# Dark Matter after LHC Run I: Clues to Unification

1) After the results of Run I, can we still 'guarantee' Supersymmetry's discovery at the LHC? Viable dark matter models in CMSSM-like tend to lie in strips (co-annihilation, funnel, focus point), how far up in energy do these strips extend?

2)Can we use Grand Unification to guide our SUSY searches?

3) Can Non-Supersymmetric GUTs such as SO(10) provide answers?

# Grand Unification as a guide

Among the motivations for SUSY: Gauge coupling Unification Gauge Hierarchy Problem



### Supersymmetric SU(5) Grand Unified Theory

(-19/6)





# Grand Unification as a guide

Among the motivations for SUSY: Gauge coupling Unification Gauge Hierarchy Problem

Among the Consequences: R-parity conservation (to protect proton stability) A stable Dark Matter candidate

# Grand Unification as a guide

Among the motivations for SUSY: Gauge coupling Unification Gauge Hierarchy Problem

Boundary conditions set at renormalization scale given by gauge coupling Unification

- Common gaugino mass: m<sub>1/2</sub>
- Common scalar mass:  $m_0 (= m_{3/2} \text{ in mSUGRA})$
- Common Trilinear mass: A<sub>0</sub>
- Bilinear mass:  $B_0$  (=  $A_0 m_0$  in mSUGRA)

## Source of Supersymmetry breaking

Gravity mediation: mSUGRA/ CMSSM m<sub>1/2</sub>, m<sub>0</sub>, A<sub>0</sub> / tan β

"Pure Gravity Mediation" with Anomaly mediation  $m_{3/2}$ , tan  $\beta$ 

Anomaly mediation: mAMSB  $m_{3/2}$ ,  $m_0$ , tan  $\beta$ 

# Other Possibilities

- NUHM1,2:
  - SO(10):  $m_1^2 = m_2^2 \neq m_0^2$ ,
  - SU(5)  $m_1^2 \neq m_2^2 \neq m_0^2$
  - µ and/or m<sub>A</sub> free
- subGUT models: Min < MGUT</p>
  - with or without mSUGRA
- superGUT models: Min > MGUT
  - with or without mSUGRA
- Relax gaugino mass universality

# Mastercode - MCMC

Long list of observables to constrain CMSSM parameter space

Multinest

- MOMC technique to sample efficiently the SUSY parameter space, and thereby construct the  $\chi^2$  probability function
- Combines SoftSusy, FeynHiggs, SuperFla,
   SuperIso, MicrOmegas, and SSARD
- Purely frequentist approach (no priors) and relies only on the value of χ<sup>2</sup> at the point sampled and not on the distribution of sampled points.
- 400 million points sampled

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$$
$$+ \chi^{2}(M_{h}) + \chi^{2}(\text{BR}(B_{s} \to \mu\mu))$$
$$+ \chi^{2}(\text{SUSY search limits})$$
$$\sum_{i}^{M} (f_{\text{SM}}^{\text{obs}} - f_{\text{SM}}^{\text{fit}})^{2}$$

$$+\sum_{i}^{M} \frac{(f_{\mathrm{SM}_{i}}^{\mathrm{ODS}} - f_{\mathrm{SM}_{i}}^{\mathrm{fit}})^{2}}{\sigma(f_{\mathrm{SM}_{i}})^{2}}$$

Bagnaschi, Buchmueller, Cavanaugh, Citron, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Malik, Marrouche, Nakach, Olive, Paradisi, Rogerson, Ronga, Sakurai, Martinez Santos, de Vries, Weiglein

# $\Delta\chi^2 \text{ map of } m_0 - m_{1/2} \text{ plane}_{\text{Mastercode}}$





Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer Isidori, Olive, Ronga, Weiglein

# Elastic scaterring cross-section

#### Mastercode

2009



CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer Isidori, Olive, Ronga, Weiglein



## Elastic scaterring cross-section



# The Strips:

- Stau-coannhilation Strip
  - extends only out to ~1 TeV
- Stop-coannihilation Strip

Stop strip



#### Buchmueller, Citron, Ellis, Guha, Marrouche, Olive, de Vries, Zheng

Ellis, Olive, Zheng

## Stop strip



Buchmueller, Citron, Ellis, Guha, Marrouche, Olive, de Vries, Zheng

Ellis, Olive, Zheng

# The Strips:

- Stau-coannhilation Strip
  - extends only out to ~1 TeV
- Stop-coannihilation Strip
- Funnel
  - associated with high tan  $\beta$ , problems with  $B \rightarrow \mu\mu$
- Focus Point

Focus Point



Buchmueller, Citron, Ellis, Guha, Marrouche, Olive, de Vries, Zheng

Ellis, Olive, Zheng

### Direct detectability



# Pure Gravity Mediation

Two parameter model!

Ibe,Moroi,Yanagida Ibe,Yanagida be,Matsumoto,Yanagida

- $m_0 = m_{3/2}$ ; tan  $\beta$  (requires GM term to insure  $B_0 = -m_0$ )
- gaugino masses (and A-terms) generated through loops  $33 \quad q_1^2$

$$M_1 = 5 \ 16\pi^2 \ ^{m_3/2} ,$$
  

$$M_2 = \frac{g_2^2}{16\pi^2} m_{3/2} ,$$
  

$$M_3 = -3 \frac{g_3^2}{16\pi^2} m_{3/2} .$$

•  $\Rightarrow$  Push towards very large masses

Evans, Ibe, Olive, Yanagida



Evans, Ibe, Olive, Yanagida

#### mAMSB



#### NUHM1 models with $\mu$ free (m<sub>1</sub> = m<sub>2</sub>)



Ellis, Luo, Olive, Sandick; Ellis, Evans, Luo, Nagata, Olive, Sandick

## **Relaxing GUT conditions**

#### CMSSM

#### pMSSM



de Vries, Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Malik, Marrouche, Martinez Santos, Olive, Sakurai, Weiglein

# Why Supersymmetry (still)?

- Gauge Coupling Unification
- Gauge Hierarchy Problem
- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter
- Improvement to low energy phenomenology?

but,  $m_h \sim 126$  GeV, and no SUSY?

# SO(10) GUT?

Gauge Coupling Unification

- Stabilization of the Electroweak Vacuum
- Radiative Electroweak Symmetry Breaking
- Dark Matter

Improvement to low energy phenomenology?

Neutrino masses...

#### 1. Pick an Intermediate Scale Gauge Group

 $\begin{array}{c} \mathsf{R}_1\\ \mathrm{SO}(10) \longrightarrow G_{\mathrm{int}} \end{array}$ 

| $G_{ m int}$                                                                                               | $R_1$                  |
|------------------------------------------------------------------------------------------------------------|------------------------|
| $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$                                       | 210                    |
| $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes D$                             | <b>54</b>              |
| $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_R$                                        | 45                     |
| $\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$           | 45                     |
| $\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L} \otimes D$ | 210                    |
| $\mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_R \otimes \mathrm{U}(1)_{B-L}$            | 45, 210                |
| ${ m SU}(5)\otimes { m U}(1)$                                                                              | <b>45</b> , <b>210</b> |
| Flipped $SU(5) \otimes U(1)$                                                                               | 45, 210                |

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use 126 to break Gint to SM

$$\operatorname{SO}(10) \xrightarrow{\mathsf{R}_1} G_{\operatorname{int}} \xrightarrow{\mathsf{R}_2} G_{\operatorname{SM}} \otimes \mathbb{Z}_2$$

R<sub>2</sub> = **126** + ...

Neutrino see-saw: Majorana mass for  $v_R$  from 16 16 126  $\rightarrow m_{vR} \sim M_{int}$ 

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use **126** to break G<sub>int</sub> to SM

3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content

#### Remnant Z<sub>2</sub> symmetry

Fermions from **10**,**45**, **54**, **120**, **126**, or **210** representations;

Scalars from 16, 144

Kadastik, Kannike, Raidal; Frigerio, Hambye; Mambrini, Nagata, Olive, Quevillon, Zheng; Nagata, Olive, Zheng

| Model                   | B-L | $\mathrm{SU}(2)_L$ | Y   | SO(10) representations  |
|-------------------------|-----|--------------------|-----|-------------------------|
| $F_1^0$                 |     | 1                  | 0   | 45,  54,  210           |
| $F_2^{1/2}$             |     | 2                  | 1/2 | $10,\ 120,\ 126,\ 210'$ |
| $F^0_{3}$               | 0   | 3                  | 0   | ${\bf 45,\ 54,\ 210}$   |
| $F_3^1$                 | 0   | 3                  | 1   | 54                      |
| $F_{4}^{1/2}$           |     | 4                  | 1/2 | 210'                    |
| $F_{4}^{3/2}$           |     | 4                  | 3/2 | $210^{\prime}$          |
| $S_1^0$                 |     | 1                  | 0   | <b>16</b> , <b>144</b>  |
| $S_2^{1/2}$             | 1   | 2                  | 1/2 | 16, 144                 |
| $S^0_{3}$               | 1   | 3                  | 0   | 144                     |
| $S_3^1$                 |     | 3                  | 1   | 144                     |
| $\widehat{F}_1^0$       |     | 1                  | 0   | 126                     |
| $\widehat{F}_{2}^{1/2}$ | 2   | 2                  | 1/2 | 210                     |
| $\widehat{F}_{3}^{1}$   |     | 3                  | 1   | 126                     |

- 1. Pick an Intermediate Scale Gauge Group
- 2. Use **126** to break G<sub>int</sub> to SM

3. Pick DM representation and insure proper splitting within the multiplet, and pick low energy field content

4. Use RGEs to obtain Gauge Coupling Unification

4. Use RGEs to obtain Gauge Coupling Unification

Fixes MGUT, Mint, AGUT



### Examples:

Scalars

#### Higgs portal models Inert Higgs doublet models

| Model                                                                                                             | $\log_{10} M_{\rm GUT}$ | $\log_{10} M_{\rm int}$ | $lpha_{ m GUT}$ | $\log_{10} \tau_p(p \to e^+ \pi^0)$ |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------|-------------------------------------|--|--|
| $\overline{G_{\text{int}} = \mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R}$                  |                         |                         |                 |                                     |  |  |
| SA <sub>422</sub>                                                                                                 | 16.33                   | 11.08                   | 0.0218          | $36.8 \pm 1.2$                      |  |  |
| SB <sub>422</sub>                                                                                                 | 15.62                   | 12.38                   | 0.0228          | $34.0 \pm 1.2$                      |  |  |
| $G_{\text{int}} = \mathrm{SU}(3)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes \mathrm{U}(1)_{B-L}$ |                         |                         |                 |                                     |  |  |
| SA <sub>3221</sub>                                                                                                | 16.66                   | 8.54                    | 0.0217          | $38.1 \pm 1.2$                      |  |  |
| SB <sub>3221</sub>                                                                                                | 16.17                   | 9.80                    | 0.0223          | $36.2 \pm 1.2$                      |  |  |
| SC <sub>3221</sub>                                                                                                | 15.62                   | 9.14                    | 0.0230          | $34.0 \pm 1.2$                      |  |  |
| $G_{\rm int} = { m SU}(3)_C \otimes { m SU}(2)_L \otimes { m SU}(2)_R \otimes { m U}(1)_{B-L} \otimes D$          |                         |                         |                 |                                     |  |  |
| SA <sub>3221D</sub>                                                                                               | 15.58                   | 10.08                   | 0.0231          | $33.8 \pm 1.2$                      |  |  |
| SB <sub>3221D</sub>                                                                                               | 15.40                   | 10.44                   | 0.0233          | $33.1 \pm 1.2$                      |  |  |

#### other models have $M_{\mbox{\scriptsize GUT}}$ too low

#### Vacuum stability and radiative EWSB



Example based on scalar singlet DM (SA<sub>3221</sub>) with  $G_{int} = SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}.$ 

with scalar potential  $V_{\rm blw} = \mu^2 |H|^2 + \frac{1}{2}\mu_s^2 s^2 + \frac{\lambda}{2}|H|^4 + \frac{\lambda_{sH}}{2}|H|^2 s^2 + \frac{\lambda_s}{4!}s^4$ 

Additional fields appear at the intermediate scale.

perturbatitivity implies  $m_{DM} < 2 \text{ TeV}$ 

Mambrini, Nagata, Olive, Zheng

# Vacuum stability and radiat

m<sub>DM</sub> [GeV]

**10**<sup>3</sup>



Higgs mass term runs negative and depends on  $\lambda_{\text{sH}}$ 

 $\mu^2 < 0 @ Q < 1$  TeV requires  $\lambda_{\text{sH}} > .4$  or  $m_{\text{DM}} > 1.35$  TeV

Mambrini, Nagata, Olive, Zheng



#### SM Fermion Singlets: Produced thermally out of equilibrium ⇒ Fermionic candidates (NETDM)

|                          | Model I                                                              | Model II                                                                           | Mambrini, Olive,<br>Quevillon, Zaldivar |
|--------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
| $G_{\rm int}$            | $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$ | $\mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R \otimes D$     |                                         |
| $R_{ m DM}$              | $(1,1,3)_D$ in $45_D$                                                | $(15,1,1)_W 	ext{ in } 45_W$                                                       |                                         |
| $R_1$                    | $210_R$                                                              | $54_R$                                                                             |                                         |
| $R_2$                    | $({f 10},{f 1},{f 3})_C\oplus ({f 1},{f 1},{f 3})_R$                 | $({f 10},{f 1},{f 3})_C\oplus ({f 10},{f 3},{f 1})_C\oplus ({f 15},{f 1},{f 1})_R$ |                                         |
| $\log_{10}(M_{\rm int})$ | 8.08(1)                                                              | 13.664(5)                                                                          |                                         |
| $\log_{10}(M_{\rm GUT})$ | 15.645(7)                                                            | 15.87(2)                                                                           |                                         |
| $g_{ m GUT}$             | 0.53055(3)                                                           | 0.5675(2)                                                                          |                                         |



### Examples:

#### Non-Singlets: Fermions

| $R_{\rm DM}$                                                                          | Additio                                                                   | onal Higgs                         | $\log_{10} M_{\rm int}$  | $\log_{10} M_{\rm GUT}$ | $lpha_{ m GUT}$         | $\log_{10} \tau_p(p)$ | $p \to e^+ \pi^0)$ |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------|-------------------------|-----------------------|--------------------|
|                                                                                       | iı                                                                        | n $R_1$                            |                          |                         |                         |                       |                    |
|                                                                                       | $G_{\rm int} = {\rm SU}(4)_C \otimes {\rm SU}(2)_L \otimes {\rm SU}(2)_R$ |                                    |                          |                         |                         |                       |                    |
| (1, 3, 1)                                                                             | $\mathbf{L}) \qquad (1\mathbf{\xi}$                                       | ( <b>5</b> , <b>1</b> , <b>1</b> ) | 6.54                     | 17.17                   | 0.0252                  | 39.8                  | $3 \pm 1.2$        |
| $({f 15},{f 1},{f 3})$                                                                |                                                                           |                                    |                          |                         |                         |                       |                    |
| Model                                                                                 | $R_{\rm DM}$                                                              | $R'_{\rm DM}$                      | Higgs                    | $\log_{10} M_{\rm int}$ | $\log_{10} M_{\rm GUT}$ | $lpha_{ m GUT}$       | $\log_{10} 	au_p$  |
|                                                                                       | $G_{\rm int} = {\rm SU}(4)_C \otimes {\rm SU}(2)_L \otimes {\rm U}(1)_R$  |                                    |                          |                         |                         |                       |                    |
| FA <sub>421</sub>                                                                     | $(1, 2, 1/2)_D$                                                           | $({f 15},{f 1},0)_W$               | $({f 15},{f 1},0)_R$     | 3.48                    | 17.54                   | 0.0320                | $40.9 \pm 1.2$     |
|                                                                                       |                                                                           |                                    | (15, 2, 1/2)             | С                       |                         |                       |                    |
| $G_{\text{int}} = \mathrm{SU}(4)_C \otimes \mathrm{SU}(2)_L \otimes \mathrm{SU}(2)_R$ |                                                                           |                                    |                          |                         |                         |                       |                    |
| FA <sub>422</sub>                                                                     | $(1,2,2)_W$                                                               | $(1,3,1)_W$                        | $({f 15},{f 1},{f 1})_R$ | 9.00                    | 15.68                   | 0.0258                | $34.0\pm1.2$       |
|                                                                                       |                                                                           |                                    | $({f 15},{f 1},{f 3})_R$ |                         |                         |                       |                    |
| FB <sub>422</sub>                                                                     | $(1,2,2)_W$                                                               | $(1,3,1)_W$                        | $({f 15},{f 1},{f 1})_R$ | 5.84                    | 17.01                   | 0.0587                | $38.0 \pm 1.2$     |
|                                                                                       |                                                                           |                                    | $({f 15},{f 2},{f 2})_C$ |                         |                         |                       |                    |
|                                                                                       |                                                                           |                                    | $({f 15},{f 1},{f 3})_R$ |                         |                         |                       |                    |

Nagata, Olive, Zheng

### Summary

- LHC susy and Higgs searches have pushed CMSSM-like models to "corners"
- Though some phenomenological solutions are still viable typically along "strips" in parameter space
- NUHM models with "low" µ still promising as are subGUT models; PGM/mAMSB (with wino DM or Higgsino DM)
- Several possibilities in non-SUSY SO(10) models
- Challenge lies in detection strategies