

#### **Neutrino mass determination – Part II**

International School on Astroparticle Physics (ISAPP 2023) – Varenna, Italy Alexey Lokhov





#### www.kit.edu

# Outline



| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                 | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) |                                              |                                                                 |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? |                                                                     |                                              |                                                                 |

# What type of limitations are there?



- Better statistics: more tritium
  - More scatterings  $\rightarrow$  "Opaque" source
- "Different" tritium: atomic



- Differential measurement
  - Better use of statistics
  - Intrinsically less background



# Experimental techniques for direct v-mass measurement





# Energy measurement through cyclotron radiation



• Technology:

Cyclotron Radiation Emission Spectroscopy (CRES)

 Non-destructive measurement of electron energy via cyclotron frequency:

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{E + m_e}$$

Antenna array  

$$\overrightarrow{B}$$
  $\overrightarrow{T_2}$   
 $\overrightarrow{B}$   $\overrightarrow{T_2}$   
 $\overrightarrow{B}$   $\overrightarrow{T_2}$   
 $\overrightarrow{B}$   $\overrightarrow{T_2}$ 

"Never measure anything but frequency." — Arthur L. Schawlow

# Energy measurement through cyclotron radiation

#### **Advantages**

- Source = detector concept, source is transparent to microwaves
- Differential measurement focusing on the endpoint region

#### Challenges

- Sub-eV energy resolution:  $\Delta E/E \sim \Delta \omega / \omega \sim ppm$ 
  - B-field homogeneity at 10<sup>-7</sup> level
- High statistics
  - large volume atomic trap ~m<sup>3</sup>
- Long trapping





# Energy measurement through cyclotron radiation – practical points



Larmor formula gives emitted power:

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} \left(\gamma^2 - 1\right) \sin^2 \theta$$

#### **Realistic case:**

- **1.7 fW** for 30.4 keV at  $\theta$  = 90°
- **1.1 fW** for 18 keV at  $\theta$  = 90°
- → Need low-noise cryogenic RF system



B. Monreal and Joe Formaggio, Phys. Rev D 80:051301



#### **Project 8: proof of concept**





#### D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)

#### **Project 8: proof of concept**





#### D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)

#### **Project 8: recent results**

#### **Recent results**

- First tritium spectra measured  $\Delta E = 2 \text{ eV}$  (FWHM), **bkg** <  $3 \times 10^{-11} \text{ eV}^{-1} \text{ s}^{-1}$
- First neutrino mass limit:  $m_{\nu} < 185 \text{ eV}$  (90% CI.)

#### Next steps/challenges

- large-volume traps (m<sup>3</sup>)
   (antenna array or cavity resonator)
- develop atomic tritium source
- 0.4 eV sensitivity (phase-III)
   Ultimate goal: 0.04 eV sensitivity



#### **Project 8: phase II results**





#### **Project 8: next steps**





- Demonstrate scalability of CRES to larger volumes
- Demonstrate possibility of high intensity atomic tritium source

#### **Project 8: towards atomic tritium**





# Outline



| What do we know<br>so far about<br>neutrino masses?          | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|--------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?              | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies? | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency |                                                                 |
| What other physics<br>can we probe in<br>the direct mass     |                                                                     |                                                             |                                                                 |

measurements?

# Experimental techniques for direct v-mass measurement









#### **Calorimetric measurement of <sup>163</sup>Ho** spectrum

- Proposed by A. De Rujula and M. Lusignoli Phys. Lett. 118B (1982)
- Low-temperature micro-calorimetry
- Holmium enclosed in absorber
- Released energy  $\rightarrow$  temperature increase







#### **Calorimetric measurement**





#### Advantages:

- "Source = detector" concept
- eV-scale differential measurement
  - total energy is measured

#### Challenges:

- High statistics (10<sup>13</sup> decays for eV sensitivity)
  - increase activity per detector (10 Bq)
  - many detectors (>10000)
- Small heat capacity  $\Delta T \approx \frac{E}{C_{tat}} \approx mK$ 
  - operation at low temperatures

# Why the low temperatures?



• What's the heat capacity of solid materials at low temperatures?

$$\Delta T = \Delta \frac{E}{C}, C \propto T^3$$



#### **Peter Debye**

• Typical signal readout: using a SQUID





#### **Calorimetric measurement**







#### Dipole Magnet Deflectors Deflectors Quadrupole Lens Ion Source Sample Reservoir Laser Beams Separator Slit Postfocalisation Positioning Implantation Area with Ion Current Measurement

#### **Experimental challenges**

- Production and purification of <sup>163</sup>Ho
- Incorporate ~10<sup>11</sup> Ho atoms into the high resolution detector
- Operation and readout of large arrays

#### Spectral shape and theory:

- Precise description of calorimetric spectrum and detector response
- Independent measurement of the Q-value of the decay by Penning trap massspectroscopy



#### v-mass from <sup>163</sup>Ho electron capture: technologies

• Two techniques for temperature sensing



Magnetization of paramagnetic material Metallic Magnetic Calorimeters (MMC)





Resistance R at superconducting transition:

Transition Edge Sensors (TES)





#### v-mass from <sup>163</sup>Ho electron capture: technologies

• Two techniques for temperature sensing









SQUID

n.c.

TES

S.C.

 $\Delta \mathbf{R}$ 

#### v-mass from <sup>163</sup>Ho electron capture: technologies

Two techniques for temperature sensing

77



#### v-mass from <sup>163</sup>Ho electron capture: numbers



- Unresolved pile-up
  - Fraction of pile-up events  $f_{pu} \sim a \cdot \tau_r$
  - for  $f_{pu} < 10^{-6}$  with  $\tau_r \sim 1 \,\mu s$

 $a_{perpixel} < 10 Bq$ 

- Statistics at the endpoint:
  - 10<sup>14</sup> events  $\rightarrow a_{total} > 1 MBq$
- Very low background level:
  - $R_{bkg} < 10^{-5} events / eV / pixel / day$
- Energy resolution:
  - $\Delta E (FWHM) < 1 eV$



# <image>

#### **Detector design & fabrication at Milano**



#### Mass separation and isotope embedding in Genova



# MMC technology with

#### Achievements

- first holmium spectra measured
  - $\Delta E = 5 \text{ eV}$  (FWHM), b <1.6x10<sup>-4</sup> eV<sup>-1</sup>pixel<sup>-1</sup>day<sup>-1</sup>
- first neutrino mass limit:
  - m < 150 eV (95% C.L.)
- refined theoretical calculations
- ECHo-1k completed: ~60 Bq (> 10<sup>8</sup> events)
  - sensitivity on m < 20 eV</li>

#### Next steps/challenges

• ECHo-100k: m < 2 eV

80



13 mm

#### arXiv:2301.06455



## Towards ultimate sensitivity with <sup>163</sup>Ho

- pixel activity ≥100Bq/det
  - <sup>163</sup>Ho heat capacity
- time resolution below 0.1µs
- about 10M pixels
  - multiplexing and DAQ bandwidth



# Outline



| What do we know<br>so far about<br>neutrino masses?          | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|--------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three<br>approaches to<br>neutrino mass?        | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies? | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass     |                                                                     |                                                             |                                                                 |

measurements?

## Questions





#### double $\beta$ -decay vs single $\beta$ -decay





#### double $\beta$ -decay vs single $\beta$ -decay





#### **Puzzles**





- Option 1: KATRIN or Project 8 measures a neutrino mass but LEGEND sees no signal
  - Neutrino Dirac particle
  - Cancellation in  $0\nu 2\beta$ -decay and  $m_{\beta\beta}$
- Option 2: LEGEND measures a  $0v2\beta$ -signal, but Project 8 measures no mass
  - a different mechanism for  $0\nu 2\beta$ -decay

## Questions





# Outline



| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? | Taking KATRIN as<br>an example                                      |                                                             |                                                                 |



# Outline



| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? | Sterile neutrinos                                                   |                                                             |                                                                 |

# Light sterile neutrinos – Motivation



- Multiple (longstanding) anomalies in the oscillation data
- No universal explanation to all of them
- An oscillation-free measurement as an independent crosscheck by KATRIN

500 keV

29.98/19

**JETP Lett. 112 (2020)** 

4. 199-212





Phys.Rev.Lett. 128 (2022) 23, 232501



#### Sterile neutrinos signature in $\beta$ -spectrum

- 3+1 sterile neutrino model
- Same data-set as for the neutrino mass
- Grid search in  $m_4^2$ ,  $|U_{e4}|^2$  plane

$$\frac{d\Gamma}{dE} = (1 - |U_{e4}|^2) \frac{d\Gamma}{dE} (m_{\beta}^2) + |U_{e4}|^2 \frac{d\Gamma}{dE} (m_{4}^2)$$

$$\lim_{k \to \infty} \lim_{k \to \infty}$$



# Sterile neutrinos signature in KATRIN



Karlsruher Institut für Technologie

6 Fit parameters:

- N amplitude of the signal
- $E_0$  effective endpoint energy
- $m^2$  effective mass of the electron antineutrino
- B background rate
- $|U_{e4}|^2 4^{th}$  neutrino mixing
- m<sub>4</sub><sup>2</sup> 4<sup>th</sup> neutrino mass

#### **Combination of 1<sup>st</sup> and 2<sup>nd</sup> campaigns**

![](_page_41_Figure_2.jpeg)

![](_page_41_Picture_3.jpeg)

Fixed 
$$m_v^2 = 0$$
  
 $m_4^2 = 59.9 \,\text{eV}^2$ ,  $|U_{e4}|^2 = 0.011$   
 $\Delta \chi^2_{null} = 0.66$ 

Free  $m_{\nu}^2$ 

$$m_4^2 = 87.4 \text{ eV}^2, |U_{e4}|^2 = 0.019$$
  
 $\Delta \chi^2_{null} = 1.69, m_v^2 = 0.57 \text{ eV}^2$ 

KATRIN Collab., PRD 105, 072004 (2022)

# **Sterile neutrinos – complimentarity**

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

- looking at the short baseline anomalies from a different perspective
- Signal-to-background up to 250
- More stringent limits than Troitsk and Mainz
- approaching the BEST allowed regions with  $\Delta m^2 \gtrsim 10 \text{ eV}^2$
- complementary probe to oscillation-based experiments

#### **Sterile neutrinos – prospects**

![](_page_43_Picture_1.jpeg)

![](_page_43_Figure_2.jpeg)

#### With first 5 datasets

 Probing large portion of the RAA, BEST and Neutrino-4

#### With full dataset

- Sensitive to interesting parameter range
- comparable sensitivities to neutrinoless double  $\beta$ -decay

#### keV sterile neutrinos

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_2.jpeg)

#### KATRIN Collab., arXiv:2207.06337

- Probing neutrinos with keV masses
  - using the first (technical) measurement phase
- Very high rates (mcps  $\rightarrow$  Mcps)
- Several new effects to be taken into account
  - back-scattering of electrons
  - magnetic trapping

![](_page_44_Figure_10.jpeg)

#### **KATRIN** with **TRISTAN** detector

![](_page_45_Picture_1.jpeg)

- Novel multi-pixel Silicon Drift Detector array (>1000 pixels)
- Large count rates: 100 kcps/pixel
- Excellent energy resolution: 160 eV (FWHM) at 6 keV
- Target sensitivity:

![](_page_45_Figure_6.jpeg)

![](_page_45_Figure_7.jpeg)

- 9 modules of TRISTAN at KATRIN after 2025
- Several updates of the setup for reducing the systematics

S. Mertens et al., J.Phys.G 46 (2019) 6, 065203; T. Brunst et al., JINST 14 (2019) 11, P11013, T. Houdy et al., J. Phys.: C.Ser. 1468 (2020) 012177

# Outline

![](_page_46_Picture_1.jpeg)

| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? | Sterile neutrinos                                                   | Relic neutrinos                                             |                                                                 |

# **Cosmic neutrino background: Motivation**

![](_page_47_Picture_1.jpeg)

Karlsruher Institut für Technologie

- ~340 relic neutrinos of all species /cm<sup>3</sup> in the Universe (56 /cm<sup>3</sup> per species)
- Decoupled the first second (1 MeV) after Big Bang
- Predicted overdensity  $\eta \approx (1.2..20)$
- Upper limits from previous kinematic neutrino mass measurements: 1013

#### **Relic neutrinos search with KATRIN**

![](_page_48_Picture_1.jpeg)

- relic neutrinos with meV energies
- neutrino capture on tritium (no energy threshold)
- Peak above the endpoint

$$^{3}\text{H} + \nu_{e} \rightarrow ^{3}\text{He}^{+} + e$$

![](_page_48_Figure_6.jpeg)

![](_page_48_Figure_7.jpeg)

#### **Relic neutrinos search with KATRIN**

![](_page_49_Picture_1.jpeg)

![](_page_49_Figure_2.jpeg)

![](_page_49_Picture_3.jpeg)

up to 40 g of tritium

tens of  $\mu g$  of  $T_2$  in the source  $10^{-6}$  captures per year

Tritium source

1 2 IN

T<sub>2</sub> out

r-axis

T<sub>2</sub> out

KATRIN has the sensitivity to probe large clustering of cosmic neutrinos around the solar system

$$\eta = n_v / \langle n_v \rangle$$

# Model for the relic neutrinos in KATRIN

![](_page_50_Figure_1.jpeg)

Karlsruher Institut für Technologie

Fit parameters:

- N amplitude of the signal
- $E_0$  effective endpoint energy
- $m^2$  effective mass of the electron antineutrino
- B background rate
- $\eta$  local overdensity
- meV energy is neglected

$$R_{\rm diff}(E) = R_{\beta}(E) + R_{\rm C\nu B}(E)$$

# **Relic neutrinos in the first science runs**

![](_page_51_Figure_1.jpeg)

![](_page_51_Picture_2.jpeg)

- 1<sup>st</sup> campaign (2019)
  - 522 hours
  - 3.4  $\mu$ g for capture on tritium
- 2<sup>nd</sup> campaign (2019)
  - 744 hours
  - 13.0  $\mu$ g for capture on tritium

```
KATRIN Collab., PRL 129 (2022) 1, 011806
```

# **Relic neutrinos in the first science runs**

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

- 1<sup>st</sup> campaign (2019)
  - 522 hours
  - 3.4  $\mu$ g for capture on tritium
- 2<sup>nd</sup> campaign (2019)
  - 744 hours
  - $^-$  13.0  $\mu g$  for capture on tritium
- no evidence for relic neutrino overdensity

- upper limits KATRIN Collab., PRL 129 (2022) 1, 011806

#### **Relic neutrinos: challenges**

![](_page_53_Picture_1.jpeg)

- Background rate
  - order of magnitude higher
- T<sub>2</sub> β-spectrum creates irreducible background
  - $-m_{\nu} < <E_{\rm GS} > /2 = 0.85 \ {\rm eV}$
  - increase of the target mass does not increase the CvB sensitivity

![](_page_53_Figure_8.jpeg)

#### **Relic neutrinos: results and prospects**

![](_page_54_Picture_1.jpeg)

- search for large overdensity  $\eta$  of relic neutrinos near the Earth
- $\eta < 1.1 \cdot 10^{11}/\alpha$  at 95% C.L. the search is statistically limited
- improved by 2 orders of magnitude compared to previous laboratory limits

![](_page_54_Figure_5.jpeg)

arXiv:2306.12366  $\rightarrow$  10<sup>4</sup> – 10<sup>7</sup> might be possible

# Outline

![](_page_55_Picture_1.jpeg)

| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? | Sterile neutrinos                                                   | Relic neutrinos                                             | BSM interactions & particles,<br>Lorentz invariance             |

# **General Neutrino Interactions**

![](_page_56_Picture_1.jpeg)

- Additional interactions which contribute to the weak interaction in the  $\beta$ -decay
- SM Effective Field Theory with additional right-handed neutrinos
  - Truncated at the order n = 6

$$\mathcal{L}_{SMEFT}(\phi_{SM}) = \mathcal{L}_{SM}(\phi_{SM}) + \sum_{n \ge 5} \sum_{i} \frac{1}{\Lambda^{n-4}} C_i^{(n)} O_i^{(n)}(\phi_{SM})$$

![](_page_56_Figure_6.jpeg)

- GNI could modify the  $\beta$ -spectrum
  - Energy-dependent contributions to the rate could be studied with KATRIN

![](_page_57_Picture_0.jpeg)

# **GNI Lagrangian for 4-fermion-interaction**

$$\mathcal{L}_{GNI}^{CC} = -\frac{G_F V_{\gamma\delta}}{\sqrt{2}} \sum_{j=1}^{10} \left( \stackrel{(\sim)}{\epsilon}_{j,ud} \right)^{\alpha\beta\gamma\delta} \left( \bar{e}_{\alpha} O_j v_{\beta} \right) \left( \bar{u}_{\gamma} O_j' d_{\delta} \right) + h.c.$$

- G<sub>F</sub> : Fermi constant
- $V_{\gamma\delta}$  : CKM matrix
- $(\tilde{\epsilon})_{j,ud}$ : Flavour space tensor describing strength of interaction type *j* with respect to SM Fermi interaction
  - $\epsilon_{L/R}$ : Coupling for left-/right-handed vector-like interactions
  - $\epsilon_S$ : Coupling for **scalar** interactions
  - $\epsilon_P$ : Coupling for **pseudo-scalar** interactions
  - $\epsilon_T$ : Coupling for **tensor**-like interactions

![](_page_57_Figure_10.jpeg)

# GNI in the tritium *B*-spectrum

![](_page_58_Picture_1.jpeg)

$$\frac{d\Gamma}{dE} = \frac{G_F^2 V_{ud}^2}{2\pi^3} \sqrt{(E+m_e)^2 - m_e^2} (E+m_e) (E_0 - E)$$

$$\times \left\{ \sum_{k=\beta,\,\mathsf{N}} \sqrt{(E_0-E)^2 - m_k^2} \cdot \left[ \xi_k \right] \left[ 1 + \left[ \mathbf{b_k} \frac{m_e}{E+m_e} - \mathbf{b'_k} \frac{m_k}{E_0-E} - \mathbf{c_k} \frac{m_e m_k}{(E+m_e)(E_0-E)} \right] \Theta(E_0-m_k-E) \right\}$$

- Total decay rate for active and sterile neutrino
- ξ<sub>k</sub>, b<sub>k</sub>, b<sub>k</sub>, c<sub>k</sub> are defined in terms of *ε*, U<sub>e4</sub> and *g<sub>v</sub>*, *g<sub>s</sub>*, *g<sub>T</sub>*, *g<sub>A</sub>* The SM case: ξ<sub>N</sub>=b<sub>k</sub>=b<sub>k</sub>=c<sub>k</sub>=0

![](_page_58_Figure_6.jpeg)

# Sensitivity to GNI with the sterile branch

- Converting mixing  $\frac{\xi_N}{\xi_B}$  into sensitivity to  $\epsilon$
- Strongest constraints on  $\boldsymbol{\epsilon}_{T}$
- Other constraints:
  - neutrino oscillations
  - v-e and v-N scattering
  - charged lepton flavor violation

Preliminary Study on first year MC at 95 % CL

![](_page_59_Figure_8.jpeg)

![](_page_59_Picture_9.jpeg)

#### **113** 03.07.2023

#### New light bosons

- Searching for new physics in the low-energy range
  - Light scalar or vector bosons can be emitted if their mass  $< Q_T$
  - axions and axion-like particles, Majoron models, Z'

![](_page_60_Figure_5.jpeg)

![](_page_60_Picture_6.jpeg)

![](_page_61_Picture_0.jpeg)

#### **Search for Lorentz Invariance Violation**

 Standard Model Extention: relativistic EFT with all possible LIV operators for neutrino propagation

$$L^a_{SME} = -\bar{\psi_w}a^\mu\gamma_\mu\psi_w$$

- for all particles in the  $\beta$ -decay
- terms  $\propto a^{\mu}p_{\mu} = a^{0}p_{0} \vec{a}\cdot\vec{p}$

 $\rightarrow$  1 sideral-day modulation of  $E_0$  and absolute shift of  $E_0$ 

![](_page_61_Figure_7.jpeg)

KATRIN Collab. Phys.Rev.D 107 (2023) 8, 082005

![](_page_62_Picture_0.jpeg)

# **Search for Lorentz Invariance Violation**

- Time-dependent
  - Rotation of the Earth: change of intrinsic KATRIN direction w.r.t.  $a^{\mu}$
  - $E_0$  oscillates with 23 h 56 min period
  - $-\left|(a_{\rm of}^{(3)})_{11}\right|$
- Time-independent
  - Measurements of *E*<sub>0</sub> at Mainz and KATRIN

$$-\left|(a_{\rm of}^{(3)})_{00}\right|$$
 and  $\left|(a_{\rm of}^{(3)})_{10}\right|$ 

![](_page_62_Figure_9.jpeg)

#### KATRIN Collab. Phys.Rev.D 107 (2023) 8, 082005

#### Lorentz invariance violation in KATRIN

![](_page_63_Picture_1.jpeg)

![](_page_63_Figure_2.jpeg)

## Lorentz invariance violation in KATRIN

![](_page_64_Picture_1.jpeg)

![](_page_64_Figure_2.jpeg)

$$A = \sqrt{\frac{3}{2\pi}} |(a_{of}^{(3)})_{11}| \sqrt{B^2 \cos^2 \chi \cos^2 \xi} + (\beta_{rot} - B \sin \xi)^2$$

![](_page_64_Figure_4.jpeg)

KATRIN Collab. Phys.Rev.D 107 (2023) 8, 082005

# Lorentz invariance violation in KATRIN

![](_page_65_Picture_1.jpeg)

No significant oscillation of *E*<sub>0</sub> observed

First upper limit:  $\left| \left( a_{of}^{(3)} \right)_{11} \right| < 3.7 \times 10^{-6} \text{ GeV} (90 \% \text{ CL})$ 

• No significant shift of  $E_0$  observed

 $\begin{aligned} & \left| \begin{pmatrix} a_{of}^{(3)} \\ of \end{pmatrix}_{00} \right| < 3.0 \times 10^{-8} \ GeV \ (90 \% \ \text{CL}) \\ & \left| \begin{pmatrix} a_{of}^{(3)} \\ of \end{pmatrix}_{10} \right| < 6.4 \times 10^{-4} \ GeV \ (90 \% \ \text{CL}) \end{aligned}$ 

$$A = \sqrt{\frac{3}{2\pi}} |(a_{of}^{(3)})_{11}| \sqrt{B^2 \cos^2 \chi \cos^2 \xi} + (\beta_{rot} - B \sin \xi)^2$$

![](_page_65_Figure_7.jpeg)

KATRIN Collab. Phys.Rev.D 107 (2023) 8, 082005

# Outline

![](_page_66_Picture_1.jpeg)

| What do we know<br>so far about<br>neutrino masses?                       | Neutrinos are<br>massive                                            | The squared mass<br>differences are<br>known                | The absolute scale<br>is unknown                                |
|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| What are the three approaches to neutrino mass?                           | Cosmology, 0v2β-<br>decay, direct<br>searches                       | Complementary<br>observables                                | Direct laboratory<br>measurements –<br>least model<br>dependent |
| How to measure<br>the mass without<br>model<br>dependencies?              | Current limit from<br>KATRIN<br>(MAC-E-Filter):<br><0.8 eV (90% CL) | CRES technology:<br>measuring the<br>cyclotron<br>frequency | Calorimetry with quantum sensors                                |
| What other physics<br>can we probe in<br>the direct mass<br>measurements? | Sterile neutrinos                                                   | Relic neutrinos                                             | BSM interactions & particles,<br>Lorentz invariance             |

#### **Summary & Outlook**

![](_page_67_Picture_1.jpeg)

- Ongoing hunt for the absolute neutrino mass scale with the laboratory experiments  $\rightarrow$  KATRIN, Project 8, ECHo, HOLMES, ...
  - Current best limit: 0.8 eV (90% CL) from KATRIN
  - New technologies are developed for ultimate neutrino mass determination (~0.009 eV)
- Exciting physics ahead if there are contradictions between  $0\nu 2\beta$ -decay, cosmology and direct neutrino mass measurements
- A variety of the "beyond neutrino mass" physics can be probed in the kinematic measurements of the weak decays

#### Thank you for your attention!

![](_page_68_Picture_1.jpeg)

![](_page_68_Picture_2.jpeg)

**121** 03.07.2023