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What	are	we	going	to	learn??	
•  Lecture	1:		
						Some	basics	about	infla3on		
					-	dynamics	of	inflaCon:	simplest	models	and	slow-roll	parameters		
					-	predicCons	(power-spectra	of	primordial	density	perturbaCons	and	gravitaConal									
								waves)		
					-	contact	with	observaCons:	present	constraints	on	inflaConary	models		
	
•  Lecture	2:		
					Connec3ons	between	Early	Universe	and	neutrinos.	A	few	examples:	
				-	impact	of	neutrinos	on	infla1onary	gravita1onal	waves	
				-	further	connec1ons	with	infla1on		
				-	for	the	future:	spa1al	anisotropies	of	the	cosmic	neutrinos	background	
				-	neutrinos	and	isocurvature	perturba1ons	from	infla1on			
				
	
	
	



The	big	picture:	precision	cosmology			
ΛCDM:	The	standard	cosmological	model		
	
																						just	6	numbers…....	
describe	the	Universe	composiCon	and	evoluCon	

Homogeneous	background	 PerturbaCons	

Ωb,	Ωc,	ΩΛ,H0,	τ	
•  	atoms	4%	
•  	cold	dark	maYer	23%	
•  	dark	energy	73%	

As,	ns,	r	
•  	nearly		scale-invariant	
•  	adiabaCc	
•  	(almost)	Gaussian	

Λ??	CDM??	 ORIGIN???	
Credit:	L.	Verde	



We	seek	informa3on	
about	very	early	3mes		
and	very	high	energies	
E~1016	GeV	

We	are	here	

RecombinaKon	epoch:	CMB	decouples	at	T~0.2	eV	

CNB	decoupes	at	T~	1Mev	



	
4	FACTS	INFLATION	CAN	EXPLAIN	

•  The	Universe	is	old	
•  	The	Universe	is	homogeneous	and	isotropic	
(on	large	scales)	

•  	The	Universe	today	is	very	close	to	be	
spaCally	flat		

•  	Most	importantly:	Structures	grew	out	of	
Cny,	nearly		scale	invariant	(almost	Gaussian)	
perturbaCons	



A	step	back	in	Kme		



log[a(t)]

Comoving
scales Inflation

Comoving
Hubble Horizon

Hot Big Bang

horizon re-entryhorizon exit

super-horizon sub-horizonsub-horizon

Figure 2: Time evolution of the comoving Hubble horizon during inflation and the following epoch,
compared to the evolution of a comoving scale λ [53]. During the accelerated expansion the comoving
Hubble horizon decreases in time, while it grows during the radiation and matter dominated epochs.
At a certain time during inflation, the comoving scale λ exits the comoving Hubble horizon and then
re-enters after inflation is over. The behavior of the comoving Hubble horizon shown in this figure,
provides a solution to the horizon problem.

this process is substantially completed is called reheat temperature. Many models have been proposed
to describe this transition, some of which include the perturbative decay of the inflaton field while
others involve non-perturbative mechanisms, such as parametric resonance decay. If the fluctuations
are sufficiently small, inflaton quanta could decay into relativistic products. This happens as soon
as the inflaton decay rate Γ becomes comparable to the Hubble constant. If the decay is slow, only
fermionic decays are available. Usually each decay product is supposed to thermalize quickly so that
their energy distribution can be described by a black-body function and the reheating temperature
for a sudden process is Treh ∼

√
MplΓ. Then a mechanism is supposed to take place that leads to

energy transfer of the decay products into radiation. Otherwise, if the scalar field decays into bosonic
particles, we can have a rapid decay through a parametric resonance mechanism. The process may
be so fast that it ends after a few oscillations of the inflaton field. This phase is called preheating
phase [55].

2.2 Quantum fluctuations: origin of cosmological perturbations

We can now move to consider quantum aspects of the inflationary paradigm. The current under-
standing of structure formation and generation of CMB anisotropies requires the existence of small
fluctuations that entered the horizon during the radiation and matter era. Employing only the stan-
dard cosmology we cannot explain the presence of perturbations. On the other hand, the quantum
aspects of the inflationary mechanism constitute a natural way to explain the presence of such small
seeds.
According to quantum field theory, each physical field involved in a theory is characterized by quan-
tum fluctuations: they oscillate with all possible wavelengths maintaining zero average on a sufficient
macroscopic time. The inflationary accelerated expansion can stretch the wavelength of these fluctu-
ations to scales greater than the Hubble horizon k ≫ aH , where k is the comoving wave number of a
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The	rise	and	fall	...	of	the	comoving	Hubble	horizon	
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the	inflaton	is	slowly	rolling	down	its	poten3al	

A	single	real	quantum	scalar	field	with	a	canonical	kineCc	term	on	top	of	a	rather	flat	poten3al		
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Inhomogeneous 

Quantum		
fluctuaCons	of	a	
scalar	field,	the	
inflaton,	set	the	
ini3al	condi3ons	for	
CMB	anisotropies	
and	Large-Scale	
Structure	formaCon		
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§  FluctuaCons	in	the	inflaton	produce	fluctuaCons	in	the	universe	expansion	from	
place	to	place		
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AddiKonal	expansion	

§  On	large	(super-horizon	scales)	each	region	in	the	universe	goes	through	the	
same	expansion	history	but	at	slightly		different	Cmes:		
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C. Matter plus radiation

In a multi-fluid system we can define uniform-density
hypersurfaces for each fluid and a corresponding curva-
ture perturbation on these hypersurfaces, ζ(i) ≡ −ψ −
δρ(i)/ρ̇(i). Equation (18) then shows that ζ(i) remains
constant for adiabatic perturbations in any fluid whose
energy–momentum is locally conserved: nνT µ

(i) ν;µ =
0. Thus, for example, in a universe containing non-
interacting cold dark matter plus radiation, which both
have well-defined equations of state (pm = 0 and pγ =
ργ/3), the curvatures of uniform-matter-density hyper-
surfaces, ζm, and of uniform-radiation-density hypersur-
faces, ζγ , remain constant on super-horizon scales. The
curvature perturbation on the uniform-total-density hy-
persurfaces is given by

ζ =
(4/3)ργζγ + ρmζm

(4/3)ργ + ρm
. (20)

At early times in the radiation dominated era (ργ ≫ ρm)
we have ζinit ≃ ζγ , while at late times (ρm ≫ ργ) we
have ζfin ≃ ζm. ζ remains constant throughout only
for adiabatic perturbations where the uniform-matter-
density and uniform-radiation-density hypersurfaces co-
incide, ensuring ζγ = ζm. The isocurvature (or entropy)
perturbation is conventionally denoted by the perturba-
tion in the ratio of the photon and matter number den-
sities

S =
δnγ
nγ

−
δnm

nm
= 3 (ζγ − ζm) . (21)

Hence the entropy perturbation for any two non-
interacting fluids always remains constant on large scales
independent of the gravitational field equations. Hence
we recover the standard result for the final curvature per-
turbation in terms of the initial curvature and entropy
perturbation∗∗

ζfin = ζini −
1

3
S . (22)

IV. THE SEPARATE UNIVERSE APPROACH

One can proceed to use the perturbed field equations,
to follow the evolution of linear perturbations in the
metric and matter fields in whatever gauge one chooses.

∗∗This result was derived first by solving a differential equa-
tion [9], and then [8] by integrating Eq. (19) using Eq. (20).
We have here demonstrated that even the integration is
unnecessary.

ba

t1

t2

0λ

-1cH

λ

sλ

FIG. 1. A schematic illustration of the separate universes
picture, with the symbols as identified in the text.

This allows one to calculate the corresponding perturba-
tions in the density and pressure and the non-adiabatic
pressure perturbation if there is one, and see whether it
causes a significant change in ζ.

However, there is a particularly simple alternative ap-
proach to studying the evolution of perturbations on
large scales, which has been employed in some multi-
component inflation models [24,25,14,26,15,8]. This con-
siders each super-horizon sized region of the Universe to
be evolving like a separate Robertson–Walker universe
where density and pressure may take different values,
but are locally homogeneous. After patching together
the different regions, this can be used to follow the evo-
lution of the curvature perturbation with time. Figure 1
shows the general idea of the separate universe picture,
though really every point is viewed as having its own
Robertson–Walker region surrounding it.

Consider two such locally homogeneous regions (a)
and (b) at fixed spatial coordinates, separated by a co-
ordinate distance λ, on an initial hypersurface (e.g.,
uniform-density hypersurface) specified by a fixed coordi-
nate time, t = t1, in the appropriate gauge (e.g., uniform-
density gauge). The initial large-scale curvature pertur-
bation on the scale λ can then be defined (independently
of the background) as

δψ1 ≡ ψa1 − ψb1 . (23)

On a subsequent hypersurface defined by t = t2 the cur-
vature perturbation at (a) or (b) can be evaluated using
Eq. (16) [but neglecting ∇2σ] to give [14]

ψa2 = ψa1 − δNa , (24)

4



A	massless	or	light	scalar	field:	m2=V,φφ	<<	H2	for	slow-roll	

Quantum	fluctuaKons	of		a	scalar	field	during	inflaKon	

ü 	when	the	perturbaCon	modes	are	within	the	horizon:			
					λ	<<	(comoving)	Hubble	radius	=	(a	H)−1	
					k>>	(aH)		
	
	
	
ü 		when	the	perturbaCon	modes	are	superhorizon	scales:		
	
																																																																																						(k<<aH)	
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Figure 2: Time evolution of the comoving Hubble horizon during inflation and the following epoch,
compared to the evolution of a comoving scale λ [53]. During the accelerated expansion the comoving
Hubble horizon decreases in time, while it grows during the radiation and matter dominated epochs.
At a certain time during inflation, the comoving scale λ exits the comoving Hubble horizon and then
re-enters after inflation is over. The behavior of the comoving Hubble horizon shown in this figure,
provides a solution to the horizon problem.

this process is substantially completed is called reheat temperature. Many models have been proposed
to describe this transition, some of which include the perturbative decay of the inflaton field while
others involve non-perturbative mechanisms, such as parametric resonance decay. If the fluctuations
are sufficiently small, inflaton quanta could decay into relativistic products. This happens as soon
as the inflaton decay rate Γ becomes comparable to the Hubble constant. If the decay is slow, only
fermionic decays are available. Usually each decay product is supposed to thermalize quickly so that
their energy distribution can be described by a black-body function and the reheating temperature
for a sudden process is Treh ∼

√
MplΓ. Then a mechanism is supposed to take place that leads to

energy transfer of the decay products into radiation. Otherwise, if the scalar field decays into bosonic
particles, we can have a rapid decay through a parametric resonance mechanism. The process may
be so fast that it ends after a few oscillations of the inflaton field. This phase is called preheating
phase [55].

2.2 Quantum fluctuations: origin of cosmological perturbations

We can now move to consider quantum aspects of the inflationary paradigm. The current under-
standing of structure formation and generation of CMB anisotropies requires the existence of small
fluctuations that entered the horizon during the radiation and matter era. Employing only the stan-
dard cosmology we cannot explain the presence of perturbations. On the other hand, the quantum
aspects of the inflationary mechanism constitute a natural way to explain the presence of such small
seeds.
According to quantum field theory, each physical field involved in a theory is characterized by quan-
tum fluctuations: they oscillate with all possible wavelengths maintaining zero average on a sufficient
macroscopic time. The inflationary accelerated expansion can stretch the wavelength of these fluctu-
ations to scales greater than the Hubble horizon k ≫ aH , where k is the comoving wave number of a
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From	S.	Dodelson	``Modern	Cosmology’’,	Academic	Press	(2003)		



Primordial	gravitaKonal	waves	

GWs	are	tensor	perturbaCons	of	the	metric.	RestricCng	ourselves	to	a		
flat	FRW	background	(and	disregarding	scalar	and	vector	modes)	
	
																																ds2=	-	dt2	+	a2(t)	(δij	+	hij(t,x))	dxi	dxj

	
where	hij		are	tensor	modes	which	have	the	following	properCes	
hij		=	hji																																				(symmetric)	
hii		=	0																										(traceless)	
hij|i=	0																									(transverse,	i.e.	divergence	free)			
and	saCsfy	the	equaCon	of	moCon	
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Primordial	gravitaConal	waves	
GWs	have	only	(9à6-1-3=)	2	independent	degrees	of	freedom,		
corresponding	to	the	2	polarizaCon	states	of	the	graviton	
	
	
	
	
	
	
	
	
	
behaviour:	
k	«	aH		(outside	the	horizon)		h	≈	const	+	decaying	mode	
k	»	aH		(inside	the	horizon)					h	≈	e±ikτ/a							gravitaConal	wave;	it	freely		
																																																																															streams,	experiencing	redshir											
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ObservaKonal	predicKons			
Ø 	Primordial	density	(scalar)	perturbaKons		

Ø 	Primordial	(tensor)	gravitaKonal	waves:	a	smoking	gun	for	infla3on	

amplitude	

spectral	index:	
describes	devia3ons	from	scale	invariance	
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Ø 	Tensor-to-scalar	perturbaKon	raKo	

Ø 	Consistency	relaKon	(valid	for	all	single	field	models	of	slow-roll	inflaCon):		
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Two	simple	but	very	important	examples	
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``Large	field’’		like	potenCal		 ``Small	field’’		like	potenCal	
		
		

Roughly speaking: ``Large field’’ models can produce a high level of gravity waves;  
                             ``small field’’ models produce a low level of gravity waves 
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Inflaton	dynamics	and	the	level	of	gravity	waves		

30≤ N ≤60	



Current	observa1onal	status		



Constraints	from	CMB	data		

ns=1 (Harrison Zeld’ ovich spectrum) excluded at 8.4 sigmas!!  

Ø  Primordial density perturbations: 
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Energy	scale	of	inflaCon	

																																						A	new	era	(the	CMB	B-mode	era)	has	started!	
																																						Target	of	future	CMB	experiments:	r	<10-3		

Ø  Primordial gravitational waves: 

Two	fundamental	observa3onal	constants	of	cosmology	in	addi3on	to	three	very	well	known	(Ωb	,Ωcdm,ΩΛ)	

Using	Planck	data	release	3	and	4	(including	BB	power	spectrum	data)		
+	BICEP/Keck	Array	2015	and	2018		
			

Latest	constraints	
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Constraints	from	CMB	data		

Figure 2. 95% CL intervals for r0.01 and n
t

, considering different datasets, given in table 5. Our main result
is PL21+BK18+LV21.

second consists of considering r0.01 and nt as derived parameters from two functions of two tensor-
to-scalar ratios at arbitrary scales k1 and k2 [13, 34]. We explore the strengths and weaknesses of
these two approaches, finding that the former can provide more reliable bounds. The results are
summarized in figure 2, where the case PL21+BK18+LV21 (see section 3) represents the main result
of this work.

Furthermore, we study with the same approach the consequences of newly released data from
the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) Collaboration [35].
Indeed, pulsar timing array experiments can be used to detect GWs through the spatial correlation
they generate on a network of radio pulses (typically millisecond pulsars). Arzoumanian et al. [35]
show strong evidence for a common stochastic process affecting several pulsars, however, the spatial
quadrupolar correlation (see [36]), necessary to finally confirm the detection of a stochastic GW
background is not convincing. Despite this, if the cosmological nature of this signal is found to be
true, this seems to suggest the need to go beyond a simple power-law description of the primordial
tensor spectrum, consistently with what has already been found in the literature [37–40].

This work is organized as follows: in section 2 we give the details on the Markov-Chain Monte-
Carlo (MCMC) framework we employ to perform the analysis, while we test the robustness of the two
approaches mentioned above for the tensor sector. In section 3 we go through the available data to
constrain the tensor spectrum, while in section 4 we give a very brief review of how the state-of-the-art
bounds have been obtained. Finally, in section 5 we report our new bounds for (r0.01, nt) using 10
different combinations of datasets and we briefly discuss the cases in which we include NANOGrav
data. In appendix A we provide the posterior distributions of 4 selected combinations of datasets on
the six ⇤CDM parameters, comparing the results with the literature. Then, in appendix B we explore
an alternative route to test one of the two approaches used in this analysis, while in appendix C we
repeat the analysis leading to section 5, but using the approach of [13, 34].

2 MCMC analysis

Let us report some details on the technique used to extract these constraints from the data, i.e. the
MCMC analysis [41–45]. We use Cobaya [46] to run our MCMC chains, whose results are 1analyzed

1
https://github.com/CobayaSampler/cobaya.
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Figure 1. CMB B-mode measurements: BICEP3/Keck Array [14], Planck ’s satellite [15],ACTPol [16],
SPTpol [17], POLARBEAR [18, 19], BICEP2/Keck Array [20], ABS [21], BICEP1 [22], WMAP [23], QUIET
[24] and QUaD [25]. The solid line represents the lensing signal, whereas the dashed and dotted ones are
respectively the primordial signal obtained assuming scale invariance and r = 0.028, 0.004, the former being the
95% CL upper bound of this work, assuming scale-invariance, and the latter the prediction of the Starobinski
model [26].
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where r = At/As is the tensor-to-scalar perturbation ratio, As (At) is the amplitude of scalar (tensor)
perturbations, k⇤ is some pivot scale and ns (nt) is the scalar (tensor) spectral index.

Currently, we have quite a zoology of measurements of CMB B-mode, some of which are shown
in figure 1, however, CMB experiments as Planck are mostly sensitive to the large-scale part of the
primordial B-mode spectrum (at least assuming a tensor spectral tilt close to scale invariance). The
small scales are hidden below several orders of magnitude of the lensing B-mode as a result of photons
passing through the gravitational potential of large-scale structure (compare the dashed, or dotted,
line of figure 1 with the solid one). Thus, these measurements cannot constrain small scales very well
and tend to favor higher values of nt (blue tilts), providing loose upper bounds on this parameter.
This is why CMB experiments are typically flanked to some other small-scale measurement when they
are asked to give bounds on the spectral tilt. The quintessential example is GW interferometers, such
as LIGO-Virgo-KAGRA (LVK) [27–29] since they can directly probe the same GWs one tries to study
through the B-mode, but at completely different scales.

Although Tristram et al. [30] reports the tightest bound on the tensor-to-scalar ratio (r0.05 <
0.032 at 95% CL), here we want to consider the case in which the tensor spectral tilt is left to vary,
beyond the usual consistency relation for single-field slow-roll models (r = �8nt). So, while keeping
in mind the work by Tristram et al. [30], the actual state-of-the-art on (r, nt) are the bounds set
by Planck 2018: r0.01 < 0.066 and �0.76 < nt < 0.52 at 95% CL, when including both CMB and
GWs interferometers (see section 4 for further details on how these bounds are obtained). Here the
subscript 0.01 indicates the pivot scale that is typically assumed in this context, i.e. 0.01 Mpc�1. The
main goal of this paper is to update these constraints, exploiting newly available data, both from an
electromagnetic and a GW perspective.

Indeed, we study how adding the new data released by BK [14], Planck [15] and the LVK
collaboration [31, 32] can improve our knowledge about the tensor sector.

We perform this analysis exploiting two different approaches on how to sample the tensor sector:
the first one is to explore directly the parameter space (r0.01, nt) with uniform priors [33], while the

– 2 –



ImplicaKons	for	standard	single-field	
models	of	slow-roll	inflaKon		

r0.01 95% CL nt 95% CL R� 1 test

PL18+BK15 < 0.056 [�0.22, 4.16] 0.032
PL18+BK18 < 0.032 [�0.98, 3.46] 0.033
PL18+BK15+LV18 < 0.059 [�1.00, 0.45] 0.039
PL18+BK15+LV21 < 0.057 [�0.91, 0.42] 0.025
PL18+BK18+LV21 < 0.032 [�1.14, 0.42] 0.034
PL21+BK15 < 0.049 [�0.60, 4.34] 0.010
PL21+BK18 < 0.029 [�1.21, 3.54] 0.016
PL21+BK18+LV21 < 0.028 [�1.37, 0.42] 0.006
PL18+BK15+NANO < 0.071 [0.44, 0.83] 0.028
PL21+BK18+NANO < 0.033 [0.47, 0.85] 0.005

Table 6. 95% CL intervals of the 10 considered combinations of datasets. Our main result is
PL21+BK18+LV21. Here we also show the results of the Gelman-Rubin test for each combination.

Figure 12. 2D 68 and 95% CL contours in the (r0.01, nt

)-plane for PL18+BK15, PL21+BK18 and
PL21+BK18+LV21. The dashed black line is the well-known slow-roll single-field prediction n

t

= �r/8 = �2✏.

Figure 13. 2D 68 and 95% CL intervals in the (r0.002, ns

)-plane for PL18 (publicly available MCMC chains4),
PL18+BK15 and PL21+BK18+LV21. r0.002 is obtained from our chains assuming the standard prediction
n
t

= �r/8 = �2✏. For more details on the various inflationary models, see [13].

for our most constraining dataset, i.e. PL21+BK18+LV21. In fact, Gómez-Valent [54] presented this
technique as an approximation of the PL useful if one already has an MCMC to exploit and proved
its robustness on highly dimensional likelihoods, such as Planck ’s. To obtain PDs on r0.01 and nt, we
follow the following procedure:

1. starting from our MCMC chains, we bin the values of r0.01 or nt;

2. in each bin, we search for the minimum value of �2.

– 16 –

Starobinsky model R+ (R2 / 6M 2 )

→V (φ)∝ (1− e−2 2/3φ /MPl )2

Natural inflation V (φ)∝1− cos(φ / f )



Beyond	the	r-ns	plane	

No	evidence	of	devia3ons	from	a		
featureless	power-spectrum		
(for	curvature	perturba3ons	on	CMB	scales)	

Planck Collaboration: Constraints on primordial non-Gaussianity

Fig. 1. Weights of each polarization configuration going into the total value of fNL for, from left to right, local, equilateral, and
orthogonal shapes. Note that since we impose `1  `2  `3, there is a di↵erence between, e.g., TEE (smallest ` is temperature) and
EET (largest ` is temperature).

Table 6. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results with the lensing bias sub-
tracted are reported; uncertainties are 68 % CL. The di↵erence
between this table and the corresponding values in the previous
table is that here the equilateral and orthogonal shapes have been
analysed jointly.

Shape Independent Lensing subtracted

SMICA T
Local . . . . . . . . . 6.7 ± 5.6 �0.5 ± 5.6
Equilateral . . . . . . 4 ± 67 5 ± 67
Orthogonal . . . . . �38 ± 37 �15 ± 37

SMICA T+E
Local . . . . . . . . . 4.1 ± 5.1 �0.9 ± 5.1
Equilateral . . . . . . �25 ± 47 �26 ± 47
Orthogonal . . . . . �47 ± 24 �38 ± 24

theoretical interpretation of the result. Moreover, this fluctuation
completely goes away when accounting for polarization data, the
reliability of which has become significantly higher with respect
to our previous analysis (see Sect. 6 for details). Finally, the dis-
crepancy is for a very specific shape and it is entirely driven by
the already-noted fluctuation in the Commander orthogonal re-
sult with respect to 2013 and 2015. The other methods remain
stable, in particular SMICA, which we take as the map of choice
for our final results. The observed fluctuation in orthogonal fNL
from Commander can likely be explained by the unavailability
of “detset” (i.e., detector-subset) maps for this release, which
constituted in the past a useful input for improving the accuracy
of the Commander map. It is, however, important to stress that
Commander itself shows excellent agreement with other meth-
ods, when measuring fNL for all other shapes and also when cor-
relating the bispectrum modes and bins in a model-independent
fashion, both in temperature and polarization (again see Sect. 6
for a complete discussion of these tests).

Comparing the uncertainties in Table 5 to those in the cor-
responding table in the 2015 analysis paper (PCNG15), and fo-
cussing on the ones for the local shape, since those are most
sensitive to low-` modes, we see the following: for T-only data

the errors are approximately equal on average, slightly better for
KSW, and slightly worse for the other three estimators. A pos-
sible explanation for the slightly larger errors could be the fact
that the realism of the simulations has improved from FFP8 used
in 2015 to FFP10 used here. So the errors in 2015 might actu-
ally have been slightly underestimated. However, the di↵erences
are small enough that they could just be random fluctuations, es-
pecially given that not all estimators show the same e↵ect. For
E-only data we see a clear improvement of the errors for all es-
timators. That is as expected, since we are now including all the
additional polarization modes with 4  ` < 40 in the analy-
sis, and the local shape is quite sensitive to these low-` modes.
Finally, for the full T+E analysis, we see that all errors have
remained the same, to within fluctuations of around a few per-
cent, at most. So one might wonder why the improvement in
the E-only analysis has not translated into a corresponding im-
provement in the T+E analysis. The answer is relatively simple:
the EEE-bispectra only have a very small contribution to the fi-
nal T+E analysis, as shown in Fig. 1. This figure also explains
why the errors for the equilateral and orthogonal shapes improve
more when going from T-only to the full T+E analysis than the
errors for the local shape.

In conclusion, our current results show no evidence for non-
Gaussianity of the local, equilateral, or orthogonal type and are
in very good agreement with the previous 2013 and 2015 anal-
yses. We also show in Sect. 6 that the overall robustness and
internal consistency of the polarization data set has significantly
improved, as far as primordial non-Gaussian measurements are
concerned.

5.2. Further bispectrum shapes

5.2.1. Isocurvature non-Gaussianity

In this section we present a study of the isocurvature NG in the
Planck 2018 SMICAmap using the Binned bispectrum estimator.
This analysis is complementary to the one based on the power
spectrum presented in Planck Collaboration X (2018). The un-
derlying modelling approach was discussed in Sect. 2.3, and as
explained there, we only investigate isocurvature NG of the lo-
cal type, and in addition always consider the adiabatic mode
together with only one isocurvature mode, i.e., we consider
separately CDM-density, neutrino-density, and neutrino-velocity

16

Planck Collaboration: Constraints on primordial non-Gaussianity

Fig. 1. Weights of each polarization configuration going into the total value of fNL for, from left to right, local, equilateral, and
orthogonal shapes. Note that since we impose `1  `2  `3, there is a di↵erence between, e.g., TEE (smallest ` is temperature) and
EET (largest ` is temperature).

Table 6. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results with the lensing bias sub-
tracted are reported; uncertainties are 68 % CL. The di↵erence
between this table and the corresponding values in the previous
table is that here the equilateral and orthogonal shapes have been
analysed jointly.

Shape Independent Lensing subtracted

SMICA T
Local . . . . . . . . . 6.7 ± 5.6 �0.5 ± 5.6
Equilateral . . . . . . 4 ± 67 5 ± 67
Orthogonal . . . . . �38 ± 37 �15 ± 37

SMICA T+E
Local . . . . . . . . . 4.1 ± 5.1 �0.9 ± 5.1
Equilateral . . . . . . �25 ± 47 �26 ± 47
Orthogonal . . . . . �47 ± 24 �38 ± 24

theoretical interpretation of the result. Moreover, this fluctuation
completely goes away when accounting for polarization data, the
reliability of which has become significantly higher with respect
to our previous analysis (see Sect. 6 for details). Finally, the dis-
crepancy is for a very specific shape and it is entirely driven by
the already-noted fluctuation in the Commander orthogonal re-
sult with respect to 2013 and 2015. The other methods remain
stable, in particular SMICA, which we take as the map of choice
for our final results. The observed fluctuation in orthogonal fNL
from Commander can likely be explained by the unavailability
of “detset” (i.e., detector-subset) maps for this release, which
constituted in the past a useful input for improving the accuracy
of the Commander map. It is, however, important to stress that
Commander itself shows excellent agreement with other meth-
ods, when measuring fNL for all other shapes and also when cor-
relating the bispectrum modes and bins in a model-independent
fashion, both in temperature and polarization (again see Sect. 6
for a complete discussion of these tests).

Comparing the uncertainties in Table 5 to those in the cor-
responding table in the 2015 analysis paper (PCNG15), and fo-
cussing on the ones for the local shape, since those are most
sensitive to low-` modes, we see the following: for T-only data

the errors are approximately equal on average, slightly better for
KSW, and slightly worse for the other three estimators. A pos-
sible explanation for the slightly larger errors could be the fact
that the realism of the simulations has improved from FFP8 used
in 2015 to FFP10 used here. So the errors in 2015 might actu-
ally have been slightly underestimated. However, the di↵erences
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the E-only analysis has not translated into a corresponding im-
provement in the T+E analysis. The answer is relatively simple:
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more when going from T-only to the full T+E analysis than the
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improved, as far as primordial non-Gaussian measurements are
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5.2. Further bispectrum shapes

5.2.1. Isocurvature non-Gaussianity

In this section we present a study of the isocurvature NG in the
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This analysis is complementary to the one based on the power
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Figure 4: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across
a line going through the center the E-patterns are unchanged, while the positive and
negative B-patterns get interchanged.

patterns. Although E and B are both invariant under rotations, they behave di↵erently under parity
transformations. Note that when reflected about a line going through the center, the E-patterns
remain unchanged, while the B-patterns change sign.

TE correlation and superhorizon fluctuations
The symmetries of temperature and polarization (E- and B-mode) anisotropies allow four types

of correlations: the autocorrelations of temperature fluctuations and of E- and B-modes denoted
by TT , EE, and BB, respectively, as well as the cross-correlation between temperature fluctuations
and E-modes: TE. All other correlations (TB and EB) vanish for symmetry reasons.18

The angular power spectra are defined as rotationally invariant quantities
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In Fig. 5 we show the latest measurement of the TE cross-correlation [14]. The EE spectrum has
now begun to be measured, but the errors are still large. So far there are only upper limits on the
BB spectrum, but no detection.

The dependence on cosmological parameters of each of these spectra di↵ers, and hence a com-
bined measurement of all of them greatly improves the constraints on cosmological parameters by
giving increased statistical power, removing degeneracies between fitted parameters, and aiding in
discriminating between cosmological models.

18This assumes no parity-violating processes in the early universe. Conversely, non-zero TB and EB

correlations would be a distinctive signature of such physics.
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	Searching	for	inflaKonary	GWs	via	CMB	polarizaKon	

B-modes:	Sourced	by	tensor	perturbaCons	
but	not	by	density	perturbaCons		

E-modes:	from	scalar	and	tensor	pert.	
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�2Primary	goal	for	future	CMB	surveys:		
δr<10-3	

Planck Collaboration: The cosmological legacy of Planck

-160

160 µK

0.41 µK

Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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Ø  For	future	space	CMB	missions.	 	 		

Forecasts	for	tensor-to-scalar	ra3o	r	

Future	constraints	on	inflaConary	models	

From		
“Probing	Cosmic	InflaCon	with	the	LiteBIRD	Cosmic	Microwave	Background	PolarizaCon	Survey”	
LiteBIRD	collaboraCon,	hYps://arxiv.org/pdf/2202.02773.pdf						



When inflation ends??  



InflaCon	ends	when	the	inflaton	field	starts	to	``feel’’		the	curvature	of	
the	potenCal		
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= Ḣ + H2 = (1� �)H2

So	this	means	that					starts	to	be													,	and	this	in	turn	pushes	in	general																
So	that		inflaCon	comes	to	an	end		
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The	kineCc	energy	is	not	negligible	anymore;		
the	field	starts	then	to	oscillate	around	the	minimum		
of	the	potenCal	with	frequency		
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The	oscillaCons	are	damped	because	in	this	regime	the	inflaton		
field	decays	into	lighter	parCcles	with	a	decay	rate			
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The	energy	of	the	inflaton	is	transferred	to		
other	lighter	parCcles	(release	of	latent	heat).		
These	parCcles	thermalize	and	start	to		
dominateà	the	standard	FRW	universe	starts		

REHEATING	PHASE	
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How we arrive at these predcitions?  
 
The quantum origin of cosmological perturbations: 
details  
 



												InflaKon	and	the	Inflaton	
Consider	a	simple	real	scalar	field:																																																																							

3	ingredients:		
	
- 	The	scalar	field	(the	so	called	inflaton	field)	
- 	the	gravitaConal	field	(i.e.,	the	metric)	
- 	the	``rest	of	the	world’’:	fermions,	gauge	bosons,	other	scalars.		
		Usually,	in	the	simplest	models,	these	addiConal	components	turns	out	to	be		
		subdominant	w.r.t.	the	inflaton	field	(because	e.g.,	we	know	that	for	pressurless		
		maYer	ρm~a-3	while	radiaCon	ρr~a-4,	and	so	they	decrease	almosr	exponenCally		
		during	inflaCon).				
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GeneraKng	the	primordial	density	perturbaKons		
ü 	first	step:	take	a	scalar	field	during	an	inflaConary	phase		

				split	the	scalar	field	into	a	``classical’’	background	expectaCon	value	(on	the	vacuum	state)	
				and	quantum	fluctuaKons		around	the	mean	value	
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⌃⇧ü 	Perturb	linearly	the	equaCon	of	moCon	of	the	scalar	field	around	its	background	value	
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Consider	a	random	field	f(t,x):		

Note:	
	
It	is	convenient	to	go	to	Fourier	space:	at	linear-order	perturbaCons	
in	Fourier	space	evolve	independently	(k-mode	by	k-mode)				
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N.B.:	we	are	using	a	three-dimensional	Fourier	transform	because	in	the	equaCon	of	moCon	
of	the	perturbaCons	we	have	some	term	that	depend	on	Cme.	Moreover	we	are	using	
plane-waves	(OK	if	we	can	neglect	the	spaCal	curvature).						
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A	massless	or	light	scalar	field:	m2=V,φφ	<<	H2	for	slow-roll	

Quantum	fluctuaKons	of		a	scalar	field	during	inflaKon	

ü 	when	the	perturbaCon	modes	are	within	the	horizon:			
					λ	<<	(comoving)	Hubble	radius	=	(a	H)−1	
					k>>	(aH)		
	
	
	
ü 		when	the	perturbaCon	modes	are	superhorizon	scales:		
	
																																																																																						(k<<aH)	
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Remember:	H≈const.	
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δφk	

τ	

Log	a(t)	

Hubble	radius:	(a	H)-1		
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So what’s going on?  
 
On microscopic scales (well inside the horizon) microphysics is at work: 
use quantum field theory. There are quantum fluctuations of the scalar 
field; if averaged over macroscopic intervals of time they vanish (quantum 
fluctuations of vacuum: particles are continuously created and destroyed). 
 
However the space-time background is exponentially inflating so their 
physical wavelengths grow exponentially 
 
 
until they become greater then the horizon H-1 (which remains almost 
constant). On super-horizon scales the fluctuations get frozen (because of 
the friction term           ). The fluctuations do not vanish if averaged on 
macroscopic time intervals: a classical fluctuation has been generated.  
 
Said in other words: if on superhorion scales               over macroscopic 
time intervals then the final result is a state with a net number of 
particles. This is a gravitational mechanism of amplification. The crucial  
point is the “in’’ and “out” (of the horizon) state of the fluctuations  
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Let me give you some details about the computation of  
	
Quantum	fluctuaCons	of	a	scalar	field	during	inflaCon*	
	
Let us find an exact (meaning valid at every k) solution 
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Quantum	fluctuaCons	of	a	scalar	field	during	inflaCon		

Classical	funcCon	of	Cme	normalized	as		
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;	quanCze	the	theory	by	promoCng		the	scalar	field	to	an	operator		
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					is	the	annihilla3on	operator:																											for	all	k;								is	the	(free)	vacuum	state.	

is	the	crea3on	operator:	

(classically	they	would	correspond	to	two	constants	of	integraCon)		

18 THE AUTHOR

(123) ⇥0|a†
k = 0

(123) u�
ku

⇥
k � uku

�⇥
k = �i

They	obey	the	commutaCon	relaCon	for	bosons		

18 THE AUTHOR

(123) ⇥0|a†
k = 0

(123) u�
ku

⇥
k � uku

�⇥
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇥) ,

(123) uk(⇥)
quantum	mechanics!		

18 THE AUTHOR

(123) ⇥0|a†
k = 0

(123) u�
ku

⇥
k � uku

�⇥
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇥) ,

(123) uk(⇥)

(123) |0⇤

18 THE AUTHOR

(123) ⇥0|a†
k = 0

(123) u�
ku

⇥
k � uku

�⇥
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇥) ,

(123) uk(⇥)

(123) |0⇤

(123) ak

18 THE AUTHOR

(123) ⇥0|a†
k = 0

(123) u�
ku

⇥
k � uku

�⇥
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇥) ,

(123) uk(⇥)

(123) |0⇤

(123) ak

(123) a†
k

for	all	k	



ü 	In	flat	space-Cme,	once	the	commutaCon	relaCons	are	fixed,	everything	is	fixed:	the	soluCon		
is	a	plane	wave.	In	a	curved	space	Cme	there	is	some	ambiguity	in	defining	the	vacuum	state	
(it	depends	on	the	choice	of											).		
	
So	we	require	that	at	very	short	distances	and	at	early	Cmes	(when	the	expansion	is	negligible)		
the	soluCons	reproduce	the	correct	form	of	a	flat	space-Cme.	So	we	require	that	when	a	given		
mode	is	well	inside	the	horizon		
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This	is	the	so	called	“Bunch-Davies	vacuum	choice”		



Quantum	fluctuaKons	of	a	generic	scalar	field	in	quasi	de-Siter		

Ø 		If	we	are		not	in	de	SiYer,	and	if	the	mass	of	the	scalar	field	is	small	but	not	zero,	then		
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with			
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N.B.:	actually	we	are	also	accounCng	for	the	metric	perturbaCons	that	enter	into	the	equaCon		
for	the	scalar	field		

BRIEF ARTICLE 41

(159) ⌘ = � �̈

H�
' ⌘V � ✏

(159) |⌘| ⌧ 1

(159) |⌘| & 1

(159) �̇

(159)
✏̇

H
⇠ O(✏2, ⌘2)

(159)
⌘̇

H
⇠ O(✏2, ⌘2)

(159)
⌘̇

H

(159) �phys / a(t)

(159) |⌦� 1|f ' |⌦� 1|tPl

(159) r < 0.08

(159) �0.62 < nT < 0.52 (95% C.L.)

(159) W (��, �̇) / e�3Ht ! 0

(159) ⌫ ' 3

2
+ 3✏� ⌘V

24 THE AUTHOR

(165) uk(⌧) =

p
⇡

2
ei(⌫+

1
2)

⇡
2
p�⌧ H(1)

⌫ (�k⌧)

(165) |��k| = Hp
2k3

✓
k

aH

◆ 3
2�⌫

(165) H(1)
⌫ (x ⌧ 1) ⇠

p
2/⇡ e�i⇡2 2⌫��

3
2 (�(⌫�)/�(3/2))x

�⌫

(165) a(⌧) = � 1

H⌧(1� ✏)

(165) a00/a ' 2

⌧2

✓
1 +

3

2
✏

◆

(165) !

(165) ✏ = � Ḣ
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ü 	So	the	soluCon	is		
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Quantum	fluctuaKons	of	a	generic	scalar	field	in	quasi	de-Siter		

We	are	interested	in	the	value	of	the	fluctuaCons	on	superhorizon	scales	-k	τ=k	/(aH)<<1		
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3.5. Quantum Fluctuations of the Inflaton Field

which gives the aforementioned solutions in the two asymptots.

3.5.2 Exact Solutions in Quasi de-Sitter Spacetime
Let us now consider a massless scalar field in quasi de-Sitter, reminding
that the slow-roll parameter is Á © ≠ ˙H
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35It requires ‹ to be constant, which in our case it is, because we can treat Á as
constant at first order in slow-roll parameters.
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à		

At	lowest-order	in	the	slow	roll	parameter	then	one	finds	
(use	τ=	-1/(H	a))	and																															)		
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The	power	spectrum	of	cosmological	perturbaCons:	
	a	quick	definiCon	

Consider	a	random	field	f(t,x):		

(dimensionless)	Power-spectrum		

f(t,x)		can	be	the	fracConal	energy	density	perturbaCon	δρ/ρ,	or	the	scalar	field	
perturbaCon,	in	which	case	the	brackets	denote	the	expectaCon	value	on	the	
vacuum	state	and	it	can	be	computed	using	creaCon	and	annihiliaton	operators.		

N.B.:	f*k2	=	f-k2	if	f	is	real	and	so	we	could	also	write		
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(165) ẋ ' F
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Spectral	index	of	the	power	spectrum:	definiCon	
	
	
	
	
	
So,	if	ns	is	a	constant	
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Ø  	So	the	spectral	index	describes	the	shape	of	the	power	spectrum	(i.e.	its		
						dependence	with	k~(2	π)/λ,	or	equivalently	with	the	cosmological	scales).	
	
Ø  	If	ns=1	we	have	an	exact	scale-invariant	power	spectrum	which	is	also	called	

Harrison-Zel’	dovich	power-spectrum:	the	amplitude	of	the	iniCal	fluctuaCons	is	
the	same	on	all	cosmological	scales.			

	



Let	us	compute	the	power	spectrum	for	the	scalar	field		fluctuaCons		
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From	quantum	flactuaKons	to	density	perturbaKons		
The	inflaton	field	is	special:	it	dominates	the	energy	density	of	the	universe	during	inflaCon		
with			
	
	
	
FluctuaCons	in	the	inflaton	produce	fluctuaCons	in	the	universe	expansion	from	place	to	place,		
so	that	each	region	in	the	universe	goes	through	the	same	expansion	history	but	at	slightly		
different	Cmes:		
	
																												;											now	remember	that	
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ζ	remains	constant	on	superhorizon	scales	(ζ	is	the	uniform	energy	density	curvature	pert.)	

N.B.:	to	obtain	the	last	expression	for	ζ		just	use		
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N.B:	on	superhorizon	scales		ζ=constant,		
so	one	can	easily	relate	density	fluctuaCons	arer	inflaCon	with	the	
quantum	fluctuaCons	of	the	inflaton	field	δϕ~H/2π	

GeneraKng	the	primordial	density	perturbaKons		

Log	a(t)	

Hubble	radius:	(a	H)-1		

End	inflaCon	->	radiaCon	epoch	

(comoving)	lenghts	

λ~	2	π/k	

t0:	today	

t(1)(k):	Kme	when	fluctuaKon		
of	mode	k	exits	the	horizon	
k=a(t(1)(k))	H(t(1)(k))		

INFLATION	

Horizon	re-entry:	t(2)(k)	

density	fluctuaCons	
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Primordial	power	spectrum		

Ø  	Therefore	the	power-spectrum	of	density	perturbaCons	(i.e.,	their	amplitude	and	
dependence	on	the	scale)	will	depend	on	the	specific	inflaConary	model,	since,	
remember	that		

							
	
	
Ø  The	scale	dependence	comes	from	evaluaCng	at	the	epoch	of	horizon	crossing	

during	inflaCon	(t(1)(k).	But	we	know	that	H	and	ϕ	vary	in	Cme	very	slowly:		the	
level	of	density	fluctuaCons	depends	weakly	on	the	cosmological		scale		λ~	2	π/k			

						(if	exact	scale-invariance:	Harrison-Zel’	dovich	spectrum).		
	
					In	fact	H	and	ϕ	vary	a	liYle	bit:	you	expect	a	spectrum	of	density	perturbaCons	
					which	is	nearly	scale-invariant.			
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So	let	us	compute	precisely	(at	first-order	in	the	slow-roll	parameters)	
the	power	spectrum	of	curvature	perturbaKons	and	its	spectral	Klt	(called	scalar		
spectral	Ktl)	

(remember																								)	
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To	compute	the	spectral	Clt	

Then	simply	it	follows	from	the	last	expression	for	in	the	power	spectrum		

Where	the	last	equality	is	due	to	the	fact	that	the	curvature	perturbaCon		ζ	remains	constant		
on	super-horizon	scales		
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2HḢ�̇�H2�̈

�̇2

1

H

�̇2

H4

= �2
�̈

H�̇
+ 4

Ḣ
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Log	a(t)	

Hubble	radius:	(a	H)-1		

End	inflaCon	->			rad.	epoch->	maY.	epoch	

(comoving)	lenghts	

λ~	2	π/k:	
fluctuaCon	
mode	

t0:	today	

δϕ	⇒	ζ	
quantum	fluctuaKons		

ζ~δρ/ρ	

ζ ⇒	δρ	
seeds	for	CMB	fluctuaKons	&	LSS	structures	

Structure	formaKon	within	the	inflaKonary	scenario	
Quantum	fluctua3ons	are	streched	from	microscopic	to	cosmological	scales	

1-3000	Mpc	

sub-atomic	scales	 cosmological	scales	
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Primordial	gravitaKonal	waves	

GWs	are	tensor	perturbaCons	of	the	metric.	RestricCng	ourselves	to	a		
flat	FRW	background	(and	disregarding	scalar	and	vector	modes)	
	
																																ds2=a2(τ)[-	dτ2	+	(δij	+	hij(x,τ)) dxi	dxj]
	
where	hij		are	tensor	modes	which	have	the	following	properCes	
hij		=	hji																																				(symmetric)	
hii		=	0																										(traceless)	
hij|i=	0																									(transverse,	i.e.	divergence	free)			
and	saCsfy	the	equaCon	of	moCon	
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49	
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Primordial	gravitaConal	waves	
GWs	have	only	(9à6-1-3=)	2	independent	degrees	of	freedom,		
corresponding	to	the	2	polarizaCon	states	of	the	graviton	
	
	
	
	
	
	
	
	
	
behaviour:	
k	«	aH		(outside	the	horizon)		h	≈	const	+	decaying	mode	
k	»	aH		(inside	the	horizon)					h	≈	e±ikτ/a							gravitaConal	wave;	it	freely		
																																																																															streams,	experiencing	redshir											
																																																																															and	diluCon,	like	a	free	photon)	
	

polarizaCon		
tensor	

free	massless,	minimally		
coupled	scalar	field	
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Primordial	gravitaKonal	waves	
In	a	similar	way	one	can	compute	the	power	spectrum	of	the	gravitaConal	waves	
	
	
	
We	see	that	the	2	polarizaCon	states	corresponds	to	2	massless	minimally	coupled	
scalar	fields.	Then	we	have	(a	“*”	here	indicates	evaluaCon	at	horizon	crossing	
during	inflaCon)		
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with	tensor	spectral	index	

This	equality	holds	because,	on	super-horizon	scales,	
tensor	fluctuaCons	remain	constant	in	Cme	(see	results	
for	a	massless	scalar	field)	and	so	its	value	on	those	scales	
is	fixed	at	horizon-crossing	during	inflaCon	(similarly	to	
what	we	did	for	the	curvature	perturbaCons)		
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Current	observa1onal	status		



Constraints	from	CMB	data		

ns=1 (Harrison Zeld’ ovich spectrum) excluded at 8.4 sigmas!!  

Ø  Primordial density perturbations: 
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Constraints	from	CMB	data		

Figure 2. 95% CL intervals for r0.01 and n
t

, considering different datasets, given in table 5. Our main result
is PL21+BK18+LV21.

second consists of considering r0.01 and nt as derived parameters from two functions of two tensor-
to-scalar ratios at arbitrary scales k1 and k2 [13, 34]. We explore the strengths and weaknesses of
these two approaches, finding that the former can provide more reliable bounds. The results are
summarized in figure 2, where the case PL21+BK18+LV21 (see section 3) represents the main result
of this work.

Furthermore, we study with the same approach the consequences of newly released data from
the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) Collaboration [35].
Indeed, pulsar timing array experiments can be used to detect GWs through the spatial correlation
they generate on a network of radio pulses (typically millisecond pulsars). Arzoumanian et al. [35]
show strong evidence for a common stochastic process affecting several pulsars, however, the spatial
quadrupolar correlation (see [36]), necessary to finally confirm the detection of a stochastic GW
background is not convincing. Despite this, if the cosmological nature of this signal is found to be
true, this seems to suggest the need to go beyond a simple power-law description of the primordial
tensor spectrum, consistently with what has already been found in the literature [37–40].

This work is organized as follows: in section 2 we give the details on the Markov-Chain Monte-
Carlo (MCMC) framework we employ to perform the analysis, while we test the robustness of the two
approaches mentioned above for the tensor sector. In section 3 we go through the available data to
constrain the tensor spectrum, while in section 4 we give a very brief review of how the state-of-the-art
bounds have been obtained. Finally, in section 5 we report our new bounds for (r0.01, nt) using 10
different combinations of datasets and we briefly discuss the cases in which we include NANOGrav
data. In appendix A we provide the posterior distributions of 4 selected combinations of datasets on
the six ⇤CDM parameters, comparing the results with the literature. Then, in appendix B we explore
an alternative route to test one of the two approaches used in this analysis, while in appendix C we
repeat the analysis leading to section 5, but using the approach of [13, 34].

2 MCMC analysis

Let us report some details on the technique used to extract these constraints from the data, i.e. the
MCMC analysis [41–45]. We use Cobaya [46] to run our MCMC chains, whose results are 1analyzed

1
https://github.com/CobayaSampler/cobaya.
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Figure 1. CMB B-mode measurements: BICEP3/Keck Array [14], Planck ’s satellite [15],ACTPol [16],
SPTpol [17], POLARBEAR [18, 19], BICEP2/Keck Array [20], ABS [21], BICEP1 [22], WMAP [23], QUIET
[24] and QUaD [25]. The solid line represents the lensing signal, whereas the dashed and dotted ones are
respectively the primordial signal obtained assuming scale invariance and r = 0.028, 0.004, the former being the
95% CL upper bound of this work, assuming scale-invariance, and the latter the prediction of the Starobinski
model [26].
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where r = At/As is the tensor-to-scalar perturbation ratio, As (At) is the amplitude of scalar (tensor)
perturbations, k⇤ is some pivot scale and ns (nt) is the scalar (tensor) spectral index.

Currently, we have quite a zoology of measurements of CMB B-mode, some of which are shown
in figure 1, however, CMB experiments as Planck are mostly sensitive to the large-scale part of the
primordial B-mode spectrum (at least assuming a tensor spectral tilt close to scale invariance). The
small scales are hidden below several orders of magnitude of the lensing B-mode as a result of photons
passing through the gravitational potential of large-scale structure (compare the dashed, or dotted,
line of figure 1 with the solid one). Thus, these measurements cannot constrain small scales very well
and tend to favor higher values of nt (blue tilts), providing loose upper bounds on this parameter.
This is why CMB experiments are typically flanked to some other small-scale measurement when they
are asked to give bounds on the spectral tilt. The quintessential example is GW interferometers, such
as LIGO-Virgo-KAGRA (LVK) [27–29] since they can directly probe the same GWs one tries to study
through the B-mode, but at completely different scales.

Although Tristram et al. [30] reports the tightest bound on the tensor-to-scalar ratio (r0.05 <
0.032 at 95% CL), here we want to consider the case in which the tensor spectral tilt is left to vary,
beyond the usual consistency relation for single-field slow-roll models (r = �8nt). So, while keeping
in mind the work by Tristram et al. [30], the actual state-of-the-art on (r, nt) are the bounds set
by Planck 2018: r0.01 < 0.066 and �0.76 < nt < 0.52 at 95% CL, when including both CMB and
GWs interferometers (see section 4 for further details on how these bounds are obtained). Here the
subscript 0.01 indicates the pivot scale that is typically assumed in this context, i.e. 0.01 Mpc�1. The
main goal of this paper is to update these constraints, exploiting newly available data, both from an
electromagnetic and a GW perspective.

Indeed, we study how adding the new data released by BK [14], Planck [15] and the LVK
collaboration [31, 32] can improve our knowledge about the tensor sector.

We perform this analysis exploiting two different approaches on how to sample the tensor sector:
the first one is to explore directly the parameter space (r0.01, nt) with uniform priors [33], while the

– 2 –



r0.01 95% CL nt 95% CL R� 1 test

PL18+BK15 < 0.056 [�0.22, 4.16] 0.032
PL18+BK18 < 0.032 [�0.98, 3.46] 0.033
PL18+BK15+LV18 < 0.059 [�1.00, 0.45] 0.039
PL18+BK15+LV21 < 0.057 [�0.91, 0.42] 0.025
PL18+BK18+LV21 < 0.032 [�1.14, 0.42] 0.034
PL21+BK15 < 0.049 [�0.60, 4.34] 0.010
PL21+BK18 < 0.029 [�1.21, 3.54] 0.016
PL21+BK18+LV21 < 0.028 [�1.37, 0.42] 0.006
PL18+BK15+NANO < 0.071 [0.44, 0.83] 0.028
PL21+BK18+NANO < 0.033 [0.47, 0.85] 0.005

Table 6. 95% CL intervals of the 10 considered combinations of datasets. Our main result is
PL21+BK18+LV21. Here we also show the results of the Gelman-Rubin test for each combination.

Figure 12. 2D 68 and 95% CL contours in the (r0.01, nt

)-plane for PL18+BK15, PL21+BK18 and
PL21+BK18+LV21. The dashed black line is the well-known slow-roll single-field prediction n

t

= �r/8 = �2✏.

Figure 13. 2D 68 and 95% CL intervals in the (r0.002, ns

)-plane for PL18 (publicly available MCMC chains4),
PL18+BK15 and PL21+BK18+LV21. r0.002 is obtained from our chains assuming the standard prediction
n
t

= �r/8 = �2✏. For more details on the various inflationary models, see [13].

for our most constraining dataset, i.e. PL21+BK18+LV21. In fact, Gómez-Valent [54] presented this
technique as an approximation of the PL useful if one already has an MCMC to exploit and proved
its robustness on highly dimensional likelihoods, such as Planck ’s. To obtain PDs on r0.01 and nt, we
follow the following procedure:

1. starting from our MCMC chains, we bin the values of r0.01 or nt;

2. in each bin, we search for the minimum value of �2.
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ImplicaKons	for	standard	single-field	
models	of	slow-roll	inflaKon		



Beyond	the	r-ns	plane	

No	evidence	of	devia3ons	from	a		
featureless	power-spectrum		
(for	curvature	perturba3ons	on	CMB	scales)	

Planck Collaboration: Constraints on primordial non-Gaussianity

Fig. 1. Weights of each polarization configuration going into the total value of fNL for, from left to right, local, equilateral, and
orthogonal shapes. Note that since we impose `1  `2  `3, there is a di↵erence between, e.g., TEE (smallest ` is temperature) and
EET (largest ` is temperature).

Table 6. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results with the lensing bias sub-
tracted are reported; uncertainties are 68 % CL. The di↵erence
between this table and the corresponding values in the previous
table is that here the equilateral and orthogonal shapes have been
analysed jointly.

Shape Independent Lensing subtracted

SMICA T
Local . . . . . . . . . 6.7 ± 5.6 �0.5 ± 5.6
Equilateral . . . . . . 4 ± 67 5 ± 67
Orthogonal . . . . . �38 ± 37 �15 ± 37

SMICA T+E
Local . . . . . . . . . 4.1 ± 5.1 �0.9 ± 5.1
Equilateral . . . . . . �25 ± 47 �26 ± 47
Orthogonal . . . . . �47 ± 24 �38 ± 24

theoretical interpretation of the result. Moreover, this fluctuation
completely goes away when accounting for polarization data, the
reliability of which has become significantly higher with respect
to our previous analysis (see Sect. 6 for details). Finally, the dis-
crepancy is for a very specific shape and it is entirely driven by
the already-noted fluctuation in the Commander orthogonal re-
sult with respect to 2013 and 2015. The other methods remain
stable, in particular SMICA, which we take as the map of choice
for our final results. The observed fluctuation in orthogonal fNL
from Commander can likely be explained by the unavailability
of “detset” (i.e., detector-subset) maps for this release, which
constituted in the past a useful input for improving the accuracy
of the Commander map. It is, however, important to stress that
Commander itself shows excellent agreement with other meth-
ods, when measuring fNL for all other shapes and also when cor-
relating the bispectrum modes and bins in a model-independent
fashion, both in temperature and polarization (again see Sect. 6
for a complete discussion of these tests).

Comparing the uncertainties in Table 5 to those in the cor-
responding table in the 2015 analysis paper (PCNG15), and fo-
cussing on the ones for the local shape, since those are most
sensitive to low-` modes, we see the following: for T-only data

the errors are approximately equal on average, slightly better for
KSW, and slightly worse for the other three estimators. A pos-
sible explanation for the slightly larger errors could be the fact
that the realism of the simulations has improved from FFP8 used
in 2015 to FFP10 used here. So the errors in 2015 might actu-
ally have been slightly underestimated. However, the di↵erences
are small enough that they could just be random fluctuations, es-
pecially given that not all estimators show the same e↵ect. For
E-only data we see a clear improvement of the errors for all es-
timators. That is as expected, since we are now including all the
additional polarization modes with 4  ` < 40 in the analy-
sis, and the local shape is quite sensitive to these low-` modes.
Finally, for the full T+E analysis, we see that all errors have
remained the same, to within fluctuations of around a few per-
cent, at most. So one might wonder why the improvement in
the E-only analysis has not translated into a corresponding im-
provement in the T+E analysis. The answer is relatively simple:
the EEE-bispectra only have a very small contribution to the fi-
nal T+E analysis, as shown in Fig. 1. This figure also explains
why the errors for the equilateral and orthogonal shapes improve
more when going from T-only to the full T+E analysis than the
errors for the local shape.

In conclusion, our current results show no evidence for non-
Gaussianity of the local, equilateral, or orthogonal type and are
in very good agreement with the previous 2013 and 2015 anal-
yses. We also show in Sect. 6 that the overall robustness and
internal consistency of the polarization data set has significantly
improved, as far as primordial non-Gaussian measurements are
concerned.

5.2. Further bispectrum shapes

5.2.1. Isocurvature non-Gaussianity

In this section we present a study of the isocurvature NG in the
Planck 2018 SMICAmap using the Binned bispectrum estimator.
This analysis is complementary to the one based on the power
spectrum presented in Planck Collaboration X (2018). The un-
derlying modelling approach was discussed in Sect. 2.3, and as
explained there, we only investigate isocurvature NG of the lo-
cal type, and in addition always consider the adiabatic mode
together with only one isocurvature mode, i.e., we consider
separately CDM-density, neutrino-density, and neutrino-velocity
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Figure 4: Examples of E-mode and B-mode patterns of polarization. Note that if reflected across
a line going through the center the E-patterns are unchanged, while the positive and
negative B-patterns get interchanged.

patterns. Although E and B are both invariant under rotations, they behave di↵erently under parity
transformations. Note that when reflected about a line going through the center, the E-patterns
remain unchanged, while the B-patterns change sign.

TE correlation and superhorizon fluctuations
The symmetries of temperature and polarization (E- and B-mode) anisotropies allow four types

of correlations: the autocorrelations of temperature fluctuations and of E- and B-modes denoted
by TT , EE, and BB, respectively, as well as the cross-correlation between temperature fluctuations
and E-modes: TE. All other correlations (TB and EB) vanish for symmetry reasons.18

The angular power spectra are defined as rotationally invariant quantities
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In Fig. 5 we show the latest measurement of the TE cross-correlation [14]. The EE spectrum has
now begun to be measured, but the errors are still large. So far there are only upper limits on the
BB spectrum, but no detection.

The dependence on cosmological parameters of each of these spectra di↵ers, and hence a com-
bined measurement of all of them greatly improves the constraints on cosmological parameters by
giving increased statistical power, removing degeneracies between fitted parameters, and aiding in
discriminating between cosmological models.

18This assumes no parity-violating processes in the early universe. Conversely, non-zero TB and EB

correlations would be a distinctive signature of such physics.
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	Searching	for	inflaKonary	GWs	via	CMB	polarizaKon	

B-modes:	Sourced	by	tensor	perturbaCons	
but	not	by	density	perturbaCons		

E-modes:	from	scalar	and	tensor	pert.	
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Planck Collaboration: The cosmological legacy of Planck
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Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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Ø  For	future	space	CMB	missions.	 	 		

Forecasts	for	tensor-to-scalar	ra3o	r	

Future	constraints	on	inflaConary	models	

From		
“Probing	Cosmic	InflaCon	with	the	LiteBIRD	Cosmic	Microwave	Background	PolarizaCon	Survey”	
LiteBIRD	collaboraCon,	hYps://arxiv.org/pdf/2202.02773.pdf						



When inflation ends??  



InflaCon	ends	when	the	inflaton	field	starts	to	``feel’’		the	curvature	of	
the	potenCal		
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So	this	means	that					starts	to	be													,	and	this	in	turn	pushes	in	general																
So	that		inflaCon	comes	to	an	end		
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The	kineCc	energy	is	not	negligible	anymore;		
the	field	starts	then	to	oscillate	around	the	minimum		
of	the	potenCal	with	frequency		
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= Ḣ + H2 = (1� �)H2

(121) � ⇥ 1

(121) ⇥ ⇥ 1

(121) ⌅̈ + 3H⌅̇ + ��⌅̇ = �V,�

(121) V,��⌅ H2

The	oscillaCons	are	damped	because	in	this	regime	the	inflaton		
field	decays	into	lighter	parCcles	with	a	decay	rate			
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= Ḣ + H2 = (1� �)H2

(121) � ⇥ 1

(121) ⇥ ⇥ 1

(121) ⌅̈ + 3H⌅̇ + ��⌅̇ = �V,�

(121) V,��⌅ H2

(121) ��

22 THE AUTHOR

(121) �̇� + 3H�� = �����

BRIEF ARTICLE 19

(123) u⇥⇥k +

⇤
k2 �

⌅2 � 1
4

⌃2

⌅
= 0

(123) ⌅ = 3/2

(123) uk(⌃) =
⌥
�⌃

⇧
c1(k) H(1)

� (�k⌃) + c2(k) H(2)
� (�k⌃)

⌃

H(1)
� (x⌅ 1) ⇥

�
2

⇧x
ei(x��

2 ���
4 ) , H(2)

� (x⌅ 1) ⇥
�

2
⇧x

e�i(x��
2 ���

4 )

c2(k) = 0

c1(k) =
⇤

⇥
2 ei(�+ 1

2)�
2

(123) uk(⌃) =
⌥

⇧

2
ei(�+ 1

2)�
2
⌥
�⌃ H(1)

� (�k⌃)

(123) |�⌥k| =
H⌥
2k3

�
k

aH

⇥ 3
2��

(123) H(1)
� (x⇤ 1) ⇥

⌥
2/⇧ e�i �

2 2�⇥� 3
2 (�(⌅⌅)/�(3/2))x��

(123) a(⌃) = � 1
H⌃(1� ⇥)

(123) a⇥⇥/a ⌃ 2
⌃2

�
1 +

3
2
⇥

⇥

(123) ⇧

(123) ⇥ = � Ḣ
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The	energy	of	the	inflaton	is	transferred	to		
other	lighter	parCcles	(release	of	latent	heat).		
These	parCcles	thermalize	and	start	to		
dominateà	the	standard	FRW	universe	starts		

REHEATING	PHASE	
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What	is	the	infla3on	model….....??	
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Features	in	the	potenCal		
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2	ways	to	reach	the	goal:	
1.  GravitaConal	waves	
2.  Primordial	non-Gaussianity		



Primordial non-Gaussianity 



Primordial	NG	
ζ(x):	primordial	perturbaCons	
	
If	the	fluctuaCons	are	Gaussian	distributed	then	their	staCsCcal	properCes	are	
completely	characterized	by	the	two-point	correlaCon	funcCon,	<ζ(x1)ζ(x2)>			
or	its	Fourier	transform,	the	power-spectrum.				

Thus	a	non-vanishing	three	point	func3on,	or	its	Fourier	transform,	the	bispectrum		
is	an	indicator	of	non-Gaussianity	
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Why	primordial	NG	is	important?		



Among	many	good	reasons:		

fNL	and	shape	are	model	dependent:		
e.g.:	standard	single-field	models	of	slow-roll	inflaCon		
predict	
					
																														fNL~O(ε,η)	<<1		
																																																																																							(Acquaviva,	Bartolo,	RioYo,	Matarrese	2002;	
																																																																																								Maldacena	2002)	

		
	
A	detecCon	of	a	primordial	|fNL|~1	would	rule	out		
all	standard	single-field	models	of	slow-roll	inflaCon	



SHAPES	OF	NG:LOCAL	NG	

Babich et al. astro-ph/0405356   

Bispectrum peaks for squeezed triangles k1<<k2~k3   

€ 

F(1,x2,x3)x2
2x3

2

Non-lineariCes	develop	outside	the	horizon	during	or	immediately	arer	inflaCon	
(e.g.	mul3field	models	of	infla3on)	
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Babich et al.  (2004)   € 

F(1,x2,x3)x2
2x3

2

Bispectrum	peaks	for		equilateral	triangles:	k1=k2=k3	

EQUILATERAL	NG	

Single	field	models	of	infla3on	with	non-canonical	kine3c	term	L=P(ϕ,	X)	where		X=(∂	ϕ)2	(DBI	
or	K-inflaCon)	where	NG	comes	from	higher	derivaCve	interacCons	of	the	inflaton	field		
	
Example:		
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e.g.	mulC-field	models	of	inflaCon	
e.g.	models	with	non-standard	kineCc	terms		

Observa3onal	limits	set	by	Planck		

Planck	2018	results.	IX.	Constraints	on	primordial	non-Gaussianity.		

Planck Collaboration: Constraints on primordial non-Gaussianity

Fig. 1. Weights of each polarization configuration going into the total value of fNL for, from left to right, local, equilateral, and
orthogonal shapes. Note that since we impose `1  `2  `3, there is a di↵erence between, e.g., TEE (smallest ` is temperature) and
EET (largest ` is temperature).

Table 6. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results with the lensing bias sub-
tracted are reported; uncertainties are 68 % CL. The di↵erence
between this table and the corresponding values in the previous
table is that here the equilateral and orthogonal shapes have been
analysed jointly.

Shape Independent Lensing subtracted

SMICA T
Local . . . . . . . . . 6.7 ± 5.6 �0.5 ± 5.6
Equilateral . . . . . . 4 ± 67 5 ± 67
Orthogonal . . . . . �38 ± 37 �15 ± 37

SMICA T+E
Local . . . . . . . . . 4.1 ± 5.1 �0.9 ± 5.1
Equilateral . . . . . . �25 ± 47 �26 ± 47
Orthogonal . . . . . �47 ± 24 �38 ± 24

theoretical interpretation of the result. Moreover, this fluctuation
completely goes away when accounting for polarization data, the
reliability of which has become significantly higher with respect
to our previous analysis (see Sect. 6 for details). Finally, the dis-
crepancy is for a very specific shape and it is entirely driven by
the already-noted fluctuation in the Commander orthogonal re-
sult with respect to 2013 and 2015. The other methods remain
stable, in particular SMICA, which we take as the map of choice
for our final results. The observed fluctuation in orthogonal fNL
from Commander can likely be explained by the unavailability
of “detset” (i.e., detector-subset) maps for this release, which
constituted in the past a useful input for improving the accuracy
of the Commander map. It is, however, important to stress that
Commander itself shows excellent agreement with other meth-
ods, when measuring fNL for all other shapes and also when cor-
relating the bispectrum modes and bins in a model-independent
fashion, both in temperature and polarization (again see Sect. 6
for a complete discussion of these tests).

Comparing the uncertainties in Table 5 to those in the cor-
responding table in the 2015 analysis paper (PCNG15), and fo-
cussing on the ones for the local shape, since those are most
sensitive to low-` modes, we see the following: for T-only data

the errors are approximately equal on average, slightly better for
KSW, and slightly worse for the other three estimators. A pos-
sible explanation for the slightly larger errors could be the fact
that the realism of the simulations has improved from FFP8 used
in 2015 to FFP10 used here. So the errors in 2015 might actu-
ally have been slightly underestimated. However, the di↵erences
are small enough that they could just be random fluctuations, es-
pecially given that not all estimators show the same e↵ect. For
E-only data we see a clear improvement of the errors for all es-
timators. That is as expected, since we are now including all the
additional polarization modes with 4  ` < 40 in the analy-
sis, and the local shape is quite sensitive to these low-` modes.
Finally, for the full T+E analysis, we see that all errors have
remained the same, to within fluctuations of around a few per-
cent, at most. So one might wonder why the improvement in
the E-only analysis has not translated into a corresponding im-
provement in the T+E analysis. The answer is relatively simple:
the EEE-bispectra only have a very small contribution to the fi-
nal T+E analysis, as shown in Fig. 1. This figure also explains
why the errors for the equilateral and orthogonal shapes improve
more when going from T-only to the full T+E analysis than the
errors for the local shape.

In conclusion, our current results show no evidence for non-
Gaussianity of the local, equilateral, or orthogonal type and are
in very good agreement with the previous 2013 and 2015 anal-
yses. We also show in Sect. 6 that the overall robustness and
internal consistency of the polarization data set has significantly
improved, as far as primordial non-Gaussian measurements are
concerned.

5.2. Further bispectrum shapes

5.2.1. Isocurvature non-Gaussianity

In this section we present a study of the isocurvature NG in the
Planck 2018 SMICAmap using the Binned bispectrum estimator.
This analysis is complementary to the one based on the power
spectrum presented in Planck Collaboration X (2018). The un-
derlying modelling approach was discussed in Sect. 2.3, and as
explained there, we only investigate isocurvature NG of the lo-
cal type, and in addition always consider the adiabatic mode
together with only one isocurvature mode, i.e., we consider
separately CDM-density, neutrino-density, and neutrino-velocity
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Fig. 1. Weights of each polarization configuration going into the total value of fNL for, from left to right, local, equilateral, and
orthogonal shapes. Note that since we impose `1  `2  `3, there is a di↵erence between, e.g., TEE (smallest ` is temperature) and
EET (largest ` is temperature).
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remained the same, to within fluctuations of around a few per-
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more when going from T-only to the full T+E analysis than the
errors for the local shape.
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yses. We also show in Sect. 6 that the overall robustness and
internal consistency of the polarization data set has significantly
improved, as far as primordial non-Gaussian measurements are
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Implica3ons	for	infla3on	models	
Ø 	The	standard	models	of	single-field	slow-roll	inflaCon	has	survived		
					the	most	stringent	tests	of	Gaussianity	to-date:	
					devia3ons	from	primordial	Gaussianity	are	less	than	0.01%	level.	
					This	is	a	fantas3c	achievement,	one	of	the	most	precise		
					measurements	in	cosmology!	
	
	
		
	
	
Ø 	The	NG	constraints	on	different	primordial	bispectrum	shapes	severly		
					limit/rule	out	specific	key	(infla3onary)	mechanisms	alterna3ve	to	the		
					standard	models	of	infla3on						
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Primordial	non-Gaussianity	allows	to	answer	to	some	very	simple,	
but	fundamental	ques3ons	you	might	have	about	infla3on:			
	
Ø  	What	is	the	sound	speed	the	inflaton	fluctua3ons	propagate	with?	

Ø  	Are	there	other	par3cles	other	than	the	inflaton?		

Ø  	What	are	their	masses	and	spins?		



Measuring	the	of	sound	speed	of	the	infla3on	

68%	CL	constraints	from	Planck	
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Ø  General	single-field	models	of	inflaCon:	ImplicaCons	for	EffecCve	Field	Theory	of	InflaCon	
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dominant operators that respect some underlying symmetries.
The procedure thus determines a unifying scheme for classes
of models featuring deviations from single-field slow-roll infla-
tion. Typically the equilateral and orthogonal templates repre-
sent an accurate basis to describe the full parameter space of
EFT single-field models of inflation, and therefore we will use
the constraints on f equil

NL and f ortho
NL .

As a concrete example, let us consider the Lagrangian of
general single-field models of inflation (of the form P(X,') mod-
els, where X = gµ⌫@µ� @⌫�) written with the EFT approach:
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The scalar perturbation ⇡ generates the curvature perturbation
⇣ = �H⇡. In this case there are two relevant inflaton interactions,
⇡̇(@i⇡)2 and (⇡̇)3, producing two specific bispectra with ampli-
tudes f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL = �(10/243)(c�2
s �

1)
h
c̃3 + (3/2)c2

s

i
, respectively. Here M3 is the amplitude of

the operator ⇡̇3 (see Senatore et al. 2010; Chen et al. 2007b;
Chen 2010b), with the dimensionless parameter c̃3(c�2

s � 1) =
2M4

3c2
s/(ḢM2

Pl) (Senatore et al. 2010). The two EFT shapes can
be projected onto the equilateral and orthogonal shapes, with the
mean values of the estimators for f equil

NL and f ortho
NL expressed in

terms of cs and c̃3 as

f equil
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i
, (58)

where the coe�cients come from the Fisher matrix between the
theoretical bispectra predicted by the two operators ⇡̇(r⇡)2 and
⇡̇3 and the equilateral and orthogonal templates. Notice that DBI
models reduce to the condition c̃3 = 3(1 � c2

s )/2, while the non-
interacting (vanishing NG) case corresponds to cs = 1 and M3 =
0 (or c̃3(c�2

s � 1) = 0).
We then proceed as in the two previous analyses

(PCNG13; PCNG15). We employ a �2 statistic computed as
�2(c̃3, cs) = uT(c̃3, cs)C�1u(c̃3, cs), with vi(c̃3, cs) = f i(c̃3, cs) � f i

P
(i={equilateral, orthogonal}), where f i

P are the joint estimates
of equilateral and orthogonal fNL values (see Table 6), while
f i(c̃3, cs) are provided by Eq. (58) and C is the covariance ma-
trix of the joint estimators. Figure 19 shows the 68 %, 95 %, and
99.7 % confidence regions for f equil

NL and f ortho
NL , as derived from

from the T +E constraints, with the requirement �2  2.28, 5.99,
and 11.62, respectively (corresponding to a �2 variable with two
degrees of freedom). In Fig. 20 we show the corresponding con-
fidence regions in the (c̃3, cs) parameter space. Marginalizing
over c̃3 we find

cs � 0.021 (95 %, T only) , (59)
and

cs � 0.021 (95 %, T+E) . (60)

There is a slight improvement in comparison with the constraints
obtained in PCNG15 coming from the T + E data.
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Fig. 19. 68 %, 95 %, and 99.7 % confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2, as described

in the text.
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Fig. 20. 68 %, 95 %, and 99.7 % confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 19 via
the change of variables in Eq. (58).

8.2. Multi-field models

Constraints on primordial NG of the local type lead to strong
implications for models of inflation where scalar fields (di↵erent
from the inflaton) are dynamically important for the generation
of the primordial curvature perturbation. In the following we test
two scenarios for curvaton models.

Basic curvaton models The simplest adiabatic curvaton mod-
els predict primordial NG of the local shape with a nonlinearity
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ABSTRACT

We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints
on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum
estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization
analysis produces the following final results: f local

NL = �0.9 ± 5.1; f equil
NL = �26 ± 47; and f ortho

NL = �38 ± 24 (68 % CL, statistical). These results
include the low-multipole (4  ` < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests (with additional
tests regarding foreground residuals compared to 2015), and are stable with respect to our 2015 measurements (with small fluctuations, at the level
of a fraction of a standard deviation, consistent with changes in data processing). Polarization-only bispectra display a significant improvement
in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based
results, and giving excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider
a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking
models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is, however, detected with
an improved significance compared to 2015, excluding the null hypothesis at 3.5�. Beyond estimates of individual shape amplitudes, we also
present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum
shape is glocal

NL = (�5.8 ± 6.5) ⇥ 104 (68 % CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the
tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of di↵erent early-Universe scenarios that generate
primordial NG, including general single-field models of inflation, multi-field models (e.g., curvaton models), models of inflation with axion
fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent
bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the
⇤CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial
seed perturbations.

Key words. Cosmology: observations – Cosmology: theory – cosmic background radiation – early Universe – inflation – Methods: data analysis
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ABSTRACT

We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints
on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and optimal modal bispectrum
estimators, finding consistent values for the local, equilateral, and orthogonal bispectrum amplitudes. Our combined temperature and polarization
analysis produces the following final results: f local

NL = �0.9 ± 5.1; f equil
NL = �26 ± 47; and f ortho

NL = �38 ± 24 (68 % CL, statistical). These results
include the low-multipole (4  ` < 40) polarization data, not included in our previous analysis, pass an extensive battery of tests (with additional
tests regarding foreground residuals compared to 2015), and are stable with respect to our 2015 measurements (with small fluctuations, at the level
of a fraction of a standard deviation, consistent with changes in data processing). Polarization-only bispectra display a significant improvement
in robustness; they can now be used independently to set primordial NG constraints with a sensitivity comparable to WMAP temperature-based
results, and giving excellent agreement. In addition to the analysis of the standard local, equilateral, and orthogonal bispectrum shapes, we consider
a large number of additional cases, such as scale-dependent feature and resonance bispectra, isocurvature primordial NG, and parity-breaking
models, where we also place tight constraints but do not detect any signal. The non-primordial lensing bispectrum is, however, detected with
an improved significance compared to 2015, excluding the null hypothesis at 3.5�. Beyond estimates of individual shape amplitudes, we also
present model-independent reconstructions and analyses of the Planck CMB bispectrum. Our final constraint on the local primordial trispectrum
shape is glocal

NL = (�5.8 ± 6.5) ⇥ 104 (68 % CL, statistical), while constraints for other trispectrum shapes are also determined. Exploiting the
tight limits on various bispectrum and trispectrum shapes, we constrain the parameter space of di↵erent early-Universe scenarios that generate
primordial NG, including general single-field models of inflation, multi-field models (e.g., curvaton models), models of inflation with axion
fields producing parity-violation bispectra in the tensor sector, and inflationary models involving vector-like fields with directionally-dependent
bispectra. Our results provide a high-precision test for structure-formation scenarios, showing complete agreement with the basic picture of the
⇤CDM cosmology regarding the statistics of the initial conditions, with cosmic structures arising from adiabatic, passive, Gaussian, and primordial
seed perturbations.

Key words. Cosmology: observations – Cosmology: theory – cosmic background radiation – early Universe – inflation – Methods: data analysis
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dominant operators that respect some underlying symmetries.
The procedure thus determines a unifying scheme for classes
of models featuring deviations from single-field slow-roll infla-
tion. Typically the equilateral and orthogonal templates repre-
sent an accurate basis to describe the full parameter space of
EFT single-field models of inflation, and therefore we will use
the constraints on f equil

NL and f ortho
NL .

As a concrete example, let us consider the Lagrangian of
general single-field models of inflation (of the form P(X,') mod-
els, where X = gµ⌫@µ� @⌫�) written with the EFT approach:

S =
Z

d4x
p�g

2
66664�

M2
PlḢ

c2
s

 
⇡̇2 � c2

s
(@i⇡)2

a2

!

�M2
PlḢ(1 � c�2

s )⇡̇
(@i⇡)2

a2 +

 
M2

PlḢ(1 � c�2
s ) � 4

3
M4

3

!
⇡̇3

#
.

(57)

The scalar perturbation ⇡ generates the curvature perturbation
⇣ = �H⇡. In this case there are two relevant inflaton interactions,
⇡̇(@i⇡)2 and (⇡̇)3, producing two specific bispectra with ampli-
tudes f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL = �(10/243)(c�2
s �

1)
h
c̃3 + (3/2)c2

s

i
, respectively. Here M3 is the amplitude of

the operator ⇡̇3 (see Senatore et al. 2010; Chen et al. 2007b;
Chen 2010b), with the dimensionless parameter c̃3(c�2

s � 1) =
2M4

3c2
s/(ḢM2

Pl) (Senatore et al. 2010). The two EFT shapes can
be projected onto the equilateral and orthogonal shapes, with the
mean values of the estimators for f equil

NL and f ortho
NL expressed in

terms of cs and c̃3 as

f equil
NL =

1 � c2
s

c2
s

h
�0.275 � 0.0780c2

s � (2/3) ⇥ 0.780c̃3
i
,

f ortho
NL =

1 � c2
s

c2
s

h
0.0159 � 0.0167c2

s � (2/3) ⇥ 0.0167c̃3
i
, (58)

where the coe�cients come from the Fisher matrix between the
theoretical bispectra predicted by the two operators ⇡̇(r⇡)2 and
⇡̇3 and the equilateral and orthogonal templates. Notice that DBI
models reduce to the condition c̃3 = 3(1 � c2

s )/2, while the non-
interacting (vanishing NG) case corresponds to cs = 1 and M3 =
0 (or c̃3(c�2

s � 1) = 0).
We then proceed as in the two previous analyses

(PCNG13; PCNG15). We employ a �2 statistic computed as
�2(c̃3, cs) = uT(c̃3, cs)C�1u(c̃3, cs), with vi(c̃3, cs) = f i(c̃3, cs) � f i

P
(i={equilateral, orthogonal}), where f i

P are the joint estimates
of equilateral and orthogonal fNL values (see Table 6), while
f i(c̃3, cs) are provided by Eq. (58) and C is the covariance ma-
trix of the joint estimators. Figure 19 shows the 68 %, 95 %, and
99.7 % confidence regions for f equil

NL and f ortho
NL , as derived from

from the T +E constraints, with the requirement �2  2.28, 5.99,
and 11.62, respectively (corresponding to a �2 variable with two
degrees of freedom). In Fig. 20 we show the corresponding con-
fidence regions in the (c̃3, cs) parameter space. Marginalizing
over c̃3 we find

cs � 0.021 (95 %, T only) , (59)
and

cs � 0.021 (95 %, T+E) . (60)

There is a slight improvement in comparison with the constraints
obtained in PCNG15 coming from the T + E data.
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Fig. 19. 68 %, 95 %, and 99.7 % confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2, as described

in the text.

0.01 0.02 0.05 0.1 0.2 0.5 1

-
15
00
0-
10
00
0
-
50
00

0
50
00

cs

cé 3
Ic s-2
-
1M

Fig. 20. 68 %, 95 %, and 99.7 % confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 19 via
the change of variables in Eq. (58).

8.2. Multi-field models

Constraints on primordial NG of the local type lead to strong
implications for models of inflation where scalar fields (di↵erent
from the inflaton) are dynamically important for the generation
of the primordial curvature perturbation. In the following we test
two scenarios for curvaton models.

Basic curvaton models The simplest adiabatic curvaton mod-
els predict primordial NG of the local shape with a nonlinearity

41
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flat potential.
In spite of this, if one rewrites ä as

ä = ˙̇a = ˙(aH) = ȧH + aḢ = aH2 + aḢ = aH2

A

1 + Ḣ

H2

B

= aH2(1 ≠ Á) ,

(3.39)
it would seem that Á alone can be su�cient to realise inflation when
Á < 128. Indeed, this is true, but having also ÷ π 1 will assure that
inflation lasts for long enough. In fact ÷ = ≠ Ï̈

HÏ̇ π 1 both ensures that
inflation is an attractor solution and that Ï̇ remains constant and small
for long enough. In other words, ÷ controls the duration of inflation.
Let us now make few comments:

• when we will look at quantum fluctuations, we will use Taylor
expansion in these slow-roll parameters, Á, ÷, which will enter into
the observables.In these expansion the parameters can be treated
as constants because their derivatives are higher orders in these
parameters, e.g. Á̇

H ≥ Á2÷2.

• One can build a whole hierarchy of slow-roll parameters of which Á
and ÷ are the first ones. E.g.

›2 =
3 1

4fiG

4
2

A
V ÕV ÕÕÕ

V 2

B

, (3.40)

which is a second order slow-roll parameter. The third derivative
of the potential corresponds to an eventual self-interaction of the
inflaton field. One can even collect data and let all these parameters
free, in order to use the extracted ones to reconstruct the shape of
the potential.

• A priori, inflation does not imply de-Sitter or even quasi-de-Sitter
stages, given that inflation generally means accelerating expansion,
which can be reached in many di�erent ways. From the equation

ä = aH2

A

1 + Ḣ

H2

B

> 0 (3.41)

we can distinguish three di�erent cases

ä > 0 ≈∆

Y
__]

__[

Ḣ < 0, Ḣ < H2, sub-exponential inflation
Ḣ = 0, De-Sitter
Ḣ > 0, super-exponential inflation, or pole inflation

(3.42)
28Inflation ends when Á = 1, whereas one can show easily that the case in which

Á = 0 corresponds to a de-Sitter evolution.
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• A priori, inflation does not imply de-Sitter or even quasi-de-Sitter
stages, given that inflation generally means accelerating expansion,
which can be reached in many di�erent ways. From the equation

ä = aH2

A

1 + Ḣ

H2

B

> 0 (3.41)

we can distinguish three di�erent cases

ä > 0 ≈∆

Y
__]

__[

Ḣ < 0, Ḣ < H2, sub-exponential inflation
Ḣ = 0, De-Sitter
Ḣ > 0, super-exponential inflation, or pole inflation

(3.42)
28Inflation ends when Á = 1, whereas one can show easily that the case in which

Á = 0 corresponds to a de-Sitter evolution.
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3.3. Two Important Examples

If we consider a perfect fluid with P = Êfl (with Ê = constant), the
solution for a(t) is in general

a(t) = aú

5
1 + Hú

–
(t ≠ tú)

6–

, (3.43)

where – = 2

3(1+Ê)

and aú = a(tú). Plugging into the previous
relations

Y
__]

__[

– > 1 ≈∆ ≠1 < Ê ≠ 1

3

æ a(t) Ã t–, power law inflation
– æ Œ ≈∆ Ê æ ≠1 æ a(t) = eHt de-Sitter
– < 0 ≈∆ Ê < ≠1 æ a(t) Ã |t ≠ tasy |–, tasy = tú ≠ –

Hú

.

(3.44)
In our simple model, one cannot realise Ḣ > 0, since it is always
negative. However in more complex cases, that is a viable possibility.

3.3 Two Important Examples

3.3.1 Large-Field Models
These models have typically a power law potential

V (Ï) Ã Ï– (3.45)

so that Á reads
Á ƒ 1

fiG

A
V Õ

V

B
2

ƒ 1
fiG

–2

M2

P

Ï2

. (3.46)

Since inflation requires Á π 1, for this kind of models it takes place only
if Ï ∫ MP . Let us now define the excursion of the scalar field during
inflation as

�Ï =
⁄ ÏEND

ÏCMB

dÏ =
⁄ tEND

tCMB

Ï̇ dt , (3.47)

where ÏCMB = Ï(tCMB) is the time in which the largest measurable scale
we can see nowadays, so CMB, crossed out the horizon during inflation29.
We can now write

⁄ tEND

tCMB

Ï̇ dt =
⁄ tEND

tCMB

Ï̇

H
H dt ƒ Ï̇

H

⁄ tEND

tCMB

H dt . (3.48)

Then we can recognise that the integral gives the number of e-folds of
inflation necessary to embed the CMB scale (minimal e-folds), which we
call NCMB ; also using the definition of Á, one can see Ï̇

H ƒ Ô
ÁMP . Thus,

plugging together, we obtain

�Ï ƒ
Ô

ÁMP NCMB
30. (3.49)

29Considering also tEND, the time in which inflation end, the interval [tCMB , tEND]
is named observational window.

30We will see further in this works that �Ï is related to the amplitude of the
primordial gravitational waves produced by inflation.

33

Ø  	Now	take	component	with	eq.	of	state	w=p/ρ	à	
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Ø  		Be	careful:	inflaCon	cannot	be	just	pure	de-SiYer,	for	the	very	same	reason	that		
							inflaCon	must	come	to	an	end.	Moreover	acceleraCon	can	be	obtained	in	ways		
							other	than	de-SiYer			

Ø  NoCce	that	we	can	write	down	a	simple	expression	for	the	acceleraCon	of	the		
						scale	factor	

Ø  	This	means	that,	just	from	a	pure	kinemaCcal	point	if	view	



												INFLATION:	WHY	SO	IMPORTANT?		

Ø 	InflaConary	paradigm	is	one	of	the	most	relevant	development	in		
					modern	cosmology.	Introduced	to	solve	some	shortcomings	of	the			
					standard	Hot	Big-Bang	model	(Guth	‘81)	
					e.g.:	why	the	universe	is	so	nearly	spaCally	flat?	(flatness	problem)		
														why	the	temperature	of	CMB	photons	on	opposite	sides	of	the		
														sky	is	so	accurately	the	same	even	if	they	were	never	in	causal		
														contact?	(horizon	problem)	
	
	
Ø 	most	importantly:	inflaCon	offers	an	elegant	explana3on	for	the		
				origin	of	the	first	density	perturba3ons	which	are	the	seeds	for		
				the	CMB	anisotropies	and	the	Large-Scale-Structures	of	the	Universe	
				we	observe	today.		
		
																			



																											INFLATION	

For	sure	InflaCon	takes	place	before	primordial	nucleosythesis	(T≈1MeV):	for	radiaCon	and		
(collisionless)	maYer	dominated	epochs	p=1/3	ρ	and	p=0.				
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An	example	of	accelerated	expansion:	a	de	Siler	phase	
	
	
	
	
	
An	exponen3al	expansion	sourced	by	an	energy	density	that	does		
not	dilute	away				
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ä

a
= �4⇤G

3
(⌅ + 3p)

(32) ⇥ ⌅ a(t)

(33) ⌅ = ⌅(t), p = p(t)
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ä

a
= �4⇤G

3
(⌅ + 3p)

(32) ⇥ ⌅ a(t)

(33) ⌅ = ⌅(t), p = p(t)
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Different cosmological observables that probe different 
scales......but all these structures require some initial 
fluctuations......  
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THE	MAIN	COMPONENTS	OF	THE	UNIVERSE:	
THE	ΛCDM	MODEL	(+	iniCal	condiCons	from	inflaCon)	

From	E.W.	Kolb,	arXiv:0709.3102	``Cosmology	and	the	unexpected’’.	

N.B.:	for	the	most	updated	values	see	the	latest	Planck	satellite	measurements	
hYps://arxiv.org/abs/1807.06209					



We	are	here	

We	seek	informaCon	
about	very	early	3mes		
and	very	high	energies	
E	up	to	1016	GeV	

T~1	MeV	

Zeq~3500	

Zrec~1100	

Zrec~0	



Lecture 1+2 
 
- Dynamics of inflation 

 
- The quantum origin of cosmological perturbations 



												INFLATION	and	THE	INFLATON		
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												INFLATION	and	THE	INFLATON		
Consider	a	simple	real	scalar	field:																																																																							

3	ingredients:		
	
- 	The	scalar	field	(the	so	called	inflaton	field)	
- 	the	gravitaConal	field	(i.e.,	the	metric)	
- 	the	``rest	of	the	world’’:	fermions,	gauge	bosons,	other	scalars.		
		Usually,	in	the	simplest	models,	these	addiConal	components	turns	out	to	be		
		subdominant	w.r.t.	the	inflaton	field	(because	e.g.,	we	know	that	for	pressurless		
		maYer	ρm~a-3	while	radiaCon	ρr~a-4,	and	so	they	decrease	almosr	exponenCally		
		during	inflaCon).				
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												INFLATION	and	THE	INFLATON		

Standard	kine3c	term	 Inflaton	poten3al:	describes	the	self-interacCons	
of	the	inflaton	field	and	its	interacCons	with	the		
rest	of	the	world		

Just	think	of	the	inflaton	field	as	a	parCcle	that	moves	under	a	force		
induced	by	the	potenCal		

Ex:		
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												INFLATION	and	THE	INFLATON		
Let	us	see		
	
1.	What	is	the	dynamics	of	a	scalar	field	in	an	expanding		
				universe?		
	
2.	Why	a	scalar	field	works	well	in	driving	inflaCon	
	
3.	How	we	characterize	the	different	inflaConary	models		
			(see	also	Lectures	7+8)	
	
4.	From	quantum	fluctuaCons	of	the	inflaton	field	to		
				primordial	density	perturbaCons	(which	then	grow	by	subsequent		
						gravitaConal	instability	to	give	rise	to	CMB	anisotropies	and	the	Large-Scale	
						structures	we	observe	in	the	Universe).	



1.	Dynamics	of	a	scalar	field	in	a	curved	space-Cme	

Ø 	This	is	our	master	equaCon:	the	Klein-Gordon	equaCon	for	a	scalar	
					field	in	a	RW	metric	
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Energy	momentum	tensor	

For	a	real	scalar	field,	minimally	coupled	(i.e.	without	coupling	to	gravity	like														)	

16 THE AUTHOR

(123) ⇥ 1

(123) S = SEH + S⇤ = �
⇤

d4x
⇤
�g

1
16⇤G

R +
⇤

d4x
⇤
�gL⇤[⌅, gµ⇥ ]

(123) L⇤[⌅, gµ⇥ ] =
1
2
gµ⇥⌅,µ⌅,⇥ � V (⌅)

(123) V (⌅) =
m2

2
⌅2

(123) T ⇤
µ⇥ =

2⇤
�g

�S

�gµ⇥

(123) T ⇤
µ⇥ =

2⇤
�g

=
�
⇧(
⇤
�gL⇤)

⇧gµ⇥
� ⇧�

⇧(
⇤
�gL⇤)

⇧⇧�gµ⇥

⇥

(123) ⇥ R ⌅2

ContribuCons	from	
derivaCves	w.r.t	to	higher		
order	derivaCves	of	the		
metric	tensor		

N.B.:	try	to	obtain	the	expression	above	by	making	use	of	the	following	expression		
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which	can	be	obtained	from	this	useful	property:		
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arbitrary variations of the connection, by replacing

Γρ
νµ → Γρ

νµ + δΓρ
νµ . (4.58)

The variation δΓρ
νµ is the difference of two connections, and therefore is itself a tensor. We

can thus take its covariant derivative,

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

λσδΓ
σ
νµ − Γσ

λνδΓ
ρ
σµ − Γσ

λµδΓ
ρ
νσ . (4.59)

Given this expression (and a small amount of labor) it is easy to show that

δRρ
µλν = ∇λ(δΓ
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νµ) −∇ν(δΓ

ρ
λµ) . (4.60)

You can check this yourself. Therefore, the contribution of the first term in (4.56) to δS can

be written
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where we have used metric compatibility and relabeled some dummy indices. But now we

have the integral with respect to the natural volume element of the covariant divergence of

a vector; by Stokes’s theorem, this is equal to a boundary contribution at infinity which we
can set to zero by making the variation vanish at infinity. (We haven’t actually shown that

Stokes’s theorem, as mentioned earlier in terms of differential forms, can be thought of this

way, but you can easily convince yourself it’s true.) Therefore this term contributes nothing

to the total variation.

To make sense of the (δS)3 term we need to use the following fact, true for any matrix

M :
Tr(ln M) = ln(det M) . (4.62)

Here, ln M is defined by exp(ln M) = M . (For numbers this is obvious, for matrices it’s a

little less straightforward.) The variation of this identity yields

Tr(M−1δM) =
1

det M
δ(det M) . (4.63)

Here we have used the cyclic property of the trace to allow us to ignore the fact that M−1

and δM may not commute. Now we would like to apply this to the inverse metric, M = gµν .
Then det M = g−1 (where g = det gµν), and

δ(g−1) =
1

g
gµνδg

µν . (4.64)
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We	can	associate	to	the	scalar	field	and	energy-momentum	tensor	
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A leitmotiv of these lectures..........   

	split	the	scalar	field	into	a	``classical’’	background	expectaCon	value		
	(on	the	vacuum	state)	and	quantum	fluctuaKons		around	the	mean			
		value	
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2.				Why	a	scalar	field	works	well	in	driving	inflaCon?	
							The	scalar	field	can	provide	an	energy	density				
							that	remains	almost	constant	in	1me	

ü 	Take	a	homogeneous	and	isotropic	scalar	field		
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ü 	So:	
1.  	A	scalar	field	behaves	like	a	perfect	fluid	
2.  		Most	importantly:	if	the	poten3al	energy	density	dominates	over		
					the	kine3c	energy	density…….	
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ä

a
= �4⇤G

3
(⌅ + 3p)

(32) ⇥ ⌅ a(t)

(33) ⌅ = ⌅(t), p = p(t)
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												INFLATION	and	THE	INFLATON		
Infla1on	is	aIained	if	the	energy	density	of	the	universe	is	dominated	by	the	poten1al	
energy	of	a	scalar	field	(the	inflaton)	
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Let	us	look	in	more	details	into	the	dynamics	of	a	scalar	field	in		
a	curved	space-Cme	

ü 	Take	the	inflaton	field	which	is	slow-rolling	along	its	potenCal																																																																									
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2.	Let	us	look	in	more	details	into	the	dynamics	of	a	scalar	field	in		
a	curved	space-Cme:	Slow-roll	parameters	
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So	the	slow-roll	condiCons,	as	expected,	means	that	the	inflaton	poten3al	is	very	flat		
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It	is	then	customary	to	parametrize	inflaConary	models	(i.e.	the	form	of	the	inflaton	potenCal	)	
in	a	sort	of	model-independent	way	by	introducing	the	slow-roll	parameters		
	
		 :	the	Hubble	rate	change	slowly			

:	aYractor	soluCon	with	
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8

3
⇡G⇢a2 � k ;

(164) ⌦(t)� 1 =
k

a2H2
=

k

ȧ2
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2.	Let	us	look	in	more	details	into	the	dynamics	of	a	scalar	field	in		
a	curved	space-Cme	
	
N.B.:	instead	of	η	one	can	use	a	slow-roll	parameter	ηV		
	
																																																							with	
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and	so	we	can	also	say	that	|ηV|	<<1			

So	the	slow-roll	condiCons,	as	expected,	means	that	the	inflaton	poten3al	is	very	flat		



 
 
Let’s summarize:  
Inflation takes place if the inflaton potential is sufficiently  
flat, i.e. if the slow-roll parameters ε, |η| <<1 
 
N.B.:		
Remember	that	we	found:	
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flat potential.
In spite of this, if one rewrites ä as

ä = ˙̇a = ˙(aH) = ȧH + aḢ = aH2 + aḢ = aH2

A

1 + Ḣ

H2

B

= aH2(1 ≠ Á) ,

(3.39)
it would seem that Á alone can be su�cient to realise inflation when
Á < 128. Indeed, this is true, but having also ÷ π 1 will assure that
inflation lasts for long enough. In fact ÷ = ≠ Ï̈

HÏ̇ π 1 both ensures that
inflation is an attractor solution and that Ï̇ remains constant and small
for long enough. In other words, ÷ controls the duration of inflation.
Let us now make few comments:

• when we will look at quantum fluctuations, we will use Taylor
expansion in these slow-roll parameters, Á, ÷, which will enter into
the observables.In these expansion the parameters can be treated
as constants because their derivatives are higher orders in these
parameters, e.g. Á̇

H ≥ Á2÷2.

• One can build a whole hierarchy of slow-roll parameters of which Á
and ÷ are the first ones. E.g.

›2 =
3 1

4fiG

4
2

A
V ÕV ÕÕÕ

V 2

B

, (3.40)

which is a second order slow-roll parameter. The third derivative
of the potential corresponds to an eventual self-interaction of the
inflaton field. One can even collect data and let all these parameters
free, in order to use the extracted ones to reconstruct the shape of
the potential.

• A priori, inflation does not imply de-Sitter or even quasi-de-Sitter
stages, given that inflation generally means accelerating expansion,
which can be reached in many di�erent ways. From the equation

ä = aH2

A

1 + Ḣ

H2

B

> 0 (3.41)

we can distinguish three di�erent cases

ä > 0 ≈∆

Y
__]

__[

Ḣ < 0, Ḣ < H2, sub-exponential inflation
Ḣ = 0, De-Sitter
Ḣ > 0, super-exponential inflation, or pole inflation

(3.42)
28Inflation ends when Á = 1, whereas one can show easily that the case in which

Á = 0 corresponds to a de-Sitter evolution.
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So	you	see	that	inflaCon	takes	place	if	ε	<1.		
So	why	we	say	that	also	|η|<1?		
Because	this	guarantees	that	the	velocity	of	the	scalar	field								changes	very	slowly		
with	Cme,	and	therefore	that	the	condiCon		ε	<1	(i.e.	inflaCon)	is	mantained	for		
long	enough	(in	order	to	solve	the	horizon	and	the	flatness	problems).	
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Let	us	pause	for	a	moment.	A	couple	of	comments	are	in	order	here.		

Ø  	When	studying	the	quantum	fluctuaCons	of	the	scalar	field,	one	usually	employs		
						a	Taylor	expansion	in	the	slow-roll	parameters,	since	they	are	small.	Moreover		
						one	can	treat	them	as	constant	(at	lowest-order	in	the	slow-roll	parameters)	since		
						one	can	show	that	their	Cme	derivaCves	are	higher-order	in	the	slow-roll		
						parameters,	with,	e.g.,		

	

Ø We	have	considered	the	ε	and	η	slow-roll	parameters.	Indeed	there	exist	a	full		
						hierarchy	of	slow-roll	parameters,	built,	e.g.,	from	higher-order	derivaCves	of	the		
						potenCal	V	w.r.t.	to	the	inflaton	field.	E.g.,				
	
	
	
	
						which	is	second-order	in	the	slow-roll	parameters.			
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which is a second order slow-roll parameter. The third derivative
of the potential corresponds to an eventual self-interaction of the
inflaton field. One can even collect data and let all these parameters
free, in order to use the extracted ones to reconstruct the shape of
the potential.

• A priori, inflation does not imply de-Sitter or even quasi-de-Sitter
stages, given that inflation generally means accelerating expansion,
which can be reached in many di�erent ways. From the equation

ä = aH2

A

1 + Ḣ

H2

B

> 0 (3.41)

we can distinguish three di�erent cases

ä > 0 ≈∆

Y
__]

__[

Ḣ < 0, Ḣ < H2, sub-exponential inflation
Ḣ = 0, De-Sitter
Ḣ > 0, super-exponential inflation, or pole inflation

(3.42)
28Inflation ends when Á = 1, whereas one can show easily that the case in which

Á = 0 corresponds to a de-Sitter evolution.

32

BRIEF ARTICLE 39

(152) ȧ2 =
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Two	simple	but	very	important	examples	
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Excursion	of	the	inflaton	field	(in	the	observable	window):			

(Homework: derive this expression). For � = 0, this is the dilution equation for non-
relativistic matter. � represents the inflation decay rate. Indeed, in this period of time
the inflation is supposed to decay into other particles. These thermalize and, once the in-
flation has decayed enough, start dominating the universe. This is the start of the standard
big-bang universe.

1.5 Simplest Models of Inflation

1.5.1 Large Field Inflation

The simplest versions of inflation are based on scalar fields slowly rolling down their potential.
These typically fall into two categories: large fields and small fields. Large field models are
those characterized by a potential of the form

V (�) =
�↵

M↵�4

. (57)

� �� �
�obs.

�reheat�begin

V (�)

�

Figure 6: A ‘large-field’ inflationary model.

For any M and ↵, if we put the scalar field high enough, we can have an inflationary
solution. Let us see how this happens by imposing the slow roll conditions.

✏ ⇠M2

Pl

✓
V,�

V

◆
2

⇠ ↵2

M2

Pl

�2

(58)

For ↵ ⇠ 1, we have
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. (59)

The field vev has to be super planckian. Further, notice that the field travels an amount of
order
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Therefore	in	the	case	ε~1/NCMB	(as	it	usually	happens	in	large-field	models)	and	not	too	small	the	excursion	
of	the	field	is		Δφ	>MPL	à	large-field	models	(here	NCMB	defines	the	“observable	window”	during	inflaCon,	
the	one	that	we	can	observaConally	probe,	that	is	to	say,	NCMB	corresponds	to	the	60-70	e-folds	(counted	
from	the	end	of	inflaCon)	in	correspondence	to	which	the	largest	observable	scale,	i.e.	the	cosmological	
horizon	today,	leaves	the	horizon	during	InflaCon	(always	think	to	the	plot	of	the	cosmological	horizon	as	a	
funcCon	of	Cme).		
The	largest	observable	scales	can	be	probed	through	CMB	measurements,	that’s	why	we	used	the	suffix	
“CMB”.		
	
Instead	in	the	case	in	which	cui	ε	<<1	then	one	gets	Δφ	<MPL	à	small-field	models.		

CMB	 CMB	
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Why we expect large-scale fluctuations  
to be generated during inflation ?   
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																																																													.	Thus	the	two	soluCons	are	related	by	a	constant	of		
proporConality	that	depends	upon	the	space	point	(we	are	neglecCng	the	gradient)	
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Regions	by	regions	(large	-	superhorizon	–	distance	apart)	the	scalar		
field	passes	through	the	same	history	but	at	slight	different	3mes		
because	of	quantum	fluctua3ons		
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So  let us solve this equation with some useful tricks......... 

SUPERHORIZON	SCALES:	-k	τ=k	/(aH)<<1		

BRIEF ARTICLE 29

(127) ns = 0.9603 ± 0.0073 (68%CL)
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ȧ
⇧ t2/3 ⇧ a1/2(t)

(127) |1� ��1
0 | ⌅ 10[�60+ln(Tf /TPl)]

(127) �0

(127) u = a(t)�⌅

N.B.:	I	am	using	conformal	Cme		

18 THE AUTHOR

(123) ⌅0|a†
k = 0

(123) u⇥ku
⇤
k � uku

⇥⇤
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇤) ,

(123) uk(⇥)

(123) |0⇧

(123) ak

(123) a†
k

(123) u⇤⇤k +
�

k2 � a⇤⇤

a
+ V,⇥⇥ a2

⇥
uk = 0

(123) ¨�⇤k + 3H ˙�⇤k +
k2

a2
�⇤k = �V,⇥⇥ �⇤k

(123) uk(⇥) ⇤ 1⌃
2k

e�ik�

(123)
�

k

aH

⇥
⇥ 1

(123) (k/aH) ⇥ 1

(123) d⇥ = dt/a(t)

18 THE AUTHOR

(123) ⇧0|a†
k = 0

(123) u⇥ku
⇤
k � uku

⇥⇤
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇤) ,

(123) uk(⇥)

(123) |0⌃

(123) ak

(123) a†
k

(123) u⇤⇤k +
�

k2 � a⇤⇤

a
+ V,⇥⇥ a2

⇥
uk = 0

(123) ¨�⇤k + 3H ˙�⇤k +
k2

a2
�⇤k = �V,⇥⇥ �⇤k

(123) uk(⇥) ⇤ 1⌥
2k

e�ik�

(123)
�

k

aH

⇥
⇥ 1

(123) (k/aH) ⇥ 1

(123) d⇥ = dt/a(t)

(123) a(t) ⌅ eHt ⇤ ⇥ = �1/(aH)

18 THE AUTHOR

(123) ⇧0|a†
k = 0

(123) u⇥ku
⇤
k � uku

⇥⇤
k = �i

(123) [ak, ak� ] = 0, [ak, a†
k� ] = � �(3)(k� k⇤) ,

(123) uk(⇥)

(123) |0⌃

(123) ak

(123) a†
k

(123) u⇤⇤k +
�

k2 � a⇤⇤

a
+ V,⇥⇥ a2

⇥
uk = 0

(123) ¨�⇤k + 3H ˙�⇤k +
k2

a2
�⇤k = �V,⇥⇥ �⇤k

(123) uk(⇥) ⇤ 1⌥
2k

e�ik�

(123)
�

k

aH

⇥
⇥ 1

(123) (k/aH) ⇥ 1

(123) d⇥ = dt/a(t)

(123) a(t) ⌅ eHt ⇤ ⇥ = �1/(aH)

(123) a⇤⇤/a = 2/⇥2 = 2a2H2and	

ü 		

SUBHORIZON	SCALES:	-k	τ=k	/(aH)>>1;	
			

BRIEF ARTICLE 29

(127) ns = 0.9603 ± 0.0073 (68%CL)

(127) ⇥ < 0.008 (95%CL) ⇤ = �0.010+0.005
�0.011

(127) ln(1010A) = 3.089+0.024
�0.027, (68% CL)

(127) r < 0.12 (95%CL)

(127) V 1/4 < 1.94⇥ 1016 GeV

(127) Hinfl/MPl < 3.7⇥ 10�5

(127) rH(t)

(127) a(t) ⇧ t1/2 ⇤ rH(t) =
1

aH
=

1
ȧ
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ü 		Match	the	two	soluKons	at	horizon-crossing	k=a	H	(-k	τ=1)	
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ON	SUPERHORIZON	SCALES	



Quantum	fluctuaCons	of	a	massless		scalar	field	in	de-SiYer		
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(123) �Bessel	equa3on		(with,	for	the	specific	case	under	examinaCon	of	a	massless	scalar	field	and		
																																in	de	SiYer																	)	
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ü 	The	soluCons	for	a	generic	ν	constant	are	well	known,	Hankel	funcCons	
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ü 	Well	inside	the	horizon	(-k	τ>>1)	

So	we	set:																															and																																																						
	
to	recover	the	plane-wave	behaviour	well	inside	the	horizon	
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Quantum	fluctuaCons	of	a	massless		scalar	field	in	de-SiYer		

ü 	So	the	final	soluCon	is		
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The	power	spectrum	of	cosmological	perturbaCons:	
	a	quick	definiCon	

Ø  	Of	course	to	staCsCcally	characterize	the	level	of	perturbaCons	one	cannot	take	
						simply,	e.g.,																						given	that		
	
Ø  	The	power	spectrum	depends	only	on	the	modulus	of	k	because	of	isotropy,	and		
								the	delta	Dirac	is	there	because	of	homogeneity	
	
Ø  You	can	show	that																																	is	(proporConal	to)	the	Fourier	transform	of	

the	two-point	correlaCon	funcCon	in	real	space	

Ø  	You	can	easily	show	that	the	variance	of	the	fluctuaCon	is	given	by				
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The	power	spectrum	of	cosmological	perturbaCons:	
a	quick	definiCon	

Ø  	For	example:		
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EXERCISE:	alternaKvely	you	can	compute	the	scalar	spectral	Klt	also	in	the	following		
way:			

(remember																												)	
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To	compute	the	spectral	Clt	

Use	the	following	trick:	consider	the	number	of	e-foldings	between	the	Cme	a	given	scale	k	leaves	
the	horizon	during	inflaCon	and	the	end	of	inflaCon	
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GeneraKng	the	primordial	density	perturbaKons		

Log	a(t)	

Hubble	radius:	(a	H)-1		

End	inflaCon	->	radiaCon	epoch	

(comoving)	lenghts	

λ~	2	π/k	
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t(1)(k):	Kme	when	fluctuaKon		
of	mode	k	exits	the	horizon	

INFLATION	

Horizon	re-entry:	t(2)(k)	

density	fluctuaCons	

E.g.	:	if	a	given	fluctuaCon	mode	re-enters	the	horizon	during	the	radiaCon	epoch		
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Varying	the	Spectral	index	
If	n=1:	Harrison-Zel’	dovich	spectrum	(exact	scale-invariance)		

P(k)	

k	

n=1	

n>1:	blue	Clt:	perturbaCons	have	more	power	on		
																									smaller	scales	

n<1:	red	Clt:	less	power	on	smaller	scales	

parametrizes	devia3on	from	scale-invariance:	
		

n=1	would	signal	some	underlying		symmetry;	
measuring	n	≠	1	would	signal	a	dynamical	process	for	genera3ng	
the	ini3al	density	fluctua3ons	(infla3on??)		
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14 A. Buonanno

λGW λGW

Fig. 1. We show how point particles along a ring move as a result of the interaction with a GW
propagating in the direction perpendicular to the plane of the ring. The left panel refers to a wave
with + polarization, the right panel with × polarization.

change of coordinates, so we can compute it in the TT gauge. Using Eq. (2.20),
we obtain

RTT
j0k0 = − 1

2c2
ḧTT

jk . (3.13)

Thus,
d2ξj

dt2
=

1

2
ḧTT

jk ξk . (3.14)

In conclusion, in the FF frame the effect of a GW on a point particle of mass m
can be described in terms of a Newtonian force Fi = (m/2) ḧTT

ij ξj . Note that in
the FF frame, coordinate distances and proper distances coincide, and we recover
immediately Eq. (3.8).
The description in the FF frame is useful and simple as long as we can write

the metric as gµν = ηµν + O(x2/R2), i.e. as long as we can disregard the
corrections x2/R2. Since R−2 = |Ri0j0| ∼ ḧ ∼ h/λ2

GW, we have x2/R2 ≃
L2 h/λ2

GW, and comparing it with δL/L ∼ h, we find L2/λ2
GW ≪ 1. This

condition is satisfied by ground-based detectors because L ∼ 4 km and λGW ∼
3000 km, but not by space-based detectors which have L ∼ 5 × 106 km and will
observe GWs with wavelength shorter than L. [For a recent thorough analysis
and a proof of the equivalence between the TT and FF description, see, e.g.,
Ref. [45].]

3.4. Key ideas underlying gravitational-wave detectors

To illustrate the effect of GWs on FF particles, we consider a ring of point parti-
cles initially at rest with respect to a FF frame attached to the center of the ring,
as shown in Fig. 1. We determine the motion of the particles considering the +
and × polarizations separately. If only the + polarization is present, we have

hTT
ij = h+

(
1 0
0 −1

)
sinωt , ξi = [x0 + δx(t), y0 + δy(t)] , (3.15)



Quantum	fluctuaCons	of	a	massless	scalar	field	in	(quasi)	de-SiYer		
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Primordial	gravitaKonal	waves	

Ø NoCce	that,	since	(H/MPl)2	~	V(φ),	then	the	amplitude	of	the		
				gravitaConal	waves	is	proporConal	to	the	energy	scale	of	inflaCon:		
				Einfl=V1/4.	

And	hence,	summing	over	the	2	polarizaCon	states:		
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ObservaKonal	predicKons	(I)		
Ø 	Primordial	density	(scalar)	perturbaKons		

Ø 	Primordial	(tensor)	gravitaKonal	waves	

amplitude	

spectral	index:	
(or	``3lt’’)	

N.B:	both	depend	on	the	dynamics	of	the	scalar	field	during	inflaCon	and	hence	on	the	potenCal	
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ObservaKonal	predicKons	(II)	
Ø 	The	overall	amplitude	will	be	fixed	by	the	normalizaCon	with	observaCons,	so		
					just	consider	the	relaCve	amplitude		
	
														
																																																															tensor-to-scalar	perturbaKon	raKo	
	
	
	
	
	
Ø  	Consistency	relaKon	(valid	for	all	single	field	of	slow-roll	inflaCon).	At	lowest	order		
						in	the	slow-roll	parameters		
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ObservaKonal	predicKons			

One	can	also	consider	a	running	of	the	spectral	index	and		
a	running	of	the	running		
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Chapter 3. Inflation

flat potential.
In spite of this, if one rewrites ä as

ä = ˙̇a = ˙(aH) = ȧH + aḢ = aH2 + aḢ = aH2

A

1 + Ḣ

H2

B

= aH2(1 ≠ Á) ,

(3.39)
it would seem that Á alone can be su�cient to realise inflation when
Á < 128. Indeed, this is true, but having also ÷ π 1 will assure that
inflation lasts for long enough. In fact ÷ = ≠ Ï̈

HÏ̇ π 1 both ensures that
inflation is an attractor solution and that Ï̇ remains constant and small
for long enough. In other words, ÷ controls the duration of inflation.
Let us now make few comments:

• when we will look at quantum fluctuations, we will use Taylor
expansion in these slow-roll parameters, Á, ÷, which will enter into
the observables.In these expansion the parameters can be treated
as constants because their derivatives are higher orders in these
parameters, e.g. Á̇

H ≥ Á2÷2.

• One can build a whole hierarchy of slow-roll parameters of which Á
and ÷ are the first ones. E.g.

›2 =
3 1

4fiG

4
2

A
V ÕV ÕÕÕ

V 2

B

, (3.40)

which is a second order slow-roll parameter. The third derivative
of the potential corresponds to an eventual self-interaction of the
inflaton field. One can even collect data and let all these parameters
free, in order to use the extracted ones to reconstruct the shape of
the potential.

• A priori, inflation does not imply de-Sitter or even quasi-de-Sitter
stages, given that inflation generally means accelerating expansion,
which can be reached in many di�erent ways. From the equation

ä = aH2

A

1 + Ḣ

H2

B

> 0 (3.41)

we can distinguish three di�erent cases

ä > 0 ≈∆

Y
__]

__[

Ḣ < 0, Ḣ < H2, sub-exponential inflation
Ḣ = 0, De-Sitter
Ḣ > 0, super-exponential inflation, or pole inflation

(3.42)
28Inflation ends when Á = 1, whereas one can show easily that the case in which

Á = 0 corresponds to a de-Sitter evolution.
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Large fieldmodels V (φ)∝φα

r =
4α
N

1− n =
α + 2
2N

Exponential potential models

V (φ)∝ exp[− 2 / p φ /MPl ]→ a(t)∝ t p

r = 16
p

1− n = 2
p

Small field models
V (φ)∝1− (φ p /µ p ), p ≥ 3

r ~ 0 1− n = 2
N
(p−1)
(p− 2)

Hybrid inflation (dynamical SUSY breaking)
V (φ)∝1+α log(φ /MPL )

Starobinsky model R+ (R2 / 6M 2 )

→V (φ)∝ (1− e−2 2/3φ /MPl )2

Natural inflation V (φ)∝1− cos(φ / f )



Zoology	of	inflaConary	models	

ηV>2	ε	

0<ηV<2	ε	

ηV<0	

€ 

r =
8
3
(1− ns) +

2mPl
2

3π
V ,φφ
V

See,e.g.,	Kinney	et	al.	astro-ph/0007375				
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Classifying	inflaConary	models	

``Large	field’’		like	potenCal		
``Small	field’’		like	potenCal	
	predict	ε	very	very	small		
		

Roughly speaking: ``Large field’’ models can produce a high level of gravity waves;  
                                    ``small field’’ models produce a low level of gravity waves 
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“Large field’’ models can produce a high level of gravity waves  
   (r>0.01)  

“Small field’’ models produce a low  level of gravity waves  
 (r<0.01)  

Take	the	previously	derived	formula	for	the	excursion	of	the	scalar	field	

But remember the tensor-to-scalar ratio  
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The	precise	relaCon	one	obtains	is		

(Homework: derive this expression). For � = 0, this is the dilution equation for non-
relativistic matter. � represents the inflation decay rate. Indeed, in this period of time
the inflation is supposed to decay into other particles. These thermalize and, once the in-
flation has decayed enough, start dominating the universe. This is the start of the standard
big-bang universe.

1.5 Simplest Models of Inflation

1.5.1 Large Field Inflation

The simplest versions of inflation are based on scalar fields slowly rolling down their potential.
These typically fall into two categories: large fields and small fields. Large field models are
those characterized by a potential of the form
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For any M and ↵, if we put the scalar field high enough, we can have an inflationary
solution. Let us see how this happens by imposing the slow roll conditions.
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Classifying	inflaConary	models	
Ø 	``Large-field’’	models	0<ηV<2ε:	
												
																																											typical	of	``caothic	inflaCon	scenario’’	(Linde	`83)	
																									
																																											``power	law	inflaCon’’	(Lucchin,	Matarrese	‘85)	
	
Ø 			``small-field	models’’:		ηV<0	

																																												from	spontaneous	symmetry	breaking	or	Goldstone,										
																																																					axion	modes	(Linde;	Albrecht,	Steinhardt	`82;	Freese				
																																																					et	al	‘90)	
	
Ø 			hybrid	models	ηV>2	ε:		
																																												supersimmetry;	typically	involve	a	second	field	to	end		
																																																					inflaCon	(Linde	’91;	‘94)								
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Two	more	interesCng	models	(as	an	example):	

Classifying	inflaConary	models	

Ø 	Natural	inflaCon		
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Predicts	a	Cny	amount	of	gravity	waves			

For	μ<	MPl	it	is	a	small	field	models	

Related	to	a	shir	symmetry	of	the	inflaton:	ϕ	à	ϕ+c,		
where	c	is	a	constant.	If	exact	this	symmetry	would	imply		
that		ϕ	is	massless	(the	potenCal	would	be	exactly	flat).			
Usually	the	symmetry	gets	broken	à	a	small	mass	is		
generated	à	pseudo	Nambu-Goldstone	field	(axion).		

MoCvaCon:	a	modified	gravity	theory	arising	from	quantum		
correcCons.	The	R2	term	corresponds	to	an	addiConal	scalar		
degree	of	freedom	that	plays	the	role	of	the	inflaton.		
In	fact	via	a	conformal	transformaCon																											with		
																												one	can	rewrite	this	acCon	in	the	so	called		
Einstein	frame,	where,	besides	the	Ricci	scalar	R	of	the	usual		
Hilbert-Einstein	acCon,	there	is	the	acCon	of	a	minimally		
coupled	scalar	field	with	standard	kineCc	term	and	a	potenCal		
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FIG. 1. Potential as a function of the two scalar fields. 'G describes the “scalaron” field that accounts for modifications of
Einstein gravity while 'I is the one driving inflation. Significant non-Gaussianities (|fNL| ⇡ 1 � 30) are generated for generic
initial field values, provided 'G > �3. Parameters are chosen for illustration purposes. In particular we chose a quadratic
potential [26] for the inflaton field 'I . The right panel shows the potential around the minimum.

proportional to f2, f3, f6 and f8 will be set to zero, as
well as f10 as we are not interested in parity violating sig-
natures. We are interested only in the terms that could
give rise to a possibly enhanced local (or quasi-local) NG
in the squeezed limit, di↵erent from the well-known re-
sult fNL ⇠ O(✏) that is valid in standard gravity [19–21].
Therefore we will not consider inflaton derivative self-
interactions, which are known to generate NG mainly in
the equilateral configuration. This is valid also for the
ghost-free combination that can be built with the oper-
ators proportional to f4 and f5 [28], which would not
generate significant NG in the local configuration. The
only term left to consider is therefore the term R2, which
is nothing else than the first term in an expansion in
powers of the Ricci scalar of a more general f(R) theory:
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By performing a Weyl transformation gµ⌫ ! e�2!gµ⌫ ,
with e2! = �, to go to the Einstein frame, the action
appears as a two-field interacting model:
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As expected, there is an equivalence between
“f(R)+scalar” and a two-field model with a spe-
cific field metric, a generic potential for '1 and a
“conformally-stretched” potential for '2. Then it is
conceivable that the interactions between the two fields
could induce some observable e↵ects, possibly enhancing
also local NG to an observable level. It is important to
note here that if both fields contribute to the dynamics
of the background, we should rigorously impose slow-roll
conditions on both of them. However, if the field
associated to the R2 terms is subdominant, then this
condition could be relaxed and its possible NG could
be transferred to the inflaton field. In the Einstein
frame this is equivalent to a transfer of non-Gaussian
isocurvature perturbations to the adiabatic perturba-
tion mode [29]. To study this e↵ect, we will consider
f(R) = 1

2M
2
PlR+R2/12M2.

This choice is motivated by the fact that it corresponds
to the leading order term in an expansion of a generic
f(R) in powers of R (or equivalently in derivatives of
the metric). In this case, we obtain a complete potential
V ('1,'2) given by:
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FIG. 1. Potential as a function of the two scalar fields. 'G describes the “scalaron” field that accounts for modifications of
Einstein gravity while 'I is the one driving inflation. Significant non-Gaussianities (|fNL| ⇡ 1 � 30) are generated for generic
initial field values, provided 'G > �3. Parameters are chosen for illustration purposes. In particular we chose a quadratic
potential [26] for the inflaton field 'I . The right panel shows the potential around the minimum.
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Large fieldmodels V (φ)∝φα

r =
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Exponential potential models

V (φ)∝ exp[− 2 / p φ /MPl ]→ a(t)∝ t p
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p

Small field models
V (φ)∝1− (φ p /µ p ), p ≥ 3

r ~ 0 1− n = 2
N
(p−1)
(p− 2)

Hybrid inflation (dynamical SUSY breaking)
V (φ)∝1+α log(φ /MPL )

Starobinsky model R+ (R2 / 6M 2 )

→V (φ)∝ (1− e−2 2/3φ /MPl )2

Natural inflation V (φ)∝1− cos(φ / f )
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§  FluctuaCons	in	the	inflaton	produce	fluctuaCons	in	the	universe	expansion	from	
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