Neutrino Oscillations

• Massive neutrinos are mixed:

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$|\nu_i(\tau)\rangle = e^{-\imath m_i \tau} |\nu_i(0)\rangle$$

REST FRAME

$$\nu_i(t)\rangle = e^{-i(E_i t - p_i L)} \left|\nu_i(0)\right\rangle$$

• Exploiting the fact that neutrinos are almost massless:

• The amplitude for observing a state α at distance L with initial state β is given by:

$$\langle \nu_{\beta} | \nu_{\alpha}(L) \rangle = \sum_{i=1}^{n} U_{\alpha i}^{*} \exp\left(-i\frac{m_{i}^{2}}{2E}L\right) \sum_{j=1}^{n} U_{\beta j} \langle \nu_{j} | \nu_{i} \rangle$$

• Which yields the probability:

 $\xi_i^{\alpha\beta} = U_{\alpha i}^* U_{\beta i}; \qquad \epsilon_i = \frac{m_i^2}{2E}.$

$$P_{\alpha\beta}(L) = \left| \langle \nu_{\beta} | \nu_{\alpha}(L) \rangle \right|^{2} = \delta_{\alpha\beta} - 4 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Re} \left(\xi_{i}^{\alpha\beta} \xi_{j}^{*\alpha\beta} \right) \sin^{2} \frac{1}{2} (\epsilon_{j} - \epsilon_{i}) L$$
$$-2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \operatorname{Im} \left(\xi_{i}^{\alpha\beta} \xi_{j}^{*\alpha\beta} \right) \sin(\epsilon_{j} - \epsilon_{i})$$

- **DISCLAIMER:** This calculation, reported almost everywhere, is **WRONG.** Plane waves have exactly defined momentum, and in that case there can be no oscillation!
 - However, the correct calculation with **wave packets** yields the same result, up to the distance at which wave packets cease to overlap. **The formula is RIGHT, until coherence is lost.**

For a correct calculation with wave packets see e.g. Giunti-Kim

M. Pallavicini

Experimental neutrino physics: state of the art

for global fits to almost all parameters

Combined T2K, Nova, etc analysis may yield an early "detection" of CP violation phase δ_D

V≠V ?

atomospheric

2.4×10-3 eV2

lor 7 5x10-5 el

atomospheric 2.4×10⁻³ eV

Absolute Mass scaleSpectrometers, μBolometers, EUCLIDCNO from the SunBOREXino. DONE ! 2020AstrophysicsIceCUBE, KM3Net

Multi-messenger (GW, photons)VIRGO-LIGO + AstronomyCvBR&D for PTolemy, Euclid, CMB fitsSN (pulse and relics)Borexino, LVD, JUNO, SK, HK, DUNE

M. Pallavicini

An active and growing field

PAPERS WITH 'neutrino' IN TITLE 1970 - 2020 [inspire.hep]

INF

• Artificial

- Nuclear Reactors
- Accelerators
- Radioactive sources (in some special cases)

• Natural

- Sun
- Atmospheric
 - secondary from cosmic rays interaction in atmosphere
- Cosmic
 - coming from outside Earth
- Geo-neutrinos
 - from Earth bulk and crust radioactivity
- Diffuse SN (statistical sum of many past SN events)
- SN
 - only once so far, SN1987a
- Relic (from big bang)

Natural neutrino sources

Neutrinos -

Anti-Neutrinos ----

From: arXiv: 1910.11878v3 (Vitagliano, Tamborra, Raffelt)

Neutrino energy ranges

6

INFŇ

Detecting neutrinos: key parameters and processes

$$N_{obs} = N_{targ} T \int_{E_{thr}}^{\infty} \Phi(E_{\nu}) \sigma(E_{\nu}) \epsilon(E_{\nu}) dE_{\nu}$$

- N_{obs} : number of detected events above
- E_{thr} : lower detection threshold (strongly dependent on technology)
- N_{targ}: number of targets (electrons, protons, nuclei)
 - Typical value $N_{targ} \sim 6 \ 10^{26} \text{ kg}^{-1}$ (e- or p)
- **T**: exposure time (2.7 10⁷ s / y typical up-time)
- ϕ : neutrino flux

Introduction to

- Sun: ~ 10⁶ 10¹⁰ cm⁻² s⁻¹ at Earth; Reactors: ~ 10¹² cm⁻² s⁻¹ @ 20 m; Accelerators: ~ 1 cm⁻² s⁻¹ @ 1000 km
- *σ*: cross section (total for the specific FS)
- ε: efficiency/acceptance; usually large, but not always
- TWO SIGNIFICANT EXAMPLES:
 - SOLAR (Borexino, elastic scattering on electrons)

$$N_{obs} = [3.\ 10^{31}e^{-}] \times [86400\ s\] \times [6\ 10^{9}\ cm^{-2}s^{-1}] \left[\frac{0.7\ 10^{-45}\ cm^{2}}{(MeV)} \right] \simeq 50\ ev/dag$$
100 t 1 day flux cross section

• ACCELERATOR (DUNE, inelastic scattering on Liquid Argon)

$$N_{obs} = \begin{bmatrix} \frac{M}{1.67 \ 10^{-27} \ kg} \end{bmatrix} \cdot \begin{bmatrix} 2. \ 10^7 \ s \end{bmatrix} \cdot \begin{bmatrix} 1 \ cm^{-2} s^{-1} \end{bmatrix} \cdot \epsilon \cdot \begin{bmatrix} \frac{0.7 \ 10^{-38} \ E_{\nu} \ cm^2}{GeV} \end{bmatrix} \simeq 40 \ 10^{-6} \frac{E_{\nu}}{GeV} \epsilon \frac{M}{kg}$$

$$Number of \qquad Effective \qquad beam \qquad cross section$$

$$nucleons \qquad year \qquad @ 1000 \ km$$
Experimental Neutrino Physics
$$M. \text{ Pallavicini} \qquad 53/109$$

NOTE: this formula is good for MC simulations. Real neutrino energy is usually unknown, so data analysis must be done using **reconstructed energy. A complex issue,** not covered.

> kTon required

- A reactor is a powerful source of **anti-neutrinos**
 - Each U fission yields 200 MeV on average, and 6 ν_e
 - Flux: ~ 2. 10²⁰ s⁻¹ GW⁻¹, isotropic, $\langle E_{\nu} \rangle \approx 0.5 \text{ MeV}$
 - About ~ 4. 10^{12} s⁻¹ cm⁻² for 1 GW at 20 m from the core
- The details of the anti-neutrino spectrum are hard to compute, and still subject of research
 - Dominating process: ²³⁵U fission and sub-sequent β decays (6 on average)

• The flux depends on **reactor type** and also on **time** because **fuel composition evolves**

Fission products mass number A

M. Pallavicini

Example: KamLAND experiment

• Kamioka Liquid Scintillator Anti-Neutrino Detector

2 flavor neutrino oscillation

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2\left(\frac{1.27\Delta m^2 [\text{eV}^2] l[m]}{E[\text{MeV}]}\right)$$

34% photo-coverage with 1325 17" and 554 20" PMTs

most sensitive region

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$
$$\sim 3 \times 10^{-5} \text{eV}^2$$

Stainless steel tank

Introduction to Experimental Neutrino Physics

M. Pallavicini

56/109

A neat oscillation experiment

Introduction to Experimental Neutrino Physics

M. Pallavicini

<u>57/109</u>

FIGURE 1. Components of the accelerator neutrino experiment

XXVI International Conference on Neutrino Physics and Astrophysics AIP Conf. Proc. 1666, 130001-1–130001-6; doi: 10.1063/1.4915579 © 2015 AIP Publishing LLC 978-0-7354-1313-9/\$30.00

M. Pallavicini

5

INF

Neutrino beams: examples

Introduction to Experimental Neutrino Physics

59/109

Introduction to Experimental Neutrino Physics

M. Pallavicini

60/109

- "Forward" current: select π^+ , and get mainly ν_{μ}
- "Reversed" current: select π -, and get mainly ν_{μ}

M. Pallavicini

ON-axis vs OFF-axis: selecting neutrino energy

• OFF-axis there is a strong correlation between neutrino energy and angle

Introduction to Experimental Neutrino Physics

M. Pallavicini

5

Example: Opera experiment @ LNGS

OPERA Detector

GranSasso Undergroud Lab, Italy

~150000 ECC Bricks = Weight ~1250 ton

Introduction to Experimental Neutrino Physics

M. Pallavicini

64/109

Example: Opera experiment at LNGS

BRICK ID	72693	29570	23543	92217	130577	77152	27972	26670	136759	4838
Channel	$\tau \to 1h$	$\tau \to 3h$	$\tau \rightarrow \mu$	$\tau \to 1h$	$\tau \to 3h$	$\tau \to 3h$				
$z_{dec}~(\mu{ m m})$	435	1446	151	406	630	430	652	303	-648	407
$p_{miss}^T (\text{GeV/c})$	0.52	0.31	/	0.55	0.30	0.88	1.29	0.46	0.60	> 0.50
ϕ_{lH} (degrees)	173	168	/	166	151	152	140	143	82	47
$p_{2ry}^T (\text{GeV/c})$	0.47	/	0.69	0.82	1.00	0.24	0.25	0.33	/	/
p_{2ry} (GeV/c)	12	8.4	2.8	6.0	11	2.7	2.6	2.2	6.7	> 6.3
$\theta_{kink} \text{ (mrad)}$	41	87	245	137	90	90	98	146	231	83
$m (\text{GeV}/\text{c}^2)$	/	0.80	/	1.2	> 0.94	/	/	/	1.2	> 0.94
γ at decay vtx	2	0	0	0	0	1	0	0	0	2
$charge_{2ry}$	/	/	-1	/	/	/	/	/	/	/
BDT Response	0.32	-0.05	0.37	0.12	0.35	0.18	-0.25	-0.10	-0.04	-0.03

TABLE IV. Kinematical variables and BDT response for all ν_{τ} candidates.

10 candidates

INF

Example: Noble Liquid Detectors

Istituto Nazionale di Fisica Nucleare

A new, powerful detection technique initiated at CNGS

Drifting electrons are moving to transparent wire arrays oriented in different directions, where signals are recorded.

- •High density
- Non-destructive readout
- Continuously sensitive
- Self-triggering
- Very good scintillator: TO

C. Rubbia, 2019

Measurement of muon momentum via multiple scattering

In absence of a magnetic field, the initial m momentum may be determined through the reconstruction of multiple Coulomb Scattering (MS) in LAr $\,$

RMS of θ deflection of μ depends on p, spatial resolution σ and track segmentation

~16% resolution has been obtained in the 0.4-4 GeV /c momentum range of interest for the future short/long base-line experiments C. Rubbia, 2019

Non destructive, multiple charge readout

At FNAL's shallow depth, the T600 will require two additions:
 3 m concrete overburden to mitigate the c. rays background,
 Particles entering the detector must be removed with a Cosmic Rays Tagging (CRT) around the full LAr volume

C. Rubbia, 2019

3 D particle Identification (k⁺ $\rightarrow \mu^+ \rightarrow e^+$) at CNGS

ICARUS EVENT

Efficient, low misidentification, due to precise 3D reconstruction, dE/dx, range measurement

 stopping power
 recognition of secondary particle production after decay interaction

C. Rubbia, 2019

MC event Run 5 SubRun 44 Event 64

• A clear q.e. ve event: p + e.

 $E_V = 1.34 \text{ GeV}$ Edep = 1.29 GeV

Coherent elastic neutrino-nucleus scattering (CEvNS)

A neutrino scatters on a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

CEvNS cross section is well calculable in the Standard Model

- Predicted in 1974 by D. Freedman
- Interesting test of the standard model
 - Sensitive to non-standard interactions
 - Largest cross section in supernovae dynamics
 - Background for future dark matter experiments
 - Sensitive to nuclear physics, neutron skin (neutron star radius)
- "act of hubris" D. Freedman
 - Need a low threshold detector
 - Need an intense neutrino source

J. Newby, Neutrino 2020

First Detection of CEvNS with Csl detector

First working, hand held neutrino detector -14kg!!!

After 40 years, all the pieces have finally come together

- ✓ Intense Neutrino Source
- ✓ Sensitive Detectors
- ✓ Mitigation of Backgrounds

Neutrino 2020 Virtual Meeting

J. Newby, Neutrino 2020