HiSCORE first results

Gamma-rays and Cosmic rays

www.http://taiga-experiment.info/

Martin Tluczykont for the TAIGA Collaboration RICAP 2016, Frascati, Roma

martin.tluczykont@physik.uni-hamburg.de

$HiSCORE \subset TAIGA$

TAIGA collaboration

¹ Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia

- ² Institute of Applied Physics, ISU, Irkutsk, Russia
- ³ Institute for Nuclear Research of RAN. Moscow. Russia
- ⁴ Dipartimento di Fisica Generale Universiteta di Torino and INFN. Torino. Italy
- ⁵ Max-Planck-Institute for Physics, Munich, Germany
- ⁶ Institut für Experimentalphysik. University of Hamburg. Germany
- 7 IZMIRAN, Moscow Region, Russia
- ⁸ DESY, Zeuthen, Germany
- ⁹ NRNU MEPhI. Moscow.Russia
- ¹⁰ JINR, Dubna, Russia

site

Physics motivation

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

Key to Multi-TeV-PeV: Area

June 22, 2016

RICAP 2016

martin.tluczykont@physik.uni-hamburg.de

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

HiSCORE timing array High Sensitivity Cosmic ORigin Explorer

(TAIGA: HiSCORE timing array + IACTs)

Detection method

Air Cherenkov imaging and timing

Imaging arrays

MAGIC camera image

Timing arrays (non-imaging)

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

HiSCORE = TAIGA timing array

Air Cherenkov timing

HiSCORE = TAIGA timing stations

Since 2014

- Total: 28 stations
- spacing 100-150m
- 0.25 km²
- Tilting mode 25° southwards

HiSCORE timing stations Tunka 133 stations

2016:

- First telescope
- Hybrid timing+imaging Next talk:

TAIGA, L. Kuzmichev

HiSCORE = TAIGA timing stations

- Four 8" PMTs
- Winston cones, light collection 0.5 m²
- FoV ~0.6 sr
- "Tilting" for extension of sky coverage
- GHz readout
- **Sub-ns** array-wide time synchronization

TAIGA timing stations

- Four 8" PMTs
- Winston cones, light collection 0.5 m²
- FoV ~0.6 sr
- "Tilting" for extension of sky coverage
- GHz readout
- **Sub-ns** array-wide time synchronization

HiSCORE

Comparison of Monte Carlo simulation to Real Data

MC Simulation

- Air showers CORSIKA v6990, protons, He, N, Fe
- Detector-simulation sim_score: full simulation based on iact-package
 - Winston cone ray tracing
 - Atmospheric transmission (MODTRAN)
 - PMT quantum efficiency
 - Analog sum trigger, requiring sum > Dthr during τ ns
 - Night sky background simulation
 - Single p.e. pulse shaping

Astroparticle Physics, 2014arXiv1403.5688T

martin.tluczykont@physik.uni-hamburg.de

martin.tluczykont@physik.uni-hamburg.de

Data – MC comparison

- Array trigger rate: minimum 4 stations triggered
 - 10-18 Hz
 - Reproduced for Athr = 250–350 p.e.

Data-MC comparison

• Multiplicity 28 station array

martin.tluczykont@physik.uni-hamburg.de

Data and Exposure

 Observations during commissioning phase of 28-station array October 2015 – April 2016

Event reconstruction

martin.tluczykont@physik.uni-hamburg.de

June 22, 2016

Angular resolution

Crucial: relative time-synchronization <1ns

2013 HiSCORE-9

2 independent t-cal systems yield comparable accuraccies (<0.5 ns)

See, e.g. R. Wischnewski, this Conference (Poster session)

martin.tluczykont@physik.uni-hamburg.de

Resolution chessboard method

Reconstruction using two different subarrays

 \sim

Subarray .

α

Chessboard direction:

Resulting angle α

Tested for 9-station and 28-station array

martin.tluczykont@physik.uni-hamburg.de

Subarray 1

martin.tluczykont@physik.uni-hamburg.de

Angular resolution 28 station array

After verification of MC resolution in data:

Can trust MC resolution

<0.2° E>100TeV

Background for pointsource search

- Ring background model
 - On source: < 0.4°</p>
 - Off source:

from ring around source position 1.6°< R < 2.4°

- Testing the background model
 - Data blinding:

local ra/dec randomization by Gaussian width σ = 1°

- Apply P.S. search to blinded data
- Expectation: normal Gaussian distribution of significances in field of View

Background for pointsource search

BLINDED DATA

PRELIMINARY

martin.tluczykont@physik.uni-hamburg.de

Background for pointsource search

Excess = Non – α Noff (α = 0.05) Blinded data Significance following Li&Ma, Eq. 9

June 22, 2016
Crab Nebula data commissioning season

- ~60 h good weather exposure on Crab Nebula
- 10⁴ events within 3 deg of Crab Nebula
- Preliminary analysis O(20) events (bg ~380, not significant)
- As expected with 0.25 km² prototype sensitivity
- No analysis cuts / not optimized analysis
- Potential for improvement in future:
 - larger area $\rightarrow 0.6 \text{ km}^2$
 - optimized analysis
 - TAIGA: +IACT

Preliminary analysis !

Summary

 UHE gamma-ray Astronomy with new hybrid imaging+timing approach

Goal: 10⁻¹³ erg cm⁻² s⁻¹ @ 100 TeV

- HiSCORE timing array 0.25 km² operational as part of TAIGA
- First results within expectations: on-track
- Doubling of area in 2016/2017 \rightarrow 0.6 km² / 58 stations
- Upcoming TAIGA-IACTs (next talk)

2016: "TAIGA-HiSCORE in the Tunka Valley: design, composition and commissioning", to appear 2015: Journal of Physics: Conference Series (2015) 632 012042 2015: PoS(ICRC2015)1041 2014: Astroparticle Physics, 2014arXiv1403.5688T 2013 NIMPA.712..137H, arXiv:1302.3957 2013: ICRC 1146, 1158, and 1164 2011AdSpR..48.1935T, astro-ph/1108.5880 http://wwwiexp.desy.de/groups/astroparticle/score/ http://tunka-hrjrg.desy.de/

END OF TALK

June 22, 2016

BACKUP

Triggering and Readout

Data – MC comparison

• Trigger rate: hadron-induced single station rate

Array optimization

Simulation studies:

- \rightarrow Large PMTs (12")
- \rightarrow Graded array layout

MGRO J1908+06

Tycho Supernova remnant

June 22, 2016

Single station rate and Energy threshold

Air Cherenkov imaging and timing

	Imaging ACTs	Timing arrays
Direction	Image orientation	Shower front arrival times
Particle type	Image shape	Lateral density function Arrival times Time width (FWHM)
Energy	Ch. photon count	Ch. photon count

Multi-TeV to PeV Gamma rays

- Spectroscopy of cutoff regime of Galactic sources
 - Extension of known hard source spectra
 - Search for cosmic ray PeVatrons
- No hadronic/leptonic ambiguity:
 - IC: Klein-Nishina regime \rightarrow steep spectra
 - Pi° decay: hard spectra possible
- Absorption e+e-:
 - 20+TeV: Mid- to far-infrared EBL (Extragal.)
 - 100 TeV: ISRF (Galactic)
 - 3 PeV: CMB (Galactic)

Absorption (e⁺e⁻), Galactic

Astroparticle physics topics

Particle separation Q-factor (only timing array)

- Xmax vs. E
- Shower front rise time

Systematic
differences between
Xmax reconstruction
methods

Time calibration

T-cal systems yield comparable accuraccies:

Cross check of timing stability between DAQBoard and WhiteRabbit:

RMS<0.4 ns

Timing stability: DAQBoard vs. WhiteRabbit

Detection methods for gamma astronomy

Method	E _{thr}	Angular resolution	ΔE/E	γ/h	Duty cycle
Particles	~3 TeV	~1°	20-50%	~1	100%
	Water: 100 GeV	<0.5°	30-50%	~6	
Air Cherenkov photons	IACTs: 5GeV	0.1-0.2°	10-15%	~6	10%
	NonI: 10 TeV			~1.5-2	
Fluoresc.	10 ¹⁷ eV	>1°	10-15%	?	10%
Radio	10 ¹⁷ eV	<1°	10-15%	?	100%

Timing of air showers

- Particle front disk width: ~30ns @ 100 m
- Cherenkov light front: disk width: <10 ns @ 100 m

Standard observation mode: station points to zenith **Tilted mode:** inclined along the north-south axis. Tilting: coverage of different parts of the sky.

Tilted south mode: 110 h on the Crab Nebula, after weather corrections.

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

Extragalactic UHE gamma-rays

• The IceCube signal (Aartsen et al. 2013, 2014)

- 1st 3 years of full IceCube data: 37 UHE neutrinos (30 TeV 2 PeV)
- Presence of astrophysical component favoured (5 σ).
- Identification of 8 BL Lac objects as likely neutrino event counterparts (Padovani&Resconi 2014)

• Lepto-hadronic emission model (Petropoulo et al. 2015)

- blob + B-field with Doppler factor δ , isotropic proton and electorn injection interaction with B-field and secondaries \rightarrow particle populations:
- protons
 - synchrotron radiation
 - Bethe-Heitler (pe) pair production
 - photopion ($p\pi$) interactions
- electrons and positrons
 - synchrotron radiation
 - inverse Compton scattering
- photons
- (+ neutrons, neutrinos)

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

PG 1553+113 (z = 0.4)

H 1914-194 (z=0.137)

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

π^0 hump and neutrino event fluxes

June 22, 2016

martin.tluczykont@physik.uni-hamburg.de

RICAP 2016

Reconstruction Direction: photon arrival time model Energy: Value of LDF @ 220 m Particle type: Shower depth and Signal rise-time

Direction reconstruction

>3 stations: model fit adapted from Stamatescu et al. 2008

$$dt(k,z) = \frac{1}{c} \left(\sqrt{k} - \frac{z}{\cos(\theta)} + \frac{8.0}{z} \sqrt{k} \eta_0 \left(1 - \exp\left(\frac{-z}{8.0}\right) \right) \right)$$
$$k(r,z) = r^2 + z^2 \frac{1}{\cos(\theta)^2} + 2rz \tan(\theta) \cos(\delta)$$

$$\delta = \phi + \operatorname{atan2}\left((x_{Det} - x_{core}), (y_{Det} - y_{core})\right)$$

martin.tluczykont@physik.uni-hamburg.de

point of emission

shower axis

core position

light path 1

height z

 \overline{PD}

dh

Direction reconstruction

>3 stations: model fit adapted from Stamatescu et al. 2008,

Parametrization of time-delay dt at detector position

Angular resolution of alternative layouts

Energy reconstruction

Particle energy: Q220 = Value of LDF at 220m

Energy reconstruction

Particle energy: Q220 = Value of LDF at 220m

Shower depth reconstruction

- Time model method: one free parameter in arrival time model
- LDF method: Depth from LDF slope, Q50/Q220
- Width method: Depth from signal width

Shower depth

Depth of shower maximum

Particle separation

Particle separation (1)

Particle separation (2)

martin.tluczykont@physik.uni-hamburg.de

Background for pointsource search

martin.tluczykont@physik.uni-hamburg.de