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What are we going to learn??

* Lecture 1:
Some basics about inflation
- dynamics of inflation: simplest models and slow-roll parameters
- predictions (power-spectra of primordial density perturbations and gravitational
waves)

- contact with observations: present constraints on inflationary models

* Lecture 2:
Connections between Early Universe and neutrinos. A few examples:
- impact of neutrinos on inflationary gravitational waves
- further connections with inflation
- for the future: spatial anisotropies of the cosmic neutrinos background
- neutrinos and isocurvature perturbations from inflation



The big picture: precision cosmology

ACDM: The standard cosmological model

just 6 numbers.......
describe the Universe composition and evolution

Homogeneous background Perturbations

Dark Matter 5.8%
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 atoms 4% * nearly scale-invariant
e cold dark matter 23% e adiabatic

e dark energy 73% * (almost) Gaussian
N\?? ORIGIN???

Credit: L. Verde



Recombination epoch: CMB decouples at T~0.2 eV Dark Energy
Accelerated Expansion

Dark Ages Development of

380,000 yr Galaxies, Planets, etc.
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4 FACTS INFLATION CAN EXPLAIN

The Universe is old

The Universe is homogeneous and isotropic
(on large scales)

The Universe today is very close to be
spatially flat

Most importantly: Structures grew out of
tiny, nearly scale invariant (a/most Gaussian)
perturbations



A step back in time
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ABSTRACT

The general qualitative behavior of linear, first-order density perturbatlons ina Frledmann Lemaitre
cosmological model with radiation and matter has been known fo, " "
situations. An exact quantitative calculation which traces the entire
lacking because the usual approximations of a very short photo
combination, and a very long mean free path after, are inadequate.
integration of the collision equation of the photon distribution functi

834 P. J. E. PEEBLES AND J. T. YU Vol. 162

b) Possible Significance

It is well to bear in mind that in this calculation the initial density fluctuations are
invoked in an ad hoc manner because we do not have a believable theory of how they
may have originated. Also, it is entirely possible that we have left out some relevant
force, possibly that provided by a primeval magnetic field. Our calculation thus is at best
exploratory; but we have remarked that one might consider the results of the exploration
encouraging if, for example, the characteristic numbers one derives correspond to known

phenomena.




The rise and fall ... of the comoving Hubble horizon

Comoving 4 ) . Radiation = matter era>A era
Inflation :
scales ' Hot Big Bang
5 Comoving
/ Accelerated ! ubble Horizon
pre-inﬂa‘éwary expansion
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Inflation

A single real quantum scalar field with a canonical kinetic term on top of a rather flat potential

1 1
L= §MP2>1R — 59/”0#@581/@5 - V(qb)

(and minimally coupled to gravity; GR; Bunch-Davies vacuum)

V()4

the inflaton is slowly rolling down its potential

¢

1. 8
v V(g) >> §¢2 —> H? = 7TTV(gb) ~ const. —» a(t) ~ e’ Accelerated expansion
2 vV 2
€= MulYe) o4
V 2 \V

v' To have long enough inflation |n=M f,l <<
%




Initial conditions

Inhomogeneous

=500 m— w500 11K ye

INFLATION
- | Homogeneous
1
LI
Quantum
x 100,000 flyctuations of a

scalar field, the
inflaton, set the
initial conditions for
CMB anisotropies
and Large-Scale
Structure formation



Inflation

V()4

the inflaton is slowly rolling its potential

¢

= On large (super-horizon scales) each region in the universe goes through the
same expansion history but at slightly different times:

d(x,t) = go(t — 6t(x)) —  do(x,t) = —6t(x)do(t)

=  Fluctuations in the inglaton produce fluctuations in the universe expansion from

place to place H” ~ 3TGV(9) —>

ty Yo 0p
number of e-foldings N = In(as/a;) = Hdt — |(=Hot =-H—~—-H—

t; §b P

Additional expansion



Quantum fluctuations of a scalar field during inflatior

. . L2
S + 3HOIP, + E(S(bk —%&bk

A massless or light scalar field: m?=V,, << H* for slow-roll

v when the perturbation modes are within the horizon:
A << (comoving) Hubble radius = (a H)™*
k>> (aH)

. k2 o
0Pk + — 00k =0 — oscillations
a
v" when the perturbation modes are superhorizon scales:

(Sq.b.k + 3H(5§ék =0 — 0@k = cost. (k<<aH)

Remember: H=const.



The rise and fall ... of the comoving Hubble horizon
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Hubble Volume
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From S. Dodelson “"Modern Cosmology’’, Academic Press (2003)



Primordial gravitational waves

GWs are tensor perturbations of the metric. Restricting ourselves to a
flat FRW background (and disregarding scalar and vector modes)

ds?= - dt? + a%(t) (5; + h;(t,x)) dx' dx!

where h; are tensor modes which have the following properties
h; =h; (symmetric)

hi.=0 (traceless)

h‘j|i= 0 (transverse, i.e. divergence free)

and satisfy the equation of motion

. 2
i 43%h -k =0
d a " =d/dt

i,j=1,2,3

14



Primordial gravitational waves

GWs have only (9—2>6-1-3=) 2 independent degrees of freedom,
corresponding to the 2 polarization states of the graviton

il%’-fc " Aot
’ hkDE ) —

hJ#ngh#kﬁh=O
a G

behaviour:

k « aH (outside the horizon) h = const + decaying mode

k » aH (inside the horizon) h =e***/a  gravitational wave; it freely
streams, experiencing redshift
and dilution, like a free photon)

‘=d/dt
dt=dt/a(t)




Observational predictions

» Primordial density (scalar) perturbations

16 V* (k)@

PC(k) — : — spectral index: n — 1 = 21 — 6e
9 Z\4é1¢2 ko describes deviations from scale invariance
o M2 (V' M (V"
. Pl Pl
amplitude € T (V) <1y n oy ( v ) <

» Primordial (tensor) gravitational waves: a smoking gun for inflation

nT
PT(]C) = 128 Mfl)l (:()) Tensor spectral index: nT = —2¢

Energy scale of inflation
» Tensor-to-scalar perturbation ratio

» Consistency relation (valid for all single field models of slow-roll inflation):

r = —8nr



Two simple but very important examples

“Large field” like potential
V() x ¢°

1 (Vie)? 2
e~ 0\ L2l 2 M
TG\ V TG ¢? @2

€<<1:>¢>>Mp1

Mp; = (hc/G)l/2 =G 1?2 ~10GeV

V(¢)  LARGE FIELD EXCURSION

A Ad >> M, /
(b/.
) Gbe:z:l ¢EMB - ¢
A¢

“Small field” like potential
¢ < p < Mp

womuf- ()]

o™ Mg 6\
v 1 (5) |

e —0 for 9 — 0

SMALL FIELD EXCURSION
V(p) Ad << M,

N

\/

reheating

dcMB Dend
- '

A¢




Inflaton dynamics and the level of gravity waves

Roughly speaking: " " Large field" models can produce a high level of gravity waves;
" small field" models produce a low level of gravity waves

“Large field” like potential “Small field” like potential
p
V(p) ox ¢ — Vi l1— ¢
N (#) o V(o Vig) =Y [ (u

6?/( / A ﬁR |
V. =

o \/

PcMB .-
> dcmB Pend reheating
-

A¢

30¢< N <60




Current observational status




Constraints from CMB data

» Primordial density perturbations: Amplitude In(10'°A,) =3.044 +0.014 (68% CL)

ns = 0.9649 + 0.0042 (68% CL)

n.=1 (Harrison Zeld' ovich spectrum) excluded at 8.4 sigmas!!

Two fundamental observational constants of cosmology in addition to three very well known (Q,,Q ;. Q,)

Latest constraints

» Primordial gravitational waves:

Energy scale of inflation V4 <14 %100 Gev

A new era (the CMB B-mode era) has started!
Target of future CMB experiments: r <103




Constraints from CMB data

P16+ k15 I .. < 0.050

-0.22 <nt< 4.16

PL18+BK18[ ] roo1< 0.032
PL18+BK15+LV18 | ro.o1 < 0.059
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PL21+BK18+LVv21

PL18+BK15+NANO

ro.ol1 < 0.028

roo1 < 0.071

-0.98 <n¢< 3.46

-1.0 <n:< 0.45

-0.91 <nt< 0.42

-1.14 <n¢< 0.42

-0.6 <n¢<

4.34

-1.21 <n¢< 3.54

-1.37 <n¢< 0.42
0.44 <n¢< 0.83

0.47 <nt< 0.85

PL21+BK18+NANO ro.o1 < 0.033
0.00 0.02 0.04 0.06 0.08 0.10
ro.o1

-1 0 1 2

3 4
ne
102 [ LA L LR | T T ]
QUAD (2009) V3
QUIET (2012) POLARBEAR (2019) i
SPTpol (2019) 4 w 4
1L
10 ACTPol (2020) Y w" 'v‘
POLARBEAR (2017) 'v A
100 [A8s (2018) BICEP3 (2021) Ty ]
~ —TE g 3
X —_—— —= ¥ —=
3 -1 ~¥- g 3
== 107F iy ¥ T ;
2 ——1 ——,/_ 1 | é
== 1072} ]
+ N 3
=2 3
=
1073k _ oo r<0.028 95% CL
- — ~.~ N R _
l S~ \(afsumlng ng=0)
Y g g ~=q . ]
10 ' .- b \N
e “
..... ~
10_5 fa L




Implications for standard single-field
models of slow-roll inflation

Natural inflation V(@) ox1-cos(¢/ f)

0.15f

— 2¢€)

|| 0.10f

ro.oo2 (Nt

0.05}

0.00

Starobinsky model R+(R*/6M?)
s V(¢) e (1 _ e—szp/MP, )2

PL18
PL18+BK15
PL21+BK18+LV21
Natural inflation
a attractors
V(g) x ¢

V(d)) o ¢4/3

V(@) « ¢

V(§) x p?3
R2-inflation

N =50

N = 60

1.00




Tensor-to-scalar ratio (ry.ou)

000

Beyond the r-n_ plane

0.94

0.95
Primeoedial tilt (n,)

No evidence of deviations from a
featureless power-spectrum

0.gs

BN TT.TE.EE+lowE+lensing
TT.TE.EE+lowE=+lensing
- sias
TT.TE.EE+lowE+lensing
B 5i15+BAO
Bl Natural inflation
BN Hilltop quartic model
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Searching for inflationary GWs via CMB polarization

B-modes: Sourced by tensor perturbatlons
but not by density perturbations

v \4
Pr~(—
* (Mm)

Primary goal for future CMB surveys:
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Forecasts for tensor-to-scalar ratio r

» For future space CMB missions.

Future constraints on inflationary models
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“Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey”
LiteBIRD collaboration, https://arxiv.org/pdf/2202.02773.pdf




When inflation ends??



Inflation ends when the inflaton field starts to " feel”” the curvature of
the potential

So this means that 7] starts to be|n| 2 1, and this in turn pushes in general € — 1
So that inflation comes to an end

S H+H=(1-¢H
a

REHEATING PHASE | The kinetic energy is not negligible anymore;
V(q§) the field starts then to oscillate around the minimum
A of the potential with frequency V, 44 > H?

The oscillations are damped because in this regime the inflaton
field decays into lighter particles with a decay rate F¢

O+ 3Ho+Typ=—V,g — py+3Hps = —Typy

The energy of the inflaton is transferred to
other lighter particles (release of latent heat).
These particles thermalize and start to
dominate—> the standard FRW universe starts

¢




How we arrive at these predcitions?

The quantum origin of cosmological perturbations:
details



Inflation and the Inflaton

Consider a simple real scalar field:

SZSEH+S¢=/CZ4ZC\/ 16 GR+S¢

So = [ atevaLalo.au) = [ dov=g| 50760, - V(o)

3 ingredients:

- The scalar field (the so called inflaton field)

- the gravitational field (i.e., the metric)

- the "‘rest of the world”’: fermions, gauge bosons, other scalars.
Usually, in the simplest models, these additional components turns out to be
subdominant w.r.t. the inflaton field (because e.g., we know that for pressurless
matter p,,~a> while radiation p,~a* and so they decrease almosr exponentially
during inflation).



Generating the primordial density perturbations

v’ first step: take a scalar field during an inflationary phase

; . V2 OV

split the scalar field into a "“classical” background expectation value (on the vacuum state)
and quantum fluctuations around the mean value

P(x,1) = o(t) + dp(x, 1)

T

v’ Perturb linearly the equation of motion of the scalar field around its background value
V25 ¢ 0%V

56 + 3HSp — -5

S 00



Note:

It is convenient to go to Fourier space: at linear-order perturbations
in Fourier space evolve independently (k-mode by k-mode)

d3x

We_ik'xf(ta X)

Consider a random field f(t,x): fk( ) /
d>k
f(t,X) :/ (27’(’)3/2 kaf ( )

N.B.: we are using a three-dimensional Fourier transform because in the equation of motion
of the perturbations we have some term that depend on time. Moreover we are using

plane-waves (OK if we can neglect the spatial curvature).

v25¢_ 92V ) L2 521

0¢ +3H5¢ — 3957 0 Sox + 3HEp, + —5¢k o S i




Quantum fluctuations of a scalar field during inflatior

. . L2
S + 3HOIP, + E(S(bk —%&bk

A massless or light scalar field: m?=V,, << H* for slow-roll

v when the perturbation modes are within the horizon:
A << (comoving) Hubble radius = (a H)™*
k>> (aH)

. k2 o
0Pk + — 00k =0 — oscillations
a
v" when the perturbation modes are superhorizon scales:

(Sq.b.k + 3H(5§ék =0 — 0@k = cost. (k<<aH)

Remember: H=const.



Subhorizon: Superhorizon:

k? . :
0ok + 3Hop =0 — d¢ = cost.

>

(comoving) lenghts

Hubble radius:(a H)!

' - Log a(t)

End inflation -> radiation epoch

A~ 2 t/k

oo, ¢

ON SUPERHORIZON SCALES THE FLUCTUATIONS
GETS FROZEN IN

H
6 - —
0N = o

> T

— e ——— -

Horizon crossing



Hubble Volume
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From S. Dodelson “"Modern Cosmology’’, Academic Press (2003)



So what's going on?

On microscopic scales (well inside the horizon) microphysics is at work:
use quantum field theory. There are quantum fluctuations of the scalar
field; if averaged over macroscopic intervals of time they vanish (quantum
fluctuations of vacuum: particles are continuously created and destroyed).

However the space-time background is exponentially inflating so their

physical wavelengths grow exponentially
Aphys X a(t) oc et

until they become greater then the horizon H! (which remains almost

constant). On super-horizon scales the fluctuations get frozen (because of

the friction ferm 3H d¢). The fluctuations do not vanish if averaged on

macroscopic time intervals: a classical fluctuation has been generated.

Said in other words: if on superhorion scales §¢ == () over macroscopic
time intervals then the final result is a state with a net number of
particles. This is a gravitational mechanism of amplification. The crucial

We N

point is the "in" and "out” (of the horizon) state of the fluctuations



Let me give you some details about the computation of
Quantum fluctuations of a scalar field during inflation”

Let us find an exact (meaning valid at every k) solution



Quantum fluctuations of a scalar field during inflation

g\qg = a(t)5q5 ; quantize the theory by promoting the scalar field to an operator

— d3k . .
do(T,x) = / 2m)i)? [uk(T)akeZk'X + uZ(T)aLe_zk'X}

. . . . / / .
Classical function of time normalized as upu; — upuy = —i

 is the annihillation operator: ay |0) = O for all k;

O> is the (free) vacuum state.

CLL is the creation operator: <O|OLL = (0 forallk

(classically they would correspond to two constants of integration)

They obey the commutation relation for bosons
3 /
[a’kaa’k’] =0, [a’kva;r{/] — ﬁ(S( )(k_k)

guantum mechanics!



Quantum fluctuations of a scalar field during inflation

. ) k2 "
0k + 3HOopy + ?&bk = —V 40 00k UZ + (k2 — % + Vs a2> up = 0

Primes denote a derivative w.r.t. conformal time

v" In flat space-time, once the commutation relations are fixed, everything is fixed: the solution
is a plane wave. In a curved space time there is some ambiguity in defining the vacuum state

(it depends on the choice of uk(7)).

So we require that at very short distances and at early times (when the expansion is negligible)
the solutions reproduce the correct form of a flat space-time. So we require that when a given

mode is well inside the horizon

1 —ikT k
UL(7) — e
k( ) vV 2k for (aH) >

This is the so called “Bunch-Davies vacuum choice”



Quantum fluctuations of a generic scalar field in quasi de-Sitter

» If we are not in de Sitter, and if the mass of the scalar field is small but not zero, then

H 1V
w2 VT3

€E =

!
a
and the equation to solve reads U,k/: + (k2 T + M? a2> u =0

: M?
with 7 3ny — 6e

1 1 2 3 " 2 V2 %
T) = — > ~ = (14 Ze) — | up+ [ ¥ - =
a( ) H7(1—€) ¢ /a 72( 2€> " < T2

same Bessel equation as before (and same solution up to first-order in the slow-roll
parameters ) but now with

3
Vﬁ§‘|‘3€—77v

N.B.: actually we are also accounting for the metric perturbations that enter into the equation
for the scalar field



Quantum fluctuations of a generic scalar field in quasi de-Sitter

v’ So the solution is uk(T) = g eil("t2)5 /7 HWV (=kr)

We are interested in the value of the fluctuations on superhorizon scales -k 1=k /(aH)<<1

HM(z < 1) ~\/2/me 82572 (D(v )/T(3/2)2™ >

() = el i (EE;) (hor)h

v At lowest-order in the slow roll parameter then one finds
(use t=-1/(H a)) and d¢p, = ux(7)/a)

ON SUPERHORIZON SCALES: -k 1=k /(aH)<<1

‘ ‘ < k ) 2 -




The power spectrum of cosmological perturbations:
a quick definition

3
Consider a random field f(t,x): f(t7 X) — / (Qi)l;ﬂ 6z‘k.x fk(t)
" 277 (3)
(Jk1 fiey) = ?Pf(kl)é (k1 — k2)

\ (dimensionless) Power-spectrum

f(t,x) can be the fractional energy density perturbation p/p, or the scalar field
perturbation, in which case the brackets denote the expectation value on the
vacuum state and it can be computed using creation and annihiliaton operators.

2 2
N.B.: f*, = f,, if fis real and so we could also write (fi, fk,) = k—zpf(kl)(S(?’)(kl + ko)



Spectral index of the power spectrum: definition

B dInP(k)
ns — 1= dln k

So, if n_ is a constant

P(k) = P ko) (:O)nl

» So the spectral index describes the shape of the power spectrum (i.e. its
dependence with k~(2 mt)/A, or equivalently with the cosmological scales).

» If n=1 we have an exact scale-invariant power spectrum which is also called

Harrison-Zel’ dovich power-spectrum: the amplitude of the initial fluctuations is
the same on all cosmological scales.



Let us compute the power spectrum for the scalar field fluctuations

(00K, 003,) = (0[0¢K, 0y, [0)

Use

< d3k k-x * —k-x
5¢(7‘,X):/(27T)3/2 [uk(T)akeZk —l—uk(T)alT{e k }
a,k|0> =0

[ak7 ak’] = 0, [aka a;f{/] — hd(g) (k o k,)

Then the only non zero combinations are <()|anr |()> 0

* ug]? () k3
0Pk, 0Qy,) = 0% (k1 — kg) — (remember — 2
001, 001, a? (k1 2) Spr, = up(t)/a) 7)5¢(k) Q72 ‘5¢k‘

H>2 ( k )32’/ ON SUPERHORIZON SCALES

= (P =(57) (am

3 —2v = 2ny — Ge




From quantum flactuations to density perturbations

The inflaton field is special: it dominates the energy density of the universe during inflation
with pg >~ V((b)

5 — 6p = V'(9)d¢p >~ —3H¢p ¢

Fluctuations in the inflaton produce fluctuations in the universe expansion from place to place,

so that each region in the universe goes through the same expansion history but at slightly
different times:

5t — 909 f

— __"; now remember that number of e-foldings N = In(as/a;) = Hdt

¢ )

— additional expansion ( = Hdt

(=Hot = — 5¢2—H6f0
0 P

¢ remains constant on superhorizon scales (Zis the uniform energy density curvature pert.)

N.B.: to obtain the last expression for { just use py = —3H (py + py) = —3H¢?



Generating the primordial density perturbations

N.B: on superhorizon scales {=constant,
so one can easily relate density fluctuations after inflation with the
quantum fluctuations of the inflaton field 6¢~H/2n

7709
¢

— 2w = Ciow) = —H =l

t(1)(k): time when fluctuation

>

(comoving) lenghts

Hubble radius:

k=a(t(k)) H(t!)(k)) /
:\/ density fluctuations
|
|

' ' —— Log a(t)
INFLATION End inflation -> radiation epoch t,: today

A~ 2 t/k




Primordial power spectrum

09

5p
i@ k) = —H— 5 ) (k)

» Therefore the power-spectrum of density perturbations (i.e., their amplitude and

dependence on the scale) will depend on the specific inflationary model, since,
remember that

87TG : V.
2 ~ ~ 0

» The scale dependence comes from evaluating at the epoch of horizon crossing
during inflation (t*)(k). But we know that H and ¢ vary in time very slowly: the

level of density fluctuations depends weakly on the cosmological scale A~ 2 m/k
(if exact scale-invariance: Harrison-Zel’ dovich spectrum).

In fact H and ¢ vary a little bit: you expect a spectrum of density perturbations
which is nearly scale-invariant.




So let us compute precisely (at first-order in the slow-roll parameters)
the power spectrum of curvature perturbations and its spectral tilt (called scalar

spectral titl)

Ry,

H? H2\?
¢ 210P /(1) (k)

)321/

(remember Psg ~ H?)

Where the last equality is due to the fact that the curvature perturbation ¢ remains constant

on super-horizon scales

To compute the spectral tilt

dIn PC
ns =l ="

Then simply it follows from the last expression for in the power spectrum PC

ng—1=3—2v=2ny, — 06¢




Structure formation within the inflationary scenario

Quantum fluctuations are streched from microscopic to cosmological scales

A

Q
(comoving) lenghts

1-3000 Mpc

Hubble radius:

~ . W
:l\ 2 T[/k On sub-horizon scales, during matter domination
uctuation 2/3
Om(t) ox a(t) oc t
mode : m(t) o alt) | 5> Log a(t)
End inflation -kl:rad. epoch-> matt. epoch t,: today

0p=C C=0p

quantum fluctuations seeds for CMB fluctuations & LSS structures
=" SR ...g L RN - ey, E =




Primordial gravitational waves

GWs are tensor perturbations of the metric. Restricting ourselves to a
flat FRW background (and disregarding scalar and vector modes)

ds?=a(u)[- de? + (3 + hy(x,1)) dx' d]

where h; are tensor modes which have the following properties
h; =h; (symmetric)

hi.=0 (traceless)

h‘j|i= 0 (transverse, i.e. divergence free)

and satisfy the equation of motion

n ﬁ' I \72 _
h'y 42 H =Vl =0 v

i,j=1,2,3

49



Primordial gravitational waves

GWs have only (9—2>6-1-3=) 2 independent degrees of freedom,
corresponding to the 2 polarization states of the graviton

il%’-fc " Aot
’ hkDE ) —

hJ#ngh#kﬁh=O
a G

behaviour:

k « aH (outside the horizon) h = const + decaying mode

k » aH (inside the horizon) h =e***/a  gravitational wave; it freely
streams, experiencing redshift
and dilution, like a free photon)



Primordial gravitational waves

In a similar way one can compute the power spectrum of the gravitational waves

. . k2
hy +3Hh), + —Qh)\ =0
a

We see that the 2 polarization states corresponds to 2 massless minimally coupled
scalar fields. Then we have (a “*” here indicates evaluation at horizon crossing

during inflation
8 ) This equality holds because, on super-horizon scales,

tensor fluctuations remain constant in time (see results
for a massless scalar field) and so its value on those scales
is fixed at horizon-crossing during inflation (similarly to
what we did for the curvature perturbations)

4 (HN? /4 [HN\N?/ k\ %
Phix = 320G Py, = M2, (%) ~ M2, (27) <a_H>

And hence, summing over the 2 polarization states:

2 —2¢
MP2>1 I aH with tensor spectral index MT — Tink €




Current observational status




Constraints from CMB data

» Primordial density perturbations: Amplitude In(10'°A,) =3.044 +0.014 (68% CL)

ns = 0.9649 + 0.0042 (68% CL)

n.=1 (Harrison Zeld' ovich spectrum) excluded at 8.4 sigmas!!

Two fundamental observational constants of cosmology in addition to three very well known (Q,,Q ;. Q,)

Latest constraints

» Primordial gravitational waves:

Energy scale of inflation V4 <14 %100 Gev

A new era (the CMB B-mode era) has started!
Target of future CMB experiments: r <103




Constraints from CMB data

P16+ k15 I .. < 0.050

-0.22 <nt< 4.16

PL18+BK18[ ] roo1< 0.032
PL18+BK15+LV18 | ro.o1 < 0.059
PL18+BK15+LV21 roo1 < 0.057
PL18+BK18+LV21 roo1 < 0.032

PL21+BK15 roo1 < 0.049

PL21+BK18[ ] roo1< 0.029

PL21+BK18+LVv21

PL18+BK15+NANO

ro.ol1 < 0.028

roo1 < 0.071

-0.98 <n¢< 3.46

-1.0 <n:< 0.45
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-1.21 <n¢< 3.54
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Implications for standard single-field

ro.0o2 (Nt = — 2¢)

0.15f

©
=
o

0.05f

0.00

models of slow-roll inflation

PL18
PL18+BK15
PL21+BK18+LV21
Natural inflation
a attractors
V(9) « ¢?

V(@) = p*3

V() « ¢

V(@) « p?3
R2-inflation

N =50

N =60

1.00




Tensor-to-scalar ratio (ry.ou)

000

Beyond the r-n_ plane

0.94

0.95
Primeoedial tilt (n,)

No evidence of deviations from a
featureless power-spectrum

0.gs

BN TT.TE.EE+lowE+lensing
TT.TE.EE+lowE=+lensing
- sias
TT.TE.EE+lowE+lensing
B 5i15+BAO
Bl Natural inflation
BN Hilltop quartic model
x attraclors
= = Power-law inflation
— 1% inflation
== V x ¢
— ‘,' x 0-!&!
-_— Ve
— ‘-' x ot‘/';l
== LlowscaleSBSU g
® N.=5%
. .\'- =60 375
3.50
1.00
328
o
IS
-‘é 3.00
r 3
275
250
235

INL
Shape Independent Lensing subtracted
SMICA T+E
Local ......... 41+ 5.1 -09+ 5.1
Equilateral . . . . .. =25 +47 =26 +47
Orthogonal . . ... 47 +24 -38 +24
i
10 10 0 o

L L,
Q) |

(for curvature perturbations on CMB scales) ., L
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Planck TT,TEEE ¢ lowE 4 lensing + BK1& |
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Searching for inflationary GWs via CMB polarization

E-modes: from scalar and tensor pert.

but not by density perturbations

4
v
Ppr~ | —
Mpy - -
pomorcial {1 modes --__--"-
° 10k L modes S \fv\x\
Primary goal for future CMB surveys: [ = wmpeniars 4
10° ensng 8 modes
-3 ~ w. \
6r<10 U FhFHELEIEE < 10!
< JAXA LiteBird = ,
\( ,  (20204+1t) "_’ ]l_l” : . p W & Bodis \
\ 3 = fors =95 ® 100G )
> 10 | et
Evd A BN ORMIZE SR | 10?2 = = --.
REEHEORE ’Inw#mmﬂmmmn#mus| ~ ~— : far =15 @ 20005,
s o~ - ) -
Yo ' EEGGRIEMRED ) = - v
g v s ]G,
__ﬂl*ﬂ&-ﬁ! ABOHRBRICES 1 10 § -
Yo ,? it e =
[ —varTHOER  GRBBRE/—<LK | ot 10 [ - — —




Forecasts for tensor-to-scalar ratio r

» For future space CMB missions.

Future constraints on inflationary models

L ET— - L T L] A L] A T L
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""""""" LiteBIRD
QO3 P LiteBIRD/Planck "
NI incid
00l F S 00 ceeeee ,“:." K o <7 “
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“Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey”
LiteBIRD collaboration, https://arxiv.org/pdf/2202.02773.pdf




When inflation ends??



Inflation ends when the inflaton field starts to " feel”” the curvature of
the potential

So this means that 7] starts to be|n| 2 1, and this in turn pushes in general € — 1
So that inflation comes to an end

S H+H=(1-¢H
a

REHEATING PHASE | The kinetic energy is not negligible anymore;
V(q§) the field starts then to oscillate around the minimum
A of the potential with frequency V, 44 > H?

The oscillations are damped because in this regime the inflaton
field decays into lighter particles with a decay rate F¢

O+ 3Ho+Typ=—V,g — py+3Hps = —Typy

The energy of the inflaton is transferred to
other lighter particles (release of latent heat).
These particles thermalize and start to
dominate—> the standard FRW universe starts

¢







What is the inflation modeil........??

/ k Multiple-fields
Standard single-field
Modified gravitational sector
Features in the potential

Higher-order derivative interactions or
non-canonical kinetic term

1
L6, X) with X = =g 0,60,6



2 ways to reach the goal:
1. Gravitational waves
2. Primordial non-Gaussianity



Primordial non-Gaussianity



Primordial NG

((x): primordial perturbations
If the fluctuations are Gaussian distributed then their statistical properties are

completely characterized by the two-point correlation function, <(x,){(x,)>
or its Fourier transform, the power-spectrum.

Thus a non-vanishing three point function, or its Fourier transform, the bispectrum
is an indicator of non-Gaussianity

(E)E()E(Ky)) = (27) 8 (k, + K, + k) f F (K ey )

Amplitude Shape

AN
AT —

9 <7(”l) (n,)— (n3)> kl



Why primordial NG is important?



Among many good reasons:

f,,. and shape are model dependent:
e.g.: standard single-field models of slow-roll inflation
predict

~NS
fy ~O(g,n) <<1
(Acquaviva, Bartolo, Riotto, Matarrese 2002;
Maldacena 2002)

A detection of a primordial |fy,|~1 would rule out
all standard single-field models of slow-roll inflation



SHAPES OF NG:LOCAL NG

Bispectrum peaks for squeezed triangles k,<<k,~k;

k1
- . k2

Il

R
F.?

):
[

rg = kg/k1 and xo

Babich et al. astro-ph/0405356

O(x) = O (x) + fNr.PL(x)

Non-linearities develop outside the horizon during or immediately after inflation
(e.g. multifield models of inflation)



EQUILATERAL NG

Bispectrum peaks for equilateral triangles: k,=k,=k, .
Higher Deriv. 1 ) k3
' k2
- 0.5
1
0.7 )
0.5 F(19x2 ’-x3 )x2x3
0.25
= 0.6
I 0.8 N

rg = kg/ky and 1o = ko /ly

Babich et al. (2004)

Single field models of inflation with non-canonical kinetic term L=P (g, X) where X=(d ¢)? (DBI
or K-inflation) where NG comes from higher derivative interactions of the inflaton field

Example: 5¢(V5q5)2



Observational limits set by Planck

INL
Shape Independent Lensing subtracted
SMICA T+E
Local ......... 41+ 5.1 -09+ 5.1
Equilateral . oo . .. =25 £47 -26 +47
Orthogonal ...%. —-47 +24 -38 +24

e.g. models with non-standard kinetic terms

e.g. multi-field models of inflation

Planck 2018 results. IX. Constraints on primordial non-Gaussianity.



Implications for inflation models

» The standard models of single-field slow-roll inflation has survived
the most stringent tests of Gaussianity to-date:

deviations from primordial Gaussianity are less than 0.01% level.
This is a fantastic achievement, one of the most precise
measurements in cosmology!

2
o (x) = 2W(x) + fir, (@D (x)) " +
~10™ ~few ~10-10

» The NG constraints on different primordial bispectrum shapes severly

limit/rule out specific key (inflationary) mechanisms alternative to the
standard models of inflation



Primordial non-Gaussianity allows to answer to some very simple,
but fundamental questions you might have about inflation:

» What is the sound speed the inflaton fluctuations propagate with?

» Are there other particles other than the inflaton?

» What are their masses and spins?



Measuring the of sound speed of the inflation

» General single-field models of inflation: Implications for Effective Field Theory of Inflation

(Cheung et al. 08; Weinberg 08)
for extensions see also N.B., Fasiello, Matarrese, Riotto 10)

5000

0

—15000-10000 —5000

001 0.02 005 01 02 0.5 1
Cs

1
fNLO<—2

68% CL constraints from Planck

equil
<l = 26 + 47

ortho — 38 + 24

cs > 0.021 (95 %, T+E)




SLIDES OF BACKUP WITH MORE DETAILS ABOUT THE TOPICS
OF THE FIRTS LECTURE



INFLATION:

a period of accelerated expansion in the very early universe +....

» Let us quantify what means that the (comoving) ) Hubble radius (a H)! decreases in time.

1
rH = —
a
, 1 a ..
TH=<.) =-—5<0& [ a>0
a a

» Who is kind enough to provide such an acceleration??

A 1 1
Z—T(,O+3p)>():>p<—§,0:>w<—§

Q| &

(p = wp)



A huge expansion

ty
number of e-foldings N = In(a¢/a;) = Hdt > 60
L

—

Take a region that at the beginning of inflation has typical size A,

a
Since Apnys X a(t), it gets inflated by = > 00 ~ 1020 1
a;



INFLATION: kinematics

» Be careful: inflation cannot be just pure de-Sitter, for the very same reason that

inflation must come to an end. Moreover acceleration can be obtained in ways
other than de-Sitter

» Notice that we can write down a simple expression for the acceleration of the
scale factor

i=a=(aH)=aH+aH = aH*+aH = aH* <1+Hz>

» This means that, just from a pure kinematical point if view

(H < 0, H < H?, sub-exponential inflation

a>0 <= (H =0 de-Sitter

\H > (0, super-exponential inflation, or pole inflation

(67

H,
> Now take component with eq. of state w=p/p 2 a(t) = a, |1 + —(t — t.)

o)

(a > 1 — —1<w=<-(1/3) a(t) o t*, power law inflation

{a—00 <= w— —1—a(t) = e’ de-Sitter

la <0 — w<—1l—=alt)oc|t —t,I[%t, =t— 5 o = 2

3(14+w)



INFLATION: WHY SO IMPORTANT?

» Inflationary paradigm is one of the most relevant development in
modern cosmology. Introduced to solve some shortcomings of the
standard Hot Big-Bang model (Guth ‘81)

e.g.: why the universe is so nearly spatially flat? (flatness problem)
why the temperature of CMB photons on opposite sides of the

sky is so accurately the same even if they were never in causal
contact? (horizon problem)

» most importantly: inflation offers an elegant explanation for the
origin of the first density perturbations which are the seeds for

the CMB anisotropies and the Large-Scale-Structures of the Universe
we observe today.



INFLATION

1

For sure Inflation takes place before primordial nucleosythesis (T=1MeV): for radiation and
(collisionless) matter dominated epochs p=1/3 p and p=0.

An example of accelerated expansion: a de Sitter phase

p=—-p = P = const. —> a(t) oc exp(Ht)

(equation of state of a H const.

cosmological constant or
vacuum energy)

An exponential expansion sourced by an energy density that does
not dilute away



INFLATION: WHY SO IMPORTANT?

» Inflationary paradigm is one of the most relevant development in
modern cosmology. Introduced to solve some shortcomings of the
standard Hot Big-Bang model (Guth ‘81)

e.g.: why the universe is so nearly spatially flat? (flatness problem)
why the temperature of CMB photons on opposite sides of the

sky is so accurately the same even if they were never in causal
contact? (horizon problem)

» most importantly: inflation offers an elegant explanation for the
origin of the first density perturbations which are the seeds for

the CMB anisotropies and the Large-Scale-Structures of the Universe
we observe today.



CMB anisotropies '

Different cosmological observables that probe different
scales......but all these structures require some initial

fluctuations......

S2JN4oNJLS 2|02G-26uD7



THE MAIN COMPONENTS OF THE UNIVERSE:
THE ACDM MODEL (+ initial conditions from inflation)

Radiation
0.005%

Dark Energ/
+ 4

Dark Mat

Chemical Elements
(other than H & He) 0.025%

0.47%

N
Seed Perturbations
(Inflation)
+ s
Baryo/Leptogenesis 4

Dark Matter
25%

Dark Energy
70%

FIG. 1: Elements of the standard ACDM cosmological model. Illustrated by the pie is the fraction of the mass-energy of the
Universe in various components. Also noted are some other necessary parts of the standard model, namely seed perturbations
and baryo/leptogenesis. From E.W. Kolb, arXiv:0709.3102 *Cosmology and the unexpected”.

N.B.: for the most updated values see the latest Planck satellite measurements
https://arxiv.org/abs/1807.06209




Today 14 billion years
Life on earth @ : w

Acceleration —= {1 billion years
Dark energy dominate e S

Solar system forms\ ¥ 2 et
Star formation peak &
Galaxy formation era\ y

Earliest visible galaxies

~ 3 bilfion years -

700 miI!jon years

Recombination Atorrs form m\il400
RENC TA0iauon aecoupres (CMB) @ S ¢

Matter domination
Onset of gravitational collapse

A} W

5 000 years

Nucleosynthesis
LIgnt elements created — D, He, L

Nuclear fusion begins

— 0.0 seconds :

Quark-hadron transition
Protons and neutrons formed

Electroweak transition
Electromagnetic and weak nuclear
forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition

Oyears e

— niinutes -

EIeﬂrou_*;_eak and strong nuclear
PEETTeRgtiate

Inflatlon

Quantum gravity wall
Spacetime description breaks down
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Lecture 1+2

- Dynamics of inflation

- The quantum origin of cosmological perturbations



INFLATION and THE INFLATON

Who is a candidate to provide

1
< —=p ?27?
P 3,0




INFLATION and THE INFLATON

Consider a simple real scalar field:

SZSEH—|—S¢=/CZ4:E\/ 16 GR—Fqu

So = [ atevaLalo.au) = [ dov=g| 50760, - V(o)

3 ingredients:

- The scalar field (the so called inflaton field)

- the gravitational field (i.e., the metric)

- the "‘rest of the world”’: fermions, gauge bosons, other scalars.
Usually, in the simplest models, these additional components turns out to be
subdominant w.r.t. the inflaton field (because e.g., we know that for pressurless
matter p,,~a> while radiation p,~a* and so they decrease almosr exponentially
during inflation).



INFLATION and THE INFLATON

1
Lol 9] = 59" 06— V()
Standard kinetic term Inflaton potential: describes the self-interactions

of the inflaton field and its interactions with the
rest of the world

Just think of the inflaton field as a particle that moves under a force
induced by the potential

o i

Ex: V(¢) =




INFLATION and THE INFLATON

Let us see

1. What is the dynamics of a scalar field in an expanding
universe?

2. Why a scalar field works well in driving inflation

3. How we characterize the different inflationary models
(see also Lectures 7+8)

4. From quantum fluctuations of the inflaton field to

primordial density perturbations (which then grow by subsequent

gravitational instability to give rise to CMB anisotropies and the Large-Scale
structures we observe in the Universe).



1. Dynamics of a scalar field in a curved space-time

55y oV -- . V¢ OV
06 = —= (9"V=90u) «

» This is our master equation: the Klein-Gordon equation for a scalar
field in a RW metric



We can associate to the scalar field and energy-momentum tensor

Contributions from
derivatives w.r.t to higher

order derivatives of the
Energy momentum tensor metric tensor

T _ 2 05 _ 2 _8(\/—g£¢)+a @(\/—g£¢)+
N T A B Y T T T

For a real scalar field, minimally coupled (i.e. without coupling to gravity like £Rq§2 )

oL

1
T/jbz/ = —Qﬁ + 9uwly = 0up 0 + g <_29a58a¢86¢ - V(¢)>

N.B.: try to obtain the expression above by making use of the following expression

9(vV=9)

1
D = ~5V 799uv which can be obtained from this useful property: Tr(ln M) = In(det M)



A leitmotiv of these lectures..........

é‘t’g:* i:‘:}L"dl' |

III

split the scalar field into a "“classical” background expectation value
(on the vacuum state) and quantum fluctuations around the mean

value

B(%, 1) = B(t) +36(x,8) | &+ 3¢ — _g_‘;
L_//)
P(t) = (o(x,1)) = (0]p(x,1)|0) # 0
(0p(x,t)) =0

(Bo(x, 1)) < ¢°(t)



2. Why a scalar field works well in driving inflation?
The scalar field can provide an energy density
that remains almost constant in time

v’ Take a homogeneous and isotropic scalar field @(x,t) = ¢(t)
1 .
T =—ps=— <2¢2 + V(¢))
i i 1 i
T =ppd'; = <§¢2@V(¢)> 0"

v’ So:
1. Ascalar field behaves like a perfect fluid

2. Most importantly: if the potential energy density dominates over
the kinetic energy density.......

V(0) >> & => Py~ —Py




INFLATION and THE INFLATON

Inflation is attained if the energy density of the universe is dominated by the potential
energy of a scalar field (the inflaton)

V(6) >> 38 = Po = —p

1 .
If V(gp) >> §¢2 the inflaton is slowly rolling its potential: ¢(t) = const.

8rG
V'Sﬁb) H? = WT (¢) =~ const.
(effective cosmological constant:

inflation is driven by the vacuum energy
of the scalar field)

the potential V() must be flat
.- to achieve inflation

> @




INFLATION and THE INFLATON

Inflation is attained if the energy density of the universe is dominated by the potential
energy of a scalar field (the inflaton)

V(6) >> 38 = Po = —p

1 .
If V(gp) >> §¢2 the inflaton is slowly rolling its potential: ¢(t) = const.

V(e)

1
I
1
i
i
k!
\

A

H? — @

3
(effective cosmological constant:
inflation is driven by the vacuum energy
of the scalar field)

(¢) =~ const.

-

Notice that even if initially the kinetic
energy density (1/2)¢2 dominates over
the potential term, then

—3(1+we) 6

P X G X a

so it decreases fast and if the potential
is sufficiently flat inflation starts and
takes place. Also this example shows
the characteristic of inflation of being
an attractor mechanism.




Let us look in more details into the dynamics of a scalar field in
a curved space-time

1 .
v’ Take the inflaton field which is slow-rolling along its potential V' (¢) >> §¢2

G

=2 (V(qb) + %qﬁﬂ) ~ = V(9)

3

H2
3

v’ This is due to a flat enough potential > we expect that V and its derivatives w.r.t. ¢ vary slowly
with ¢ .
- we expect gb to be negligible as well

It is like to consider the equation of motion of a particle rolling down its potential and subject

to a friction term
t>>1/T F

oV

attractor solution




2. Let us look in more details into the dynamics of a scalar field in
a curved space-time: Slow-roll parameters

— 87rG V(p) > 1&52 = (Vg)? < H?
H? ~ —V(¢) 2 %
- 3 —_ AND
. Vi . . )
¢2_3H ¢ <<3HQp = Vo< H

So the slow-roll conditions, as expected, means that the inflaton potential is very flat

It is then customary to parametrize inflationary models (i.e. the form of the inflaton potential )
in a sort of model-independent way by introducing the slow-roll parameters

H ¢ 397 1 [V
€ — — 7TG ~
H2 H2 2V 160G \ V

2
) <& 1 :the Hubble rate change slowly

n= _H—QB with ’77| <1 : attractor solution



2. Let us look in more details into the dynamics of a scalar field in
a curved space-time

N.B.: instead of n one can use a slow-roll parameter n,

3H2 seG\ VvV ) W T T =W
and so we can also say that |n, | <<1

So the slow-roll conditions, as expected, means that the inflaton potential is very flat



Let's summarize:

Inflation takes place if the inflaton potential is sufficiently
flat, i.e. if the slow-roll parameters ¢, [n] <<1

N.B.:
Remember that we found:

a = aH? <1+%> — aH*(1—¢)

So you see that inflation takes place if € <1.

So why we say that also |n|<1? .

Because this guarantees that the velocity of the scalar field ¢ changes very slowly
with time, and therefore that the condition € <1 (i.e. inflation) is mantained for
long enough (in order to solve the horizon and the flatness problems).



Let us pause for a moment. A couple of comments are in order here.

» When studying the quantum fluctuations of the scalar field, one usually employs
a Taylor expansion in the slow-roll parameters, since they are small. Moreover
one can treat them as constant (at lowest-order in the slow-roll parameters) since

one can show that their time derivatives are higher-order in the slow-roll
parameters, with, e.g.,

€ EN 2 2
ﬁorH 0(6777)

» We have considered the € and n slow-roll parameters. Indeed there exist a full

hierarchy of slow-roll parameters, built, e.g., from higher-order derivatives of the
potential V w.r.t. to the inflaton field. E.g.,

e

which is second-order in the slow-roll parameters.




Two simple but very important examples

“Large field” like potential
V() x ¢°

1 (Vie)? 2
e~ 0\ L2l 2 M
TG\ V TG ¢? @2

€<<1:>¢>>Mp1

Mp; = (hc/G)l/2 =G 1?2 ~10GeV

V(¢)  LARGE FIELD EXCURSION

A Ad >> M, /
(b/.
) Gbe:z:l ¢EMB - ¢
A¢

“Small field” like potential
¢ < p < Mp

womuf- ()]

o™ Mg 6\
v 1 (5) |

e —0 for 9 — 0

SMALL FIELD EXCURSION
V(p) Ad << M,

N

\/

reheating

dcMB Dend
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Excursion of the inflaton field (in the observable window):

bend lend . q/) Hicna ¢

Ap = do = dt ~ = d(Ht) = =N, ~ /2N
¢ ¢ ¢ 0 (Ht) PRGN v IP1

Pamp tem
Therefore in the case €¥1/N, s (as it usually happens in large-field models) and not too small the excursion
of the field is Ap >M, > large-field models (here N,z defines the “observable window” during inflation,
the one that we can observationally probe, that is to say, N5 corresponds to the 60-70 e-folds (counted
from the end of inflation) in correspondence to which the largest observable scale, i.e. the cosmological
horizon today, leaves the horizon during Inflation (always think to the plot of the cosmological horizon as a
function of time).

The largest observable scales can be probed through CMB measurements, that’s why we used the suffix
IICMB”.

Instead in the case in which cui € <<1 then one gets A} <M, = small-field models.

R Superhorizon

(comoving) lengths Nevis
2k || : ! iy

- I
| Hubble radlius: (a H)!

Subhorizon ;
I
: [
| I
| &

' ! —— Log a(t)
INFLATION End inflation -> radiation epoch  t,: today



Why we expect large-scale fluctuations
to be generated during inflation ?



Qb(Xv t) — ¢(t) + 5¢(X7 t)

Negligible on super-horizon scales (k<< a H)

. . 02V

6¢p +3H¢p s 0

; Y% 92V .
+3Ho = — . +3H(¢) = ——

¢ ¢ aqb Take the time d(ef/vae (¢) a¢2

So 0¢ and @ obey the same equation: compute the Wronskian, and you get
W (¢, d) = dpd — dpd x e 3Ht — 0. Thus the two solutions are related by a constant of
proportionality that depends upon the space point (we are neglecting the gradient)

6p(x,t) = —0t(x) p(t) —|B(x,t) = (t — (%))

Regions by regions (large - superhorizon — distance apart) the scalar
field passes through the same history but at slight different times
because of quantum fluctuations




Regions by regions (large - superhorizon — distance apart) the scalar
field passes through the same history but at slight different times

because of quantum fluctuations

V(o)
+

0




So let us solve this equation with some useful tricks.........

!/
vu=a(t)de > u%—l—(k2—a——|—V, a2>uk:0

a

N.B.: I am using conformal time  dr = dt/a(t)

&(t)O(thHT:—l/(aH) and a”/a:2/7-2:2a2H2

v
SUBHORIZON SCALES: -k t=k /(aH)>>1; SUPERHORIZON SCALES: -k t=k /(aH)<<1
R =0 = () = e = = 0 = () = Bk
v" Match the two solutions at horizon-crossing k=a H (-k t=1)
Bh)la = —= — |B)| = —=— =~
H

And hence: [0¢xk| >~ ON SUPERHORIZON SCALES

2k3




Quantum fluctuations of a massless scalar field in de-Sitter

2 _ 1
1% 1) _g
— | =

I/
u%—l—(kz—%—I—, a2)uk:0 &> | ul+ [ k-
-

Bessel equation (with, for the specific case under examination of a massless scalar field and

in de Sitter v = 3/2)

v’ The solutions for a generic v constant are well known, Hankel functions
uk(r) = /=7 |1 (k) HD (=kr) + ea(k) HP (~kr)

v Well inside the horizon (-k ©>>1)

HY (x> 1) ~ \/i T 5v=1) HD (> 1)~ [ 2 —i(z—z0-T)
X X

So we set: Cg(k) =0 and ci1(k) = @ ei(’/+%)

to recover the plane-wave behaviour well inside the horizon



Quantum fluctuations of a massless scalar field in de-Sitter

v’ So the final solution is Uk(T) — g ei(w'%)g N —T Hﬁl)(—kT)

which for v = 3/2 gives (remember d¢p = ur(7)/a and t=-1/(H a))

e kT 1 H . —ikT :
ug(7) = T (1 = E) > 0P = \/ﬁze (1 4 ikT)

On subhorizon scales: -k 1=k /(aH)>>1 ON SUPERHORIZON SCALES: -k t=k /(aH)<<1

B 16—ik7 H
0Pk = a V2k ‘6¢k’ — \/ﬁ




The power spectrum of cosmological perturbations:
a quick definition

272

<fk1flt2> R 7Df(kl)(s( )(kl — k2)

» Of course to statistically characterize the level of perturbations one cannot take
simply, e.g., (§¢(x,t)) given that (dp(x,t)) =0

» The power spectrum depends only on the modulus of k because of isotropy, and
the delta Dirac is there because of homogeneity

2T
> You can show that P(k) = FP(/{) is (proportional to) the Fourier transform of
the two-point correlation function in real space &(r) = (f(x+r,t) f(x,1))

» You can easily show that the variance of the fluctuation is given by

ot = (e xit) = 5 [ ark*PE) = [P0



The power spectrum of cosmological perturbations:
a quick definition

» For example:

&(r)

(f(x41,t)f(x,1)) = Pk | PR R EA) K X1 1)

/dgk/d?’k’ ik- (x—l—r) ik’ XP(k)5(3)<k+k/)

icr LK)
/ d3ke’® 22

2m)?
1

( )3/2

So that the variance turns out to be

0 = £(0) =

| PR 1 [, i
e / Pl = 5 [ AP = / b (k)



EXERCISE: alternatively you can compute the scalar spectral tilt also in the following
way:

f{2 f{2 2
0, 2T £(1) (k) (remember Psy ~ H*)

To compute the spectral tilt

dlD“Fz
dln k

Use the following trick: consider the number of e-foldings between the time a given scale k leave:
the horizon during inflation and the end of inflation

f{aend

tend
N, = / Hdt = ln(aend/ak) ~ In ( ) (N.B: Hrar = k by definition)
t(1) (k) k

ng — 1=

then dlnk ~ Hdt =
1 dP¢ 1)
ng—1 = ——==-2——+4+4— = 2ny — Ge¢ N
P Hdt Hao H? (N.B —H—¢—77V—€)




Generating the primordial density perturbations

E.g. : if a given fluctuation mode re-enters the horizon during the radiation epoch

1 5P’y 5¢

/4 o @) (k) = E|t(1)(k)

4
g CMB anisotropies since CMB photons are black body radiation py X T

T

t(1)(k): time when fluctuation

, ) ) Horizon re-entry: t\2)(k
(comoving) lenghts 4 of mode k exits the horizon y: t2(k)

Hubble radius:|(a H)? /

A~ 2 i/k :\/ density fluctuations
I
I

' ' —— Log a(t)
INFLATION End inflation -> radiation epoch t,: today




Varying the Spectral index

If n=1: Harrison-Zel’ dovich spectrum (exact scale-invariance)

n>1: blue tilt: perturbations have more power on
smaller scales
P(k)

>

\ n<1: red tilt: less power on smaller scales
"k

ns —1 =20y — 6€ | parametrizes deviation from scale-invariance:

n=1 would signal some underlying symmetry;
measuring n # 1 would signal a dynamical process for generating
the initial density fluctuations (inflation??)



OO OO ONO

= =
)\‘GW

XGW

Fig. 1. We show how point particles along a ring move as a result of the interaction with a GW
propagating in the direction perpendicular to the plane of the ring. The left panel refers to a wave
with 4 polarization, the right panel with X polarization.



Quantum fluctuations of a massless scalar field in (quasi) de-Sitter

a" 2 1
u%—l—(k2a—|—|><a2)uk0 &> | ul+ [ k- 24 =0
T

Bessel equation
1 . 2 ( 3 )
- a ja~— |1+ —¢
‘=g fo=m 11
3
V™~ ——+¢€



Primordial gravitational waves

And hence, summing over the 2 polarization states:

P = 8 H2 i—%. : _dlnPT_ 9
T M];Q)l 9 a with spectral index NT = dlnk €

» Notice that, since (H/M)% ~ V(®), then the amplitude of the
gravitational waves is proportional to the energy scale of inflation:
Einﬂ=V1/4'



Observational predictions (l)

» Primordial density (scalar) perturbations
WIS
k) = =
Pe(k) 2M3 € (27T> <aH)

4
amplitude

spectral index: ng — 1 = 21y — be
(or “tilt”)

N.B: both depend on the dynamics of the scalar field during inflation and hence on the potential

: 1 Ve 2 1 Vi
Recall: H” o (Mp,/3)V(¢); 3H¢~—V'(¢); €~ ( % ) <Ly = o—x < ) <1

» Primordial (tensor) gravitational waves

8 (H\?[/ k\""
k) = —— | — _ Tensor spectral index: nT = —2¢
P =3 (5r) (o) :



Observational predictions (ll)

» The overall amplitude will be fixed by the normalization with observations, so
just consider the relative amplitude

Pr(ko)

r—=———""—16¢ tensor-to-scalar perturbation ratio

Pe (ko)

» Consistency relation (valid for all single field of slow-roll inflation). At lowest order
in the slow-roll parameters

T = —8nT




Observational predictions

One can also consider a running of the spectral index and
a running of the running

2 ns—1+idns/dInkIn(k/k«)+5d?ns/dInk?(In(k/k+))?+....
P

n,—1=2n, -6¢

_ ) ) _ 1 2 V/V///
dn,/dink=~(1/2) +16en, -24¢> ¢ = (L) ( v )




Tensor-to-scalar ratio (v ouz)

Large field models V(¢) x ¢*

Exponential potential models

V(p)ocexpl—2/p ¢/ M,]1—a(t)ot’

Prmesdal vl [v- )

Starobinsky model R+(R’/6M?)
— V(@) ox (1 ¢ P02

4o a+?2
y = —— 1—n= 7"=E 1_n=g
= N 2N p p
S \ / S TT.TEEE+lowE=lensing
b TT.TE.EE+lowE+lensing
‘\ N Bkis
: TT.TE.EE+lowE+lensing
- k L B pi15+BAO
S \ /e Natural inflation
. \ S Hilltop quartic model
Small field models \\ v attractors
V(g)x1-(¢" /u”), p=3 \ = = Power-law inflation
; L 2 (p-1) \ ol mflrzuon
0N ) ! — Vg
_ \
p / : \ — ‘,' x C"‘ '3
o \ —— "' x O
! LT
S \ e Low scale SB SUSY
/ \ e N.=5
b @ N.=60
/ \
2 v = ‘
S 0.94 0.96 0.\ 1.00

Natural inflation V(¢)x1—-cos(¢/ f)

V(gp)xl+alog(¢p/M,,)

Hybrid inflation (dynamical SUSY breaking)




Zoology of inflationary models

0.5

small

field ny<O0
@808 09 095 1 105 1.1
8 2m>/V,
r=—{-n)+ i ns — 1 = 21y — 6¢

See,e.g., Kinney et al. astro-ph/0007375



Classifying inflationary models

Roughly speaking: " " Large field" models can produce a high level of gravity waves;
" “small field" models produce a low level of gravity waves

ro 2T _
— P —
V(o) V()
A i 8¢

% T

\/

- e CMB d reheatin
¢ o ___gm ;

¢(;2:1 ¢EMB Ao
Ag

I “Small field” like potential

“Large field” like potential predict € very very small

|




"Large field" models can produce a high level of gravity waves
(r>0.01)

"Small field” models produce a low level of gravity waves
(r<0.01)

Take the previously derived formula for the excursion of the scalar field

bend lend . qﬁ Hicpna ¢ 1
Agb = dgb = / gbdt =~ d(Ht) = ﬁ e € /2N@MMP1
tems

PemB H Hitgnp
But remember the tensor-to-scalar ratio 7 ~ €

The precise relation one obtains is

o= (oor)

Mp;  \0.01

So the bigger is the field excursion during inflation the bigger is the
amplitude of the gravity waves



Classifying inflationary models

> “Large-field”’ models 0<n,<2¢:

V(g) x ¢”

V(¢) o explo/p]

typical of “caothic inflation scenario’” (Linde "83)

“power law inflation” (Lucchin, Matarrese ‘85)

» small-field models”’: n <0

>

Vo x 1= (

p>2; ¢ <p<Mp

V(¢) x [1+(

¢

0

¢

14

)]

)|

from spontaneous symmetry breaking or Goldstone,

axion modes (Linde; Albrecht, Steinhardt '82; Freese
et al ‘90)

supersimmetry; typically involve a second field to end
inflation (Linde '91; ‘94)



Classifying inflationary models

Two more interesting models (as an example):

> Natural inflation

- (3)

Related to a shift symmetry of the inflaton: ¢ =2 @+c,
where c is a constant. If exact this symmetry would imply
that o is massless (the potential would be exactly flat).
Usually the symmetry gets broken = a small mass is

generated = pseudo Nambu-Goldstone field (axion).

For u>M, it is a large field models (Freese et al. 1990)

For u< My, it is a small field models

> R2inflation

M? R2
_ 4, . pl
S—/d x\/ —g 5 (R—|—6M2>

Predicts a tiny amount of gravity waves
(Starobinsky 1980)

Motivation: a modified gravity theory arising from quantum
corrections. The R? term corresponds to an additional scalar
degree of freedom that plays the role of the inflaton.

In fact via a conformal transformation 9ur —+ €~ >“guwith
V6Mpiw = @1 one can rewrite this action in the so called
Einstein frame, where, besides the Ricci scalar R of the usual
Hilbert-Einstein action, there is the action of a minimally
coupled scalar field with standard kinetic term and a potential

A]MQ]WEL)1 (1 _ e_2901/\/6MP1)2




Tensor-to-scalar ratio (v ouz)

Large field models V(¢) x ¢*

Exponential potential models

V(p)ocexpl—2/p ¢/ M,]1—a(t)ot’

Prmesdal vl [v- )

Starobinsky model R+(R’/6M?)
— V(@) ox (1 ¢ P02

4o a+?2
y = —— 1—n= 7"=E 1_n=g
= N 2N p p
S \ / S TT.TEEE+lowE=lensing
b TT.TE.EE+lowE+lensing
‘\ N Bkis
: TT.TE.EE+lowE+lensing
- k L B pi15+BAO
S \ /e Natural inflation
. \ S Hilltop quartic model
Small field models \\ v attractors
V(g)x1-(¢" /u”), p=3 \ = = Power-law inflation
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! LT
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S 0.94 0.96 0.\ 1.00

Natural inflation V(¢)x1—-cos(¢/ f)

V(gp)xl+alog(¢p/M,,)

Hybrid inflation (dynamical SUSY breaking)




Inflation
V()4

the inflaton is slowly rolling its potential

L

¢

e

B(x, 1) = do(t — 6t(x))—>
dp(x,t) = —0t(x)eo(t)

On large (super-horizon scales) so that each region in the universe goes through
the same expansion history but at slightly different times

8
Fluctuations infﬁﬁéﬁ@ﬂfﬁgﬁ%roduce fluctuations in the universe expansion from
place to place

ty
——> number of e-foldings N = In(ar/a;) = / Hdt >
ti

¢ = Hot =—H5—.¢2—H5—,p
¢ p




Inflation
V()4

the inflaton is slowly rolling its potential

—_/

Fluctuations in the inflaton produce fluctuations in the universe expansion from place
to place, so that each region in the universe goes through the same expansion
history but at slightly different times:




Inflation
V()4

the inflaton is slowly rolling its potential

N/,

= On large (super-horizon scales) so that each region in the universe goes through
the same expansion history but at slightly different times:

d(x,1) = do(t — 6t(x)) —>  dP(x,t) = —0t(x)do(t)

=  Fluctuations in the inglaton produce fluctuations in the universe expansion from
place to place H” ~ 3TGV(9) —>

ty Yo 0p
number of e-foldings N = In(as/a;) = Hdt — |(=Hot =-H—~—-H—

t; §b P

Additional expansion



