LATTES: a new gamma-ray detector concept for South America

Ruben Conceição

P. Assis, U. Barres de Almeida, A. Blanco, A. De Angelis, P. Fonte, L. Lopes, G. Matthiae, M. Pimenta, R. Shellard, B. Tomé

RICAP, Rome, June 23rd 2016

Current experimental status

Current Situation

- No wide FoV experiment to:
 - Survey the Galactic
 Center (GC)
 - Explore the energy region of 100 GeV

Requirements

- Build an EAS array experiment:
 - Located in the South
 Hemisphere
 - Low energy threshold:
 - High altitude
 - Next generation detector concept

Solution

- Build an EAS array experiment:
 - Located in the South Hemisphere
 - Low energy threshold:
 - High altitude
 - Next generation detector concept

LATTES @ ALMA site Large Array Telescope for Tracking Energetic Sources

LATTES array

• Planned site:

- Atacama Large Millimeter Array site
 - Chajnantor plateau
 - 5200 meters altitude in north Chile
 - Good position to survey the Galactic Center

LATTES concept

LATTES STATION

– Thin lead plate (Pb)

- 5.6 mm (one radiation lenght)
- Resistive Plate Chambers (RPC)
 - 2 RPCs per station
 - Each RPC with 4x4 readout pads
- Water Cherenkov Detector (WCD)
 - 2 PMTs (diameter: 15 cm)
 - Dimensions: 1.5 m x 3 m x 0.5 m

LATTES concept

• Hybrid detector:

- Thin lead plate
 - To convert the secondary photons
 - Improve geometric reconstruction
- Resistive Plates Chamber
 - Sensitive to charged particles
 - Good time and spatial resolution
 - Improve geometric reconstruction
 - Explore shower particle patterns at ground

- Water Cherenkov Detector

- Sensitive to secondary photons and charged particles
- Measure energy flow at ground
- Improve trigger capability
- Improve gamma/hadron discrimination

LATTES station 1.5 m x 3 m x 0.5 m

LATTES core array 30 x 60 stations 100 x 100 m²

LATTES: complementary

Combined detection:

Lower the energy threshold

 Improve the trigger conditions (WCD)

Enable detector inter-calibrations

- Energy calibration can be used to control detector systematic uncertainties
- Check Monte Carlo simulations
 performance

Enhance gamma/hadron discrimination

- Explore shower characteristics
- Access to Argo/HAWC discrimination techniques

LATTES perfomance:

- Trigger efficiency
- Energy Reconstruction
- Geometric Reconstruction
- Gamma-hadron discrimination

LATTES sensitivity

Simulation Framework

- Complete end-to-end simulation chain to evaluate
 LATTES performance
 - Showers simulated using CORSIKA
 - Detector layout and simulation performed by Geant4
 - LATTESsim: Integrated toolkit to study and optimize LATTES performance

Shower Simulation

Detector Simulation

Analysis/Reconstruction

Trigger efficiency

- Use WCD stations to trigger at low energies
 - Trigger condition
 - Station: require more than 5 p.e. in each PMT
 - Event: require 3 triggered stations
 - Effective Area of 1000 m² at 100 GeV! (after quality cuts)

Energy reconstruction

 $E_0 \rightarrow$ Simulated energy $E \rightarrow$ Reconstructed energy

- Use as energy estimator the total signal recorded by WCDs
- Energy resolution below 100% even at 100 GeV
 - Dominated by the shower fluctuations

Geometric reconstruction

 $\gamma - \text{showers}; \theta = 10^{\circ}$

- Shower geometry reconstruction done using RPC hit time
 - Take advantage of RPCs high spatial and time resolution
 - Consider a time resolution of 1 ns
 - Use shower front plane approximation
 - Require more that 10 hits in the RPCs
- Angular resolution below 2 deg even for 50 GeV showers

- LATTES performance:
 - Trigger efficiency
 - Energy Reconstruction
 - Geometric Reconstruction
 - Gamma-hadron discrimination

- For now use a conservative approach:
 - Below 300 GeV don't consider any discrimination
 - Above 300 GeV use HAWC discrimination curve

LATTES sensitivity

LATTES sensitivity

LATTES physics opportunities

- Many interesting scientific goals:
 - Dark matter searches at the center of the galaxy
 - Study transient phenomena
 - LATTES can detect a 25 Crab source at 3 sigma in 1 minute

LATTES at higher energies

- The sensitivity scales with the array area
- It could be extended to reach higher energies with an external corona of sparse detectors

Summary

- LATTES: gamma ray wide field of view experiment at South America
 - Complementary project to CTA to survey the center of the galaxy
 - Next generation gamma-ray experiment (hybrid)
 - Good sensitivity at low energies (100 GeV)
 - Cover the gap between satelitte and ground based measurements
 - Powerful tool to trigger
 observations of variable source
 and to detect transients

Acknowledgments

BACKUP SLIDES

Reconstruction of shower geometry

- Use RPC hit time information to reconstruct the shower
 - Take advantage of high spatial and time resolution
- Shower geometry reconstruction:
 - Use shower front plane approximation
 - Analytical procedure
 - Apply trigger conditions
 - Apply cut on the number of registered hits by the RPCs

Contributions to the geometric reconstruction

- Photons retain a higher correlation with the shower geometry than charged particles
- Could we measure photons with the RPC instead?

LATTES station baseline concept

Built IACT Built Array Planned IACT Planned Array

Strategies for primary discrimination

Explore differences in shower development

Strategies for primary discrimination

Lateral extension in x [m]

Work on-going...

Exploring the WCD

5 TeV

- What should we look for?
 - Look for energetic clusters far from the shower core
 - Above 40 m

LATTES hottest station

- Signal of the hottest WCD station
 - above 40 m from the shower core
 - with only one hit in the RPC

LATTES integrated sensitivity

Figure 10: Integral sensitivity, defined as the flux of a source above a given energy for which $N_{\text{excess}}/\sqrt{N_{\text{bkg}}} = 5$ after 1 year; it is assumed that the SED is proportional to the SED of Crab Nebula. For comparison, fractions of the integral Crab Nebula spectrum are plotted with the thin, dashed, gray lines.

LATTES expect events from Crab

RPCs – basic structure

Many variations allowed

<u>The current is limited by the resistive electrodes: no sparks by construction</u> very safe detector, although limited to low particle rates (~2kHz/cm²) excellent efficiency (99%), <u>time</u> (~50 ps) and position resolution (~100µm)

RPCs Resi Ive Plate Chamber

- Gaseous detector
- Planar geometry
- uniform electrical field imposed.
- High resistive plates in between the electrodes limit the avalanche current.
- Signal is picked up by the induction of the avalanche in the readout pads.

Avalanche mode

