

# Exploiting the radio signal from air showers: the AERA progress

Benoît Revenu for the Pierre Auger Collaboration Subatech, CNRS, École des Mines de Nantes, Université de Nantes





#### **The Pierre Auger Observatory**

- •1660 Cherenkov tanks (SD)
- 3000 km<sup>2</sup>
- 4 fluorescence sites (FD, 27 telescopes)

#### Auger Engineering Radio Array (AERA)

•the largest cosmic ray radio array in the world







#### **The Pierre Auger Observatory**

- •1660 Cherenkov tanks (SD)
- 3000 km<sup>2</sup>
- 4 fluorescence sites (FD, 27 telescopes)

#### Auger Engineering Radio Array (AERA)

•the largest cosmic ray radio array in the world

















## How?









# central DAQ: gets timestamps from stations computes coincidences asks for raw data (self trigger)

gets trigger information from SD and FDasks for raw data (external trigger)



## Why?

#### <u>Shower physics</u>

- fine details of the electric field emission mechanisms
- e+/e- and muons distributions

#### <u>Cosmic ray physics above 1 EeV</u>

- calorimetric energy measurement (and spectrum)
- energy scale of Auger (FD)
- composition through X<sub>max</sub> with ~100% duty cycle, in particular in the transition region
- inclined showers (large acceptance)

#### <u>Geophysics</u>

- study of atmospheric electric fields
- lightning/CR correlation





## I. Understanding the detector

## Amplitude calibration direct calibration using a pulser on a drone



overall uncertainty: 14% (antenna response+full electronics chain)

## vector effective length: $V = \vec{H}(f, \theta, \phi) \cdot \vec{E}(f)$



## Time calibration

correct for GPS drifts by comparing time differences between two stations using a distant beacon and airplane transits over AERA



#### **GPS time drift over 2 weeks**

Benoît Revenu, Subatech

225

135



## II. Understanding the source of the signal







Geomagnetic Contribution



 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$ 

#### from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geomagnetic Contribution

## $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$



 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$ 

from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geo

seomagnetic ontribution

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$ 

and compare it to the **expected** polar. angle:  $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$ 



 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$ 

from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geomagnetic

Contribution

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$ 

and compare it to the **expected** polar. angle:  $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$ 







 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$ 

from measurements of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geo,

Contribution

magnetic

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$ 

and compare it to the **expected** polar. angle:  $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$ 

## The geomagnetic mechanism is dominant!







# **Emission mechanism** Charge excess contributionss



but  $n_{\mathrm{e}^+} < n_{\mathrm{e}^-}$  because:

- in flight e+ annihilation



excess of electrons: net electric field, radial polarization pattern, depends on the observer's location

 $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$ 

(Askaryan 1962, 1965)

•electrons are extracted from the medium (Compton, Bhabha, Moeller)









# III. Extracting CR characteristics (energy, X<sub>max</sub>)

## Lateral distribution function: energy estimation

two mechanisms interfere: we loose azimuthal symetry **need 2D LDF**, here difference of 2 Gaussians computed from dedicated simulations (using CoREAS)

$$\text{LDF}(\vec{r}) = \Lambda \left( \exp\left( -\frac{(\vec{r} - \vec{r}_{\text{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2} \right) - C_0 \exp\left( -\frac{(\vec{r} - \vec{r}_{\text{core}} + C_2 \vec{e}_{\vec{v} \times \vec{B}})^2}{(C_3 e^{C_4 \sigma})^2} \right) \right)$$

For a single radio station:

1. compute E-field vs time

2. integrate the Poynting vector to get the energy fluence (eV/m<sup>2</sup>)



Nelles et al., Astropart. Phys. 60, 13 (2015)

## **Energy** estimation: single station data, $eV/m^2$



# **Energy** estimation: 2D LDF best fit



# **Energy** estimation: 2D LDF best fit



# **Energy** estimation: 2D LDF integration



# **Energy** estimation: 2D LDF integration



#### using events in coincidence with Auger SD, compare the deposited energy with the SD energy:



## Calorimetric energy estimation

this provides a calorimetric energy estimation from the radiated energy in [30-80] MHz:

- allows to calibrate the detector
- allows to cross-calibrate various CR experiments
- universal method as the atmosphere is transparent to radio waves and first principles based method

one simulated shower seen by two experiments:





Auger altitude

(1560 m a.s.l.)

LOFAR altitude

(sea level)

two different amplitudes at two different optimal axis

distances!

but the same radiated energy: 11.9 MeV

## X<sub>max</sub> determination

## strong correlation between the X<sub>max</sub> and the shape of the 2D LDF



## X<sub>max</sub> determination

strong correlation between the  $X_{max}$  and the shape of the 2D LDF 3 methods currently studied in AERA, example of the amplitude method interpolate simulated (SELFAS) electric field at the measurement positions



simulate the shower using the radio ( $\theta$ ,  $\Phi$ ) and assume 1 EeV



## X<sub>max</sub> determination

strong correlation between the  $X_{max}$  and the shape of the 2D LDF 3 methods currently studied in AERA, example of the amplitude method interpolate simulated (SELFAS) electric field at the measurement positions



## Conclusion

- •AERA is properly calibrated, covers 17 km<sup>2</sup> and produces high-quality data in correlation with showers detected by all detectors of the Pierre Auger Observatory
- the source of the radio signal is relatively well understood
- •Energy:
  - the primary energy is partly released as radiation energy in a calorimetric way: 1 EeV => 16 MeV in [30-80] MHz
  - the energy resolution using the radio signal is 17%
  - this provides a new independent energy scale for CR experiments
- Composition:
  - •we work on a systematic measurement of Xmax, for each event, with a ~100% duty cycle
  - we expect around 40 g/cm<sup>2</sup> resolution
- data analysis of the full array ongoing, we aim at providing results on the energy spectrum and composition in the transition region





(Raphael Krause, Vienna 2016)



•



Vienna Conference on Instrumentation 2016 Raphael Krause | RWTH Aachen University | 18.02.2016



power: 6600 mAh Lipo 13-16V
payload: ~2000g
mass: 2545g (including 715g accumulator)
flight time: 25min/9min (wo/w payload)
barometer → elevation
gyroscope → inclination
acceleration sensor → angular speed
GPS → position



#### **Fluorescence Detector**

**Radio Detector** 



$$i = \varepsilon_0 c \left( \Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right)$$



(Christian Glaser, ARENA 2016)

$$\mathrm{LDF}(\vec{r}) = \Lambda \left( \exp\left(-\frac{(\vec{r} - \vec{r}_{\mathrm{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2}\right) - C_0 \exp\left(-\frac{(\vec{r} - \vec{r}_{\mathrm{core}} + C_2 \vec{e}_{\vec{v} \times \vec{B}})^2}{(C_3 e^{C_4 \sigma})^2}\right) \right)$$

C constants obtained from CoREAS simulations  $\leq$  5 stations: get  $\Lambda$  and  $\sigma$  $\geq$ 5 stations : get  $\Lambda$ ,  $\sigma$ , rcore

TABLE III. Parameters  $C_0 - C_4$  of Eq. (4).  $C_3 = 16.25$  m and  $C_4 =$ 0.0079 m<sup>-1</sup>. The zenith-angle dependent values used to predict the emission pattern are given for zenith angle bins up to 60°.

| zenith angle              | $C_0$ | $C_1[m]$      | $C_2$ [m]     |
|---------------------------|-------|---------------|---------------|
| $0^{\circ}-10^{\circ}$    | 0.41  | $-8.0\pm0.3$  | $21.2\pm0.4$  |
| $10^\circ - 20^\circ$     | 0.41  | $-10.0\pm0.4$ | $23.1\pm0.4$  |
| $20^{\circ} - 30^{\circ}$ | 0.41  | $-12.0\pm0.3$ | $25.5\pm0.3$  |
| $30^{\circ} - 40^{\circ}$ | 0.41  | $-20.0\pm0.4$ | $32.0\pm0.6$  |
| $40^{\circ} - 50^{\circ}$ | 0.46  | $-25.1\pm0.9$ | $34.5\pm0.7$  |
| $50^{\circ} - 60^{\circ}$ | 0.71  | $-27.3\pm1.0$ | $9.8 \pm 1.5$ |



| Method                           | Α                                                     | В                                            | С                                         | D                                                                 |
|----------------------------------|-------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| model                            | <b>SELFAS</b><br>Astropart. Phys. 35 (2012) 733 – 741 | 2D gaussian<br>Astropart. Phys. 60 (2015) 13 | CoREAS<br>AIP Conf. Proc. (2013) 128– 132 | ZHAireS<br>horizontal components<br>Astropart. Phys. 59 (2014) 29 |
| requirements                     | RD arrival direction                                  | RD arrival direction                         | SD arrival direction<br>SD energy         | SD core (initialization)<br>SD energy                             |
| # of<br>simulations<br>per event | 40 p + 10 Fe                                          | no simulation                                | 20 p + 10 Fe                              | 30 p + 30 Fe                                                      |

(Florian Gaté, ARENA 2016)



#### method based on the 2D LDF fit

$$\text{LDF}(\vec{r}) = \Lambda \left( \exp \left( -\frac{(\vec{r} - \vec{r}_{\text{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2} \right) \right)$$



 $D_{\max}^{\text{geo}}(X_{\max}, \theta) = (h_{\text{GDAS}}(X_{\max}/\cos\theta) - h_{\text{Auger}})/\cos\theta$ 



## Horizontal showers

#### large multiplicity events (station spacing 750 m)



427 high quality horizontal radio events selected (January 1, 2012 to August 15, 2015) triggered and reconstructed by 1.5 km grid of surface tanks cut on zenith angles of 62° to 80°

(Olga Kambeitz, ARENA 2016)

## Horizontal showers

#### large multiplicity events (station spacing 750 m)





