EATTES: a new gamma-ray detector concept

for South America

Ruben Conceição

P. Assis, U. Barres de Almeida, A. Blanco, A. De Angelis, P. Fonte, L. Lopes, G. Matthiae, M. Pimenta, R. Shellard, B. Tomé

Current experimental status

Current Situation

Requirements

- Build an EAS array experiment:
- Located in the South Hemisphere
- Low energy threshold:
- High altitude
- Next generation detector concept

Solution

- Build an EAS array experiment:
- Located in the South Hemisphere
- Low energy threshold:
- High altitude
- Next generation detector concept

LATTES @ ALMA site

Large Array Telescope for Tracking Energetic Sources

- Planned site:
- Atacama Large Millimeter Array site
- Chajnantor plateau
- 5200 meters altitude in north Chile
- Good position to survey the Galactic Center

LATTES concept

LATTES STATION

- Thin lead plate (Pb)
- 5.6 mm (one radiation lenght)
- Resistive Plate Chambers (RPC)
- 2 RPCs per station
- Each RPC with 4×4 readout pads
- Water Cherenkov Detector (WCD)
- 2 PMTs (diameter: 15 cm)
- Dimensions: $1.5 \mathrm{~m} \times 3 \mathrm{~m} \times 0.5 \mathrm{~m}$

LATTES concept

- Hybrid detector:
- Thin lead plate
- To convert the secondary photons
- Improve geometric reconstruction
- Resistive Plates Chamber
- Sensitive to charged particles
- Good time and spatial resolution
- Improve geometric reconstruction
- Explore shower particle patterns at ground
- Water Cherenkov Detector
- Sensitive to secondary photonsand charged particles
- Measure energy flow at ground
- Improve trigger capability
- Improve gamma/hadron

LATTES station
$1.5 \mathrm{~m} x 3 \mathrm{mx} 0.5 \mathrm{~m}$

LATTES core array 30×60 stations $100 \times 100 \mathrm{~m}^{2}$ discrimination

LATTES: complementary

- Combined detection:
- Lower the energy threshold
- Improve the trigger conditions (WCD)
- Enable detector inter-calibrations
- Energy calibration can be used to control detector systematic uncertainties
- Check Monte Carlo simulations performance
- Enhance gamma/hadron discrimination
- Explore shower characteristics
- Access to Argo/HAWC discrimination techniques

- LATTES perfomance:
- Trigger efficiency
- Energy Reconstruction
- Geometric Reconstruction
- Gamma-hadron discrimination

Simulation Framework

- Complete end-to-end simulation chain to evaluate

Shower Simulation

 LATTES performance- Showers simulated using CORSIKA

Detector Simulation

- Detector layout and simulation performed by Geant4

Analysis/Reconstruction

- LATTESsim: Integrated toolkit to study and optimize LATTES performance

Trigger efficiency

- Use WCD stations to trigger at low energies
- Trigger condition
- Station: require more than 5 p.e. in each PMT
- Event: require 3 triggered stations
- Effective Area of $1000 \mathrm{~m}^{2}$ at 100 GeV ! (after quality cuts)

Energy reconstruction

$E_{0} \rightarrow$ Simulated energy
$E \rightarrow$ Reconstructed energy

Energy Calibration

Energy Resolution

- Use as energy estimator the total signal recorded by WCDs
- Energy resolution below 100% even at 100 GeV
- Dominated by the shower fluctuations

Geometric reconstruction

- Shower geometry reconstruction done using RPC hit time
- Take advantage of RPCs high spatial and time resolution
- Consider a time resolution of 1 ns
- Use shower front plane approximation
- Require more that 10 hits in the RPCs
- Angular resolution below 2 deg even for 50 GeV showers
- LATTES performance:
- Trigger efficiency
- Energy Reconstruction
- Geometric Reconstruction
- Gamma-hadron discrimination
- For now use a conservative approach:
- Below 300 GeV don't consider any discrimination
- Above 300 GeV use HAWC discrimination curve
- LATTES sensitivity

LATTES sensitivity

Differential sensitivity to steady
sources in one year

LATTES physics opportunities

- Many interesting scientific goals:
- Dark matter searches at the center of the galaxy
- Study transient phenomena
- LATTES can detect a 25 Crab source at 3 sigma in 1 minute

LATTES at higher energies

- The sensitivity scales with the array area
- It could be extended to reach higher energies with an external corona of sparse detectors

Summary

- LATTES: gamma ray wide field of view experiment at South America
- Complementary project to CTA to survey the center of the galaxy
- Next generation gamma-ray experiment (hybrid)
- Good sensitivity at low energies (100 GeV)
- Cover the gap between satelitte and ground based measurements
- Powerful tool to trigger observations of variable source and to detect transients

Acknowledgments

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

TEÉCNICO
 LISBOA

BACKUP SLIDES

Reconstruction of shower geometry

- Use RPC hit time information to reconstruct the shower
- Take advantage of high spatial and time resolution

- Shower geometry reconstruction:
- Use shower front plane approximation
- Analytical procedure
- Apply trigger conditions
- Apply cut on the number of registered hits by the RPCs

Contributions to the geometric reconstruction

- Photons retain a higher correlation with the shower geometry than charged particles
- Could we measure photons with the RPC instead?

LATTES station baseline concept

Strategies for primary discrimination

Explore differences in shower development

Strategies for primary discrimination

Lateral extension in $\mathrm{x}[\mathrm{m}]$

- Hit pattern at ground
- Hits from hadronic showers are more sparse than in gamma induced showers
- RPC detectors
- Explored by the ARGO collaboration
- Search for energetic clusters far from the shower core
- Present only in hadronic showers
- Water Cherenkov Detectors
- Explored by the HAWC collaboration
- Combine both strategies using an hybrid detector: LATTES
- Work on-going...

Exploring the WCD

- What should we look for?
- Look for energetic clusters far from the shower core
- Above 40 m

LATTES hottest station

- Signal of the hottest WCD station
- above 40 m from the shower core
- with only one hit in the RPC

LATTES integrated sensitivity

Figure 10: Integral sensitivity, defined as the flux of a source above a given energy for which $N_{\text {excess }} / \sqrt{N_{\text {bkg }}}=5$ after 1 year; it is assumed that the SED is proportional to the SED of Crab Nebula. For comparison, fractions of the integral Crab Nebula spectrum are plotted with the thin, dashed, gray lines.

LATTES expect events from Crab

The current is limited by the resistive electrodes: no sparks by construction P very safe detector, although limited to low particle rates (${ }^{\left(2 \mathrm{kHz} / \mathrm{cm}^{2} \text {) }\right.}$ P excellent efficiency (99%), time ($\sim 50 \mathrm{ps}$) and position resolution (${ }^{\sim} 100 \mu \mathrm{~m}$)

RPCs

- Gaseous detector
- Planar geometry
- uniform electrical field imposed.
- High resistive plates in between the electrodes limit the avalanche current.
- Signal is picked up by the induction of the avalanche in the readout

Avallanche mode

Streamer mode

