

Search for high energy neutrinos from bright GRBs with ANTARES

Matteo Sanguineti

Università degli Studi di Genova – INFN Genova Silvia Celli (GSSI, INFN Roma) – Damien Turpin (Aix-Marsielle U.) on behalf of the ANTARES collaboration

Outline

- Gamma ray burst emission models
- ANTARES detector
- Study of the internal shock model
- Study of the photospheric model
- GRB constraints
- Conclusions

Interaction radius

Photospheric model (Zhang & Kumar):

$$R_{ph} \propto 10^{11} L_{iso,52} \Gamma_{2.5}^{-3} cm$$

Internal shock model (NeuCosmA):

$$R_{is} \propto \frac{10^{13} c \Gamma_{2.5}^2 t_{\text{var},-2}}{1+z} cm$$

 $L_{iso,52}$ (isotropic γ -ray luminosity) = $L_{iso}/10^{52}$ erg s⁻¹, $\Gamma_{2.5}$ (bulk Lorentz factor)= $\Gamma/10^{2.5}$ $t_{var,-2}$ (variability time scale)= $t_{var}/0.01$ s z (redshift)

Previous ANTARES GRB analysis

Stacking analysis of 296 GRBs detected from end of 2007 to 2011.

Bright GRB selection

- Measured redshift
- High gamma-ray fluence (F>1x10⁻⁴ erg/cm²)
- Time dependent gamma-ray parameters available
- Below ANTARES horizon at trigger time
- ANTARES is in Physics run

Selected GRBs

GRB NAME	080916C	110918A	130427A	130505A
Fluence (x10 ⁻⁴ erg/cm ²)	1.16	7.66	27.7	3.13
Duration (s)	100.9	28.4	18.7	7.0
RA (deg)	119.87°	32.58°	173.14°	137.06°
DEC (deg)	-56.59°	–27.58°	27.71°	17.49°
z (redshift)	4.35	0.982	0.3399	2.27

Expected neutrino flux

Interaction radius : $R_{ph} < R_{is}$

Neutrino flux cut off: $E_{cut off} \propto R \longrightarrow E_{cut off PH} < E_{cut off IS}$

Optical depth: $\tau \propto R^{-1} \longrightarrow \tau_{PH} > \tau_{IS}$

$$\int dE_{\nu}F(E_{\nu})E_{\nu} \propto f_{p}\left(1-\left(1-\left\langle x_{p\rightarrow\pi}\right\rangle\right)^{\tau}\right)\int dE_{\gamma}F(E_{\gamma})E_{\gamma}$$

where

 f_p = barionic loading

 $x_{p \rightarrow \pi} = fraction \ of \ proton \ energy \ transferred \ to \ a \ pion$ $F(E_v)/F(E_\gamma) = gamma / neutrino \ fluence$ $\tau_{ph} > \tau_{is} \rightarrow larger \ neutrino \ flux \ is \ expected \ in \ the photospheric \ picture \ w.r.t. \ internal \ shock$ model

The ANTARES telescope

Internal shock model: study See S. Celli poster

- Per burst signal Monte Carlo simulations
- Per burst background evaluation using off-time data
- Reconstruction of the track with a linear fit algorithm (Heijboer PhD thesis (2004))
- 10° search window
- Time dependent search
- Optimization through computation of extended maximum likelihood
- Maximization of model discovery potential

Internal shock model: results

No neutrino detected in correspondence of GRB

Photospheric model: study

- Same optimization as in the internal shock model study
- Sample of untriggered data has been used instead of the standard filtered data
- Offline triggering with a special directional filter
- Reconstruction with a low energy optimized algorithm (Visser PhD thesis (2015))
- No time dependent search

Photospheric model: results

No neutrino detected in correspondence of GRB

GRB constraints

 No neutrino events were spatially and temporally found in coincidence with one of the four bright GRBs

 90% C.L limits on the neutrino fluence allow to constrain the parameter space of the free parameters that significantly impact the neutrino flux: the baryonic loading factor f_p and the bulk Lorentz Γ

Conclusions

- A search for muon neutrinos in space and time coincidence with the prompt emission of 4 bright GRBs has been performed through ANTARES data.
- Internal shock and photospheric models tested and constrained
- No events detected \rightarrow upper limit derived
- Constraints computed on the baryonic loading factor f_p and the bulk Lorentz Γ

Thank you for your attention

Backup

