped in the so-called neutrino sphere (NS)
 - When the inner core reaches 3x10¹⁴ g/cm³ and falling matter bounce back propagating through the NS increasing e+p capture and v_e production (deleptonisation burst)
 - The NS sphere heated by the shock wave emits a neutrino burst from $\gamma \leftrightarrow e^- + e^+ \leftrightarrow \bar{\nu} + \nu$
- Free-fall time from 10⁹ g/cm³ < 0.1 s
- The collapse is supposed to end to a neutron start with $M \simeq 1.5 M_{sun}$ and $R \simeq 15 km$
- The energy is released by neutrinos streaming away
- Electron neutrinos and electron anti-neutrinos have larger opacity due to CC interactions: $v_e + n \rightarrow e^- + p$, $\bar{v}_e + p \rightarrow e^+ + n$
- We expect: $\langle E_{\nu_e} \rangle \leq \langle E_{\overline{\nu}_e} \rangle \leq \langle E_{\nu_x} \rangle$
- Neutrino diffusion time ~ 1sec with $\lambda {\sim} 2m$ due neutrino-nucleon interaction

SN1987A: 1st SN v observation

- 23rd Feb 1987
- ~ 50 kpc
- Only 29 events
 - 16
 - Kamiokande (Cherenkov)
 - 8 IMB(Cherenkov)
 - 5 Baksan (LS)

Neutrino energy and luminosity

- Neutrino emission time: $\tau \sim 10$ sec
- SN binding energy: $E_b = \frac{3}{5}G\frac{M^2}{R} = 1.6 \cdot 10^{53} erg \left(\frac{M}{M_{sun}}\right)^2 \left(\frac{10km}{R}\right)$
- Considering a mass at ρ >10¹¹ g/cm³ where neutrinos are trapped (neutrino sphere): energy/time = $4\pi R^2 \sigma T^4 (7/8)(g_v/2) \sim 2.4 \times 10^{52} \text{ erg}$
- T = $6x10^{10}$ K and E_v=3.15T = 16 MeV
- $L_{\nu} = \frac{E_b}{E_{\nu}} \sim 10^{57} \, \mathrm{s}^{-1}$
- Compare with solar neutrino luminosity = 2x10³⁸ s⁻¹

Estimation of the binding energy and neutrino energy from SN1987A

- + Consider:
 - + 12 neutrino observed in Kamiokande in 10³ tons of water
 - + <E_v> ~ 10 MeV

$$12 = N_{\text{target}} \cdot F_{v} \cdot \sigma$$

$$\sigma \approx 9.3 \cdot 10^{-42} \text{ cm}^{2}$$

$$N_{\text{target}} = 6.7 \cdot 10^{31}$$

$$N_{v} = F_{v} \left(4\pi D^{2}\right) = 5.7 \cdot 10^{57} \quad \bar{v}_{e}$$

$$E_{b} = \langle E_{v} \rangle N_{v} = 5.7 \cdot 10^{58} \text{ MeV} \approx 10^{53} \text{ ergs for } \bar{v}_{e}$$

Probability of a galactic SN vs distance to the Sun

Mirizzi, Raffelt and Serpico, JCAP 0605,012(2006)

The SuperNova model

$$F_{v_{i}}^{0}(E_{v}) = \frac{Es}{4\pi d^{2}} \left(\frac{E_{v}}{E_{0,i}}\right)^{\alpha} \frac{(\alpha+1)^{\alpha+2}}{E_{0,i}^{2}} \frac{e^{-(\alpha+1)E/E_{0,i}}}{\Gamma(\alpha+2)} \text{ cm}^{-2}\text{Me}$$

$$E_{0,i} = T_{i}(\alpha+1)$$

$$\alpha = 3$$

$$d = 10 \text{ kpc}$$

$$\sum_{i} 4\pi d^{2} \int dE_{v}E_{v}F_{v_{i}}(E_{v}) = 3 \cdot 10^{53} \text{ erg}$$

$$N_{v_{e}} = 2.6 \cdot 10^{57}$$

$$N_{v,i} = 4\pi d^{2} \int dE_{v}F_{v_{i}}(E_{v}) = N_{v_{e}} = 2.2 \cdot 10^{57}$$

$$N_{v_{x}} = 7.8 \cdot 10^{57}$$

$$F^{Tot} = 1.1 \cdot 10^{12} \text{ cm}^{-2}$$

Expected signal

- Suppose a SN at 10 kpc
- Total fluence 10^{12} v/cm^2
- Detector = 1kton water Cherenkov
- Detection channel: IBD and ES
- Expected events:
 - ES: $6x10^{32}$ $1.4x10^{-43}$ $4x10^{11}$ + $6x10^{32}$ $0.2x10^{-43}$ $6.5x10^{11}$ ~ 40
 - IBD: $6.7x10^{31}$ $1.6x10^{-41}$ $1.7x10^{11} \sim 180$
- For SuperKamiokande FM of 22.5 kton implies order of 900 ES and 4000 IBD

Neutrino Energy in MeV

Neutrinos <100 MeV from outside the Earth

Effect of neutrino oscillations

•
$$\phi_{\nu_e} = P_{ee} \phi^0_{\nu_e} + (1 - P_{ee}) \phi^0_{\nu_x}$$

•
$$2\phi_{\nu_x} = (1 - P_{ee})\phi_{\nu_e}^0 + (1 + P_{ee})\phi_{\nu_x}^0$$

•
$$2\phi_{\nu_x} + \phi_{\nu_e} = 2\phi_{\nu_x}^0 + \phi_{\nu_e}^0$$

• Normal Ordering $P_{ee} \sim 0.68$ for electron anti-neutrinos, $P_{ee} \sim 0.02$ for electron neutrinos

Neutrino arrival time on Earth

A massive neutrino will experience a delay in the arrival time

$$\Delta t = \frac{D}{2c} \left(\frac{m_{\nu}c^2}{E_{\nu}}\right)^2 = 5.1ms \left(\frac{m_{\nu}c^2}{1 \text{ eV}}\right)^2 \left(\frac{10 \text{ MeV}}{E_{\nu}}\right)^2$$

Looking at the arrival times of neutrinos with different energy one can establish a limit on the neutrino mass of order 20 eV

SN ν detection in liquid scintillator detectors

Interaction channels

- Neutrino-electron ES
- IBD above 1.806 MeV
- ${}^{2}C(v_{x}, v_{x}){}^{12}C^{*}$, E_{th} = 15.11 MeV, all flavors
- ¹²C(anti-v_e, e⁺)¹²B, E_{th} = 14.39 MeV
- ${}^{12}C(v_e, e){}^{12}N, E_{th} = 17.34 \text{ MeV}$
- $v_x + p \rightarrow v_x + p$, no threshold, all flavors

Interaction channel	Detection Threshold [MeV]	Expected average energy [MeV]	Number of events per kton w/o oscillations	Number of events per kton w/ oscillations
IDB	1.02	~20	193	202
ES	0.2	~7.5	16	16
¹² C(anti-n _e ,e ⁺) ¹² B	1.02	15	4.5	5.2
¹² C(n _e ,e ⁻) ¹² N	0.2	12	2.2	7.3
¹² C(n _x , n _x) ¹² C	15.1	15.1	19	19
$n_x + p \rightarrow n_x + p$	0.2	0.4	90	90

Geochemical detection of SN neutrinos

- Haxton and Johnson in 1988 (Nature 333 (1988) 325–329
 - Recently re-considered in arXiv:0901.0581
- Use ⁹⁸Mo and ⁹⁷Mo to detect SN neutrinos collected in a ore underground
- Half-lifes ~10⁶ years eliminate the possibility of priomordial formation
- Any ⁹⁸Tc or ⁹⁷Tc found in the ore above the expected contrbution of solar neutrinos and cosmic rays is due to SN neutrinos
- Archeological signature from past galactic supernovae

The SN neutrino spectrum in a Borexino-like detector for v-p scattering

Breaking <**E**_x**>** and **E**_{binding_x} **degeneracy**

Reference SN: $E_x=16$ MeV; $E_{b-x}=0.5\times10^{52}$ erg (total energy is 10^{53} erg) LAr with ROI = [20,80] keVr Select different E_x and E_{bx} to give the same number of events above threshold E_x changing from 12 to 20 MeV

Coherent neutrino-nucleus scattering

$$\frac{d\sigma}{dE_{r}} = \frac{G_{F}^{2}}{4\pi} Q_{W}^{2} M \left(1 - \frac{ME_{r}}{2E_{v}^{2}} \right) F^{2} \left(Q^{2} \right)$$

$$Q^{2} = 2E_{v}^{2} \left(1 - \cos \theta \right)$$

$$Q_{W} = \left(1 - 4\sin^{2} \theta_{W} \right) Z - N$$

$$\sigma = \frac{G_{F}^{2}}{4\pi} Q_{W}^{2} E_{v}^{2} \approx 4.215 \times 10^{-45} Q_{W}^{2} \left(\frac{E_{v}}{\text{MeV}} \right)^{2} \text{cm}^{2} \approx 4.215 \times 10^{-45} N^{2} \left(\frac{E_{v}}{\text{MeV}} \right)^{2} \text{cm}^{2}$$

Supernova neutrinos in Dark Matter detectors for WIMPs

- ✓ Detectors designed
 - to detect low energy nuclear recoils (< 100 keV)
 - to have high discrimination power between Electron Recoils (ER) and Nuclear Recoils (NR)
 - to have intrinsic low background due to the radio-purity of selected detector components
 - To have good fiducial mass determination
- ✓ Look ideal for cohNS measurement and SN neutrino observation

SN signal in Ar and Xe

Why solar neutrinos in the future?

• Particle physics

- Measurement of expected matter-vacuum upturn
- Measurement of day-night asymmetry

Astrophysics

- Solve the *solar abundance problem* by detecting CNO neutrinos
- Use solar neutrinos to better understand the Sun (*inverse* problem)

Conclusions

- 55 years of solar neutrino observations
- Fundamental results on neutrino physics and astrophysics
- More to come with SuperKamiokande
- Future observations with SNO+, HyperKamiokande, DUNE, and JUNO
- Observation of solar neutrinos with dark matter detectors

Thank you!