

THE COSMIC RAY SPECTRUM IN THE ENERGY REGION BETWEEN 10¹² AND 10¹⁶ eV MEASURED BY ARGO-YBJ

PAOLO MONTINI

THE ARGO-YBJ EXPERIMENT

ASTROPHYSICAL RADIATION WITH GROUND BASED OBSERVATORY AT YANGBAJING

Istituto Nazionale di Fisica Nucleare (INFN) – Chinese Academy of Science (CAS)

- COSMIC RAY PHYSICS
- GAMMA RAY ASTRONOMY
- ▶ Longitude 90° 31′ 50″ East
- Latitude 30° 06' 38" North
- Altitude 4300 m a.s.l.(approx 600 g/cm²)

THE ARGO-YBJ EXPERIMENT

DETECTOR LAYOUT

P. MONTINI

CR SPECTRUM WITH ARGO-YBJ

CR SPECT 1.25 1.76 2.30 3.55 6.05 12.2 26.0 E₅₀[TeV]/Z P 2016

THE ARGO-YBJ EXPERIMENT

ANALOG READOUT

- EXTEND THE MAXIMUM ENERGY RANGE UP TO THE PeV REGION
 - Access the LDF down to the shower core
 - Sensitivity to primary mass
 - info/checks on Hadronic Interactions

8 Different gain scales: G0...G7

Astropart Phys 67 (2015) 47 NIM A 783 (2015) 68

CR SPECTRUM WITH ARGO-YBJ

MAIN GOALS IN CR PHYSICS

- COSMIC RAY ENERGY SPECTRUM
 - ALL-PARTICLE
 - PROTON + HELIUM
- COSMIC RAY ANISOTROPY
- ANTIPROTON-PROTON RATIO [Phys. Rev. D 85 (2012) 022002]
- P-AIR CROSS SECTION [Phys. Rev. D 80 (2009) 092004]
- GEOMAGNETIC EFFECTS [Phys. Rev. D 89 (2014) 052005]
- SHOWER TIME STRUCTURE

STRATEGY

Learn information about the energy spectrum from the experimental data by using probability theory

Analysis based on the N⁸ parameter: the number of particle within 8 m from the shower core position.

- Well correlated with primary energy
- not biased by finite detector size
- weakly affected by shower fluctuations

$$N(E, ID) = P(E, A|N^8, LDF) \cdot N(N^8, LDF)$$

Light/Heavy discrimination based on the analysis of the LDF

CR SPECTRUM WITH ARGO-YBJ

ANALOG DATA: ALL-PARTICLE & P+HE ENERGY SPECTRA

Shower Core Pos.

Rec. Zenith Angle

N_{Max}, N₈

Good consistency between Data & MC

Cut	Data Surviving fraction (%)	$\begin{array}{c} \text{Cumulative} \\ (\%) \end{array}$	Monte Carlo Surviving fraction (%)	Cumulative (%)
Direction Containment Size Maximum	$70.2 \\ 40.3 \\ 61.8 \\ 91.7$	$70.2 \\28.3 \\17.5 \\16.0$	68.7 43.3 62.0 89.0	68.7 29.7 18.4 16.4

ALL-PARTICLE SPECTRUM

CONSISTENT PICTURE WITH MODELS AND OTHER EXPERIMENTS

CR SPECTRUM WITH ARGO-YBJ

LIGHT/HEAVY DISCRIMINATION

- High segmentation
- Access the LDF down to the shower core
- Precision measurement of the LDF at several distance from the core

 $\beta_{5} = \rho_{5} / \rho_{0}$ $\beta_{10} = \rho_{10} / \rho_{0}$

LIGHT/HEAVY DISCRIMINATION

IU

10⁻⁶0

0.05

0.1

0.15

β 10

0.25

0.2

P. MONTINI

LIGHT/HEAVY DISCRIMINATION

P+HE ENERGY SPECTRUM

UNCERTAINTIES

SYSTEMATIC

- **SELECTION CRITERIA**
 - \pm 2.5% over the whole energy range
- HADRONIC INTERACTION MODEL
 - Check with SIBYLL hadr, interaction model
 + (4 10)%
- **RESPONSE MATRIX**
 - ▶ ~10% @ E < 300 TeV
 - ~5% @ 300 TeV < E < 500 TeV
 - ► Gradually increase up to ~20% @ PeV energies
- UNFOLDING
 - ▶ <1%
- ► FLUX MODEL IN SIMULATIONS
 - ▶ <1%

STATISTICAL ERRORS

1% @ E ~ 10 TeV Up to 18% @ E ~ 1 PEV

TOTAL SYSTEMATIC: -5.8% +7% @ E< 600 TEV -20.2% + 22.5% @ E> 1 PEV

P+HE ENERGY SPECTRUM

- \blacktriangleright Gradual change of the spectral index at E \sim 1 PeV
- **Consistent with the Digital Readout data (different data set)**
- **Hybrid measurement gives consistent results**

P+HE ENERGY SPECTRUM

SUMMARY OF ALL ARGO RESULTS

- Independent measurements
- Different Analysis technique
- Results are quite consistent within systematic errors

CR SPECTRUM WITH ARGO-YBJ

- ARGO-YBJ has been taken data for more than 5 years
 - Excellent stability of the detector
 - 2 Independent readout systems
 - Covers a very wide energy range: TeV → PeV
- P+He spectrum
 - 10-100 TeV energy range
 - •Good agreement with previous analysis
 - •100-3000 TeV energy range
 - Evidence of a gradual change of the spectral index at energies around 1 PeV
 - •Good agreement between independent analyses within systematic errors
- All-particle spectrum
 - Good agreement with other experiments

MORE STUFF...

P+HE ENERGY SPECTRUM: DIGITAL READOUT

3 – 300 TeV energy range

Bayesian Approach

- ➡ Excellent stability over a long period
- Overlap with direct measurements in a wide energy region
- → Total systematic uncertainty ~ 5%

FLUX @ 50 TeV

YEAR	Flux x 10 ⁻⁹ ± tot. err
2008	4.53 ± 0.28
2009	4.54 ± 0.28
2010	4.54 ± 0.28
2011	4.50 ± 0.27
2012	4.36 ± 0.27

YEAR	Gamma
2008	2.63 ± 0.01
2009	2.63 ± 0.01
2010	2.63 ± 0.01
2011	2.64 ± 0.01
2012	2.65 ± 0.01

Extension of the previous ARGO-YBJ light component spectrum measurement in the low energy region

P. MONTINI

HYBRID ANALYSIS

THE P+HE SPECTRUM

100-2500 TeV energy range

- ► The knee of H&He spectrum at (700±230) TeV is clearly measured
- Broken power law fits data well with indices
- -2.56 ± 0.05 and -3.24 ± 0.36 below and above the knee
- Consistent with other two independent analyses

MASS INDEPENDENT ENERGY RECONSTRUCTION

The truncated size as (mass dependent) energy estimator

Np₈ (number of particles within 8m from the core):

- well correlated with primary energy
- not biased by finite detector size effects
- weakly affected by shower fluctuations

Look for information on the shower age in order to have a mass independent energy estimator.

$$\rho_{NKG} = A \cdot \left(\frac{r}{r_0}\right)^{s'-2} \cdot \left(1 + \frac{r}{r_0}\right)^{s'-4.5}$$

Assume an exponential absorption after the shower maximum Get the correct signal at maximum (Np8max) by using Np8 and s' measurements for each event.

MASS INDEPENDENT ENERGY RECONSTRUCTION

The measurement of Np8 and the (age correlated) LDF slope allows estimating the truncated size at the shower maximum.

This ensures a mass independent Energy determination.

P. MONTINI

ALL-PARTICLE & P+HE :

ALL-PARTICLE SPECTRUM

- Consistent picture with models and previous measurements
- Cross check with another ARGO-YBJ analysis
- Nice overlap with the two gain scales (different data set,...)
- Suggest spectral index of -2.6 below 1 PeV and smaller at larger energes

P+He SPECTRUM

- Same considerations as for the all-particle spectrum
- Gradual change of the slope starting around 700 TeV
- Agreement with other two ARGO-YBJ independent analyses
- Overlap with direct measurements at low energy
- Flux systematics as for the all particle spectrum ⊕
 < 15% mainly for the CNO contamination →
 Overall < 20 %

