

Exploiting the radio signal from air showers: the AERA progress

Benoît Revenu for the Pierre Auger Collaboration Subatech, CNRS, École des Mines de Nantes, Université de Nantes

The Pierre Auger Observatory

- •1660 Cherenkov tanks (SD)
- 3000 km²
- 4 fluorescence sites (FD, 27 telescopes)

Auger Engineering Radio Array (AERA)

•the largest cosmic ray radio array in the world

The Pierre Auger Observatory

- •1660 Cherenkov tanks (SD)
- 3000 km²
- 4 fluorescence sites (FD, 27 telescopes)

Auger Engineering Radio Array (AERA)

•the largest cosmic ray radio array in the world

How?

central DAQ: gets timestamps from stations computes coincidences asks for raw data (self trigger)

gets trigger information from SD and FDasks for raw data (external trigger)

Why?

<u>Shower physics</u>

- fine details of the electric field emission mechanisms
- e+/e- and muons distributions

<u>Cosmic ray physics above 1 EeV</u>

- calorimetric energy measurement (and spectrum)
- energy scale of Auger (FD)
- composition through X_{max} with ~100% duty cycle, in particular in the transition region
- inclined showers (large acceptance)

<u>Geophysics</u>

- study of atmospheric electric fields
- lightning/CR correlation

I. Understanding the detector

Amplitude calibration direct calibration using a pulser on a drone

overall uncertainty: 14% (antenna response+full electronics chain)

vector effective length: $V = \vec{H}(f, \theta, \phi) \cdot \vec{E}(f)$

Time calibration

correct for GPS drifts by comparing time differences between two stations using a distant beacon and airplane transits over AERA

GPS time drift over 2 weeks

Benoît Revenu, Subatech

225

135

II. Understanding the source of the signal

Geomagnetic Contribution

 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$

from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geomagnetic Contribution

$\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$

 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$

from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geo

seomagnetic ontribution

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$

and compare it to the **expected** polar. angle: $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$

 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$

from **measurements** of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geomagnetic

Contribution

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$

and compare it to the **expected** polar. angle: $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$

 $\vec{E}_{\rm geo} \propto \vec{\beta} \times \vec{B}$

from measurements of the electric field in the EW and NS polarizations, we can compute the polar. angle:

Geo,

Contribution

magnetic

 $\phi_{\rm mes} = \arctan(E_{\rm NS}/E_{\rm EW})$

and compare it to the **expected** polar. angle: $\phi_{\text{exp}} = \arctan((\vec{\beta} \times \vec{B})_{\text{NS}}/(\vec{\beta} \times \vec{B})_{\text{EW}})$

The geomagnetic mechanism is dominant!

Emission mechanism Charge excess contributionss

but $n_{\mathrm{e}^+} < n_{\mathrm{e}^-}$ because:

- in flight e+ annihilation

excess of electrons: net electric field, radial polarization pattern, depends on the observer's location

 $+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}$

(Askaryan 1962, 1965)

•electrons are extracted from the medium (Compton, Bhabha, Moeller)

III. Extracting CR characteristics (energy, X_{max})

Lateral distribution function: energy estimation

two mechanisms interfere: we loose azimuthal symetry **need 2D LDF**, here difference of 2 Gaussians computed from dedicated simulations (using CoREAS)

$$\text{LDF}(\vec{r}) = \Lambda \left(\exp\left(-\frac{(\vec{r} - \vec{r}_{\text{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2} \right) - C_0 \exp\left(-\frac{(\vec{r} - \vec{r}_{\text{core}} + C_2 \vec{e}_{\vec{v} \times \vec{B}})^2}{(C_3 e^{C_4 \sigma})^2} \right) \right)$$

For a single radio station:

1. compute E-field vs time

2. integrate the Poynting vector to get the energy fluence (eV/m²)

Nelles et al., Astropart. Phys. 60, 13 (2015)

Energy estimation: single station data, eV/m^2

Energy estimation: 2D LDF best fit

Energy estimation: 2D LDF best fit

Energy estimation: 2D LDF integration

Energy estimation: 2D LDF integration

using events in coincidence with Auger SD, compare the deposited energy with the SD energy:

Calorimetric energy estimation

this provides a calorimetric energy estimation from the radiated energy in [30-80] MHz:

- allows to calibrate the detector
- allows to cross-calibrate various CR experiments
- universal method as the atmosphere is transparent to radio waves and first principles based method

one simulated shower seen by two experiments:

Auger altitude

(1560 m a.s.l.)

LOFAR altitude

(sea level)

two different amplitudes at two different optimal axis

distances!

but the same radiated energy: 11.9 MeV

X_{max} determination

strong correlation between the X_{max} and the shape of the 2D LDF

X_{max} determination

strong correlation between the X_{max} and the shape of the 2D LDF 3 methods currently studied in AERA, example of the amplitude method interpolate simulated (SELFAS) electric field at the measurement positions

simulate the shower using the radio (θ , Φ) and assume 1 EeV

X_{max} determination

strong correlation between the X_{max} and the shape of the 2D LDF 3 methods currently studied in AERA, example of the amplitude method interpolate simulated (SELFAS) electric field at the measurement positions

Conclusion

- •AERA is properly calibrated, covers 17 km² and produces high-quality data in correlation with showers detected by all detectors of the Pierre Auger Observatory
- the source of the radio signal is relatively well understood
- •Energy:
 - the primary energy is partly released as radiation energy in a calorimetric way: 1 EeV => 16 MeV in [30-80] MHz
 - the energy resolution using the radio signal is 17%
 - this provides a new independent energy scale for CR experiments
- Composition:
 - •we work on a systematic measurement of Xmax, for each event, with a ~100% duty cycle
 - we expect around 40 g/cm² resolution
- data analysis of the full array ongoing, we aim at providing results on the energy spectrum and composition in the transition region

(Raphael Krause, Vienna 2016)

•

Vienna Conference on Instrumentation 2016 Raphael Krause | RWTH Aachen University | 18.02.2016

power: 6600 mAh Lipo 13-16V
payload: ~2000g
mass: 2545g (including 715g accumulator)
flight time: 25min/9min (wo/w payload)
barometer → elevation
gyroscope → inclination
acceleration sensor → angular speed
GPS → position

Fluorescence Detector

Radio Detector

$$i = \varepsilon_0 c \left(\Delta t \sum_{t_1}^{t_2} |\vec{E}(t_i)|^2 - \Delta t \frac{t_2 - t_1}{t_4 - t_3} \sum_{t_3}^{t_4} |\vec{E}(t_i)|^2 \right)$$

(Christian Glaser, ARENA 2016)

$$\mathrm{LDF}(\vec{r}) = \Lambda \left(\exp\left(-\frac{(\vec{r} - \vec{r}_{\mathrm{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2}\right) - C_0 \exp\left(-\frac{(\vec{r} - \vec{r}_{\mathrm{core}} + C_2 \vec{e}_{\vec{v} \times \vec{B}})^2}{(C_3 e^{C_4 \sigma})^2}\right) \right)$$

C constants obtained from CoREAS simulations \leq 5 stations: get Λ and σ \geq 5 stations : get Λ , σ , rcore

TABLE III. Parameters $C_0 - C_4$ of Eq. (4). $C_3 = 16.25$ m and $C_4 =$ 0.0079 m⁻¹. The zenith-angle dependent values used to predict the emission pattern are given for zenith angle bins up to 60°.

zenith angle	C_0	$C_1[m]$	C_2 [m]
$0^{\circ}-10^{\circ}$	0.41	-8.0 ± 0.3	21.2 ± 0.4
$10^\circ - 20^\circ$	0.41	-10.0 ± 0.4	23.1 ± 0.4
$20^{\circ} - 30^{\circ}$	0.41	-12.0 ± 0.3	25.5 ± 0.3
$30^{\circ} - 40^{\circ}$	0.41	-20.0 ± 0.4	32.0 ± 0.6
$40^{\circ} - 50^{\circ}$	0.46	-25.1 ± 0.9	34.5 ± 0.7
$50^{\circ} - 60^{\circ}$	0.71	-27.3 ± 1.0	9.8 ± 1.5

Method	Α	В	С	D
model	SELFAS Astropart. Phys. 35 (2012) 733 – 741	2D gaussian Astropart. Phys. 60 (2015) 13	CoREAS AIP Conf. Proc. (2013) 128– 132	ZHAireS horizontal components Astropart. Phys. 59 (2014) 29
requirements	RD arrival direction	RD arrival direction	SD arrival direction SD energy	SD core (initialization) SD energy
# of simulations per event	40 p + 10 Fe	no simulation	20 p + 10 Fe	30 p + 30 Fe

(Florian Gaté, ARENA 2016)

method based on the 2D LDF fit

$$\text{LDF}(\vec{r}) = \Lambda \left(\exp \left(-\frac{(\vec{r} - \vec{r}_{\text{core}} + C_1 \vec{e}_{\vec{v} \times \vec{B}})^2}{\sigma^2} \right) \right)$$

 $D_{\max}^{\text{geo}}(X_{\max}, \theta) = (h_{\text{GDAS}}(X_{\max}/\cos\theta) - h_{\text{Auger}})/\cos\theta$

Horizontal showers

large multiplicity events (station spacing 750 m)

427 high quality horizontal radio events selected (January 1, 2012 to August 15, 2015) triggered and reconstructed by 1.5 km grid of surface tanks cut on zenith angles of 62° to 80°

(Olga Kambeitz, ARENA 2016)

Horizontal showers

large multiplicity events (station spacing 750 m)

