



### HAWC Upgrade for Multi-TeV Gamma-Ray Detection

Roma International Conference on AstroParticle Physics 2016 Vikas Joshi On Behalf of HAWC Collaboration

# **Outline**

- General introduction to HAWC. (refer to: Talk by Sabrina Casanova on HAWC)
- Introduction to outrigger array concept.
- Readout and trigger electronics for outriggers.
- Results of outrigger simulations.
- Current status and time line of the outrigger installation.

### The High-Altitude Water Cherenkov Observatory (HAWC)

Pico de Orizaba (5626 m)

Location : Puebla , Mexico Altitude : 4100 m above sea level Area : 22000 m<sup>2</sup> Completed in March 2015 with 300 Water-Cherenkov Detectors.

**150 m** 

### The High-Altitude Water Cherenkov Observatory (HAWC)



Vikas Joshi RICAP 2016

### The High-Altitude Water Cherenkov Observatory (HAWC)



#### **>10 TeV Showers at HAWC**



Vikas Joshi RICAP 2016

#### **>10 TeV Showers at HAWC**



Vikas Joshi RICAP 2016

## **Motivation for Outriggers**

 When shower core falls outside of the main array, it can be misreconstructed as a lower energy shower closer to the array.

True shower Mis-reconstructed shower Main HAWC Array

#### So we have an uncertainty on the location of the shower.

- Which eventually affects :
  - Direction reconstruction.
  - Energy reconstruction.
  - Gamma hadron separation.

#### So how can we deal with this?



Vikas Joshi RICAP 2016

#### So how can we deal with this?



Vikas Joshi RICAP 2016

#### So how can we deal with this?



Vikas Joshi RICAP 2016

### **HAWC Outrigger Array Description**

- A sparse outrigger array around the main HAWC array.
- It is mainly optimized for energies > 10 TeV.
- Increase in effective area for energies > 10 TeV, with a factor of 3-4.
- It will consist of 350 outrigger tanks, with one Hamamatsu R5912 8" PMT in each of them.



## **FADC Electronics for Outriggers**

The idea is to use the prototype electronics originally developed for use on CTA medium sized telescopes.



#### **FADC Electronics for Outrigger Nodes**



Vikas Joshi RICAP 2016

## **FADC Electronics Properties**

- 24 channels per board.
- 12 bit FADC sampling at 250 MHz.
- Dynamic Range 0.8 V
- Flexible digital multiplicity trigger.
- Each of the HAWC outrigger PMT corresponds to one channel.



## **Outrigger Components and Simulations**

- Outrigger tanks have been bought and 1 prototype is already taking data at the site (10 others are about to be installed).
- Based on extensive MC simulations and prototype data the following decisions have been made:
  - Photo Multiplier Type/size : Hamamatsu R5912 8" PMT.
  - Tank wall color : Black (less diffusive, timing information is better).

#### <u>Core location reconstructed by simple center of gravity method and</u> <u>maximum likelihood fit.</u>

### **Core Reconstruction of Outriggers**



- The data points are at the mid point of the concerned energy range.
- Core resolution is the 68% containment area value of (likelihood fit core true core) histogram.
- The seed value for the likelihood fit is the center of gravity location.

### **Core Reconstruction of Outriggers**



- The data points are at the mid point of the concerned energy range.
- Core resolution is the 68% containment area value of (likelihood fit core true core) histogram.
- The seed value for the likelihood fit is the center of gravity location.

### **Summary and Future Plan**

- What we will achieve with outriggers?
  - More accurate determination of the core position.
  - Increased effective area above 10 TeV by a factor of 3-4.
- Current status:
  - The installation of outriggers is currently taking place.
  - Software for combined analysis of outrigger + main array is being developed.
  - Testing of FALCON with outrigger tanks is being performed on site.
- Future plan:
  - Merging of the outrigger system with the central readout system (late summer).
  - Deployment of full outrigger array by the end of 2016.
  - It will start taking data from the beginning of 2017 with enhanced sensitivity above 10 TeV.



# **Thank You for Your Attention**

Vikas Joshi RICAP 2016



## **Simulation Setup**



- Total number of tanks = 520.
- Aligned in two parallel columns of separation 1.86 m.
- Separation of two tanks in one column = 1.86 m.
- Showers are simulated with zenith angle = 0 deg, distributed uniformly in a square of 1.86 m x 1.86 m around the center of the array.
- Only gammas, 5 million showers.
- Energy: 300 GeV to 300 TeV; Spectrum slope = -2.
- Tank type: outrigger tank (Black),
- PMT size = 8 inch.



#### <u>Typical Probability Distribution of Observed Number of PE</u> with Distance from the Core

- Probability distributions have been binned in Xmax and Energy.
- e.g. the distribution below is with Xmax: 600 to 615 g/cm<sup>2</sup> and Energy: 75.356 TeV to 119.432 TeV.



## Simulation Setup for study of Core location uncertainty



#### <u>Histogram of delta</u> r for 5 inch PMT, Energy 10 TeV, <u>tank color: Black and zenith angle: zero</u>



## Average No. Of PE for 3" PMT with Black and White Tanks



Vikas Joshi RICAP 2016

## Average No. Of PE for 8" PMT with Black and White Tanks



Vikas Joshi RICAP 2016