Results from the Telescope

Array Experiment

For the Telescope Array Collaboration
Charlie Jui
RICAP 2016, Frascati
June 22, 2016
R.U. Abbasi, ${ }^{1}$ M. Abe, ${ }^{2}$ T. Abu-Zayyad, ${ }^{1}$ M. Allen, ${ }^{1}$ R. Azuma, ${ }^{3}$ E. Barcikowski, ${ }^{1}$ J.W. Belz, ${ }^{1}$ D.R. Bergman, ${ }^{1}$ S.A. Blake, ${ }^{1}$ R. Cady, ${ }^{1}$ M.J. Chae, ${ }^{4}$ B.G. Cheon, ${ }^{5}$ J. Chiba, ${ }^{6}$ M. Chikawa, ${ }^{7}$ W.R. Cho, ${ }^{8}$ T. Fujii, ${ }^{9}$ M. Fukushima, ${ }^{9,10}$ T. Goto, ${ }^{11}$ W. Hanlon, ${ }^{1}$ Y. Hayashi, ${ }^{11}$ N. Hayashida, ${ }^{12}$ K. Hibino, ${ }^{12}$ K. Honda, ${ }^{13}$ D. Ikeda, ${ }^{9}$ N. Inoue, ${ }^{2}$ T. Ishii, ${ }^{13}$ R. Ishimori, ${ }^{3}$ H. Ito, ${ }^{14}$ D. Ivanov, ${ }^{1}$ C.C.H. Jui, ${ }^{1}$ K. Kadota, ${ }^{15}$ F. Kakimoto, ${ }^{3}$
O. Kalashes, ${ }^{16}$ K. Kasahara, ${ }^{17}$ H. Kawai, ${ }^{18}$ S. Kawakami, ${ }^{11}$ S. Kawana, ${ }^{2}$ K. Kawata, ${ }^{9}$ E. Kido, ${ }^{9}$ H.B. Kim, ${ }^{5}$ J.H. Kim, ${ }^{1}$ J.H. Kim, ${ }^{19}$ S. Kitamura, ${ }^{3}$ Y. Kitamura, ${ }^{3}$ V. Kuzmin, ${ }^{16}$ Y.J. Kwon, ${ }^{8}$ J. Lan, ${ }^{1}$ S.I. Lim, ${ }^{4}$
J.P. Lundquist, ${ }^{1}$ K. Machida, ${ }^{13}$ K. Martens, ${ }^{10}$ T. Matsuda, ${ }^{20}$ T. Matsuyama, ${ }^{11}$ J.N. Matthews, ${ }^{1}$ M. Minamino, ${ }^{11}$ Y. Mukai, ${ }^{13}$ I. Myers, ${ }^{1}$ K. Nagasawa, ${ }^{2}$ S. Nagataki, ${ }^{14}$ T. Nakamura, ${ }^{21}$ T. Nonaka, ${ }^{9}$ A. Nozato, ${ }^{7}$ S. Ogio, ${ }^{11}$
J. Ogura, ${ }^{3}$ M. Ohnishi, ${ }^{9}$ H. Ohoka, ${ }^{9}$ K. Oki, ${ }^{9}$ T. Okuda, ${ }^{22}$ M. Ono, ${ }^{23}$ A. Oshima,,${ }^{24}$ S. Ozawa,,${ }^{17}$ I.H. Park, ${ }^{25}$ M.S. Pshirkov, ${ }^{16,26}$ D.C. Rodriguez, ${ }^{1}$ G. Rubtsov, ${ }^{16}$ D. Ryu, ${ }^{19}$ H. Sagawa, ${ }^{9}$ N. Sakurai, ${ }^{11}$ L.M. Scott,,${ }^{27}$ P.D. Shah, ${ }^{1}$ F. Shibata, ${ }^{13}$ T. Shibata, ${ }^{9}$ H. Shimodaira, ${ }^{9}$ B.K. Shin, ${ }^{5}$ H.S. Shin, ${ }^{9}$ J.D. Smith, ${ }^{1}$ P. Sokolsky, ${ }^{1}$ R.W. Springer, ${ }^{1}$ B.T. Stokes, ${ }^{1}$ S.R. Stratton, ${ }^{1,27}$ T.A. Stroman, ${ }^{1}$ T. Suzawa, ${ }^{2}$ M. Takamura, ${ }^{6}$ M. Takeda, ${ }^{9}$ R. Takeishi, ${ }^{9}$ A. Taketa,,${ }^{28}$ M. Takita, ${ }^{9}$ Y. Tameda, ${ }^{12}$ H. Tanaka, ${ }^{11}$ K. Tanaka, ${ }^{29}$ M. Tanaka, ${ }^{20}$ S.B. Thomas,,${ }^{1}$ G.B. Thomson, ${ }^{1}$ P. Tinyakov, ${ }^{30,16}$ I. Tkachev, ${ }^{16}$ H. Tokuno, ${ }^{3}$ T. Tomida, ${ }^{31}$ S. Troitsky, ${ }^{16}$ Y. Tsunesada, ${ }^{3}$ K. Tsutsumi, ${ }^{3}$ Y. Uchihori, ${ }^{32}$ S. Udo, ${ }^{12}$ F. Urban, ${ }^{30}$ G. Vasiloff, ${ }^{1}$ T. Wong, ${ }^{1}$ R. Yamane, ${ }^{11}$ H. Yamaoka, ${ }^{20}$ K. Yamazaki, ${ }^{28}$ J. Yang, ${ }^{4}$ K. Yashiro, ${ }^{6}$ Y. Yoneda, ${ }^{11}$ S. Yoshida, ${ }^{18}$ H. Yoshii, ${ }^{33}$ R. Zollinger, ${ }^{1}$ and Z. Zundel ${ }^{1}$ ${ }^{1}$ High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
${ }^{2}$ The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
${ }^{3}$ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan Depertment of Physics and Institute for the Early Universe Ewha Womans University, Seodanemun-gu, Seoul, Korea
${ }^{5}$ Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea

${ }^{6}$ Department of Physics, Tokyo University of Science, Noda, Chiba, Japan ${ }^{7}$ Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan ${ }^{8}$ Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea
${ }^{9}$ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan ${ }^{10}$ Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan
${ }^{11}$ Graduate School of Science, Osaka City University, Osaka, Osaka, Japan
${ }^{12}$ Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan
${ }^{13}$ Interdisciplinary Graduate School of Medicine and Engineering,
University of Yamanashi, Kofu, Yamanashi, Japan
${ }^{14}$ Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan
${ }^{15}$ Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
${ }^{16}$ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
${ }^{17}$ Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
${ }^{18}$ Department of Physics, Chiba University, Chiba, Chiba, Japan
${ }^{10}$ Department of Physics, School of Natural Sciences,
Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea
${ }^{20}$ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibamki, Japan
${ }^{21}$ Faculty of Science, Kochi University, Kochi, Kochi, Japan
${ }^{22}$ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan ${ }^{23}$ Department of Physics, Kyushu University, Fukuoka, Fukuoka, Japan
${ }^{24}$ Engineering Science Laboratory, Chubu University, Kasugai, Aichi, Japan
${ }^{25}$ Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea
${ }^{26}$ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia
${ }^{27}$ Department of Physics and Astronomy, Rutgers University - The
State University of New Jersey, Piscataway, New Jersey, USA
${ }^{28}$ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
${ }^{29}$ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan
${ }^{3}$ Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium
${ }^{31}$ Department of Computer Science and Engineering, Shinshu University, Nagano, Nagano, Japan
${ }^{32}$ National Institute of Radiological Science, Chiba, Chiba, Japan
${ }^{33}$ Department of Physics, Ehime University, Matsuyama, Ehime, Japan

Outline

- Introduction to the Telescope Array (TA)
- Energy Spectrum
- Composition
- Anisotropy
- Future of TA

Telescope Array

507 scintillation counters surface detector (SD): Area: ~700 km². 3 fluorescence detector (FD) stations In operation since 2008

Scintillation Counters

Pre-assembled in Japan, Final Assby/testing in Delta: 2 layers, 1.25 cm scintillator, $3 \mathrm{~m}^{2}$ area

Scintillator Detectors on
 a 1.2 km square grid

TA Fluorescence Detectors

High Energy Hybrid Event

Energy: $1.3 \times 10^{20} \mathrm{eV}$ Zenith Angle: 55.7°

Surface array constrains geometry fit via extra timing \& core information

1. Energy Spectrum

TA Surface Detector Energy Spectrum

Previously Pubilshed: 4 year TA surface detector spectrum

TA Low Energy Extension (TALE)

[859- PoS 637] Poster 1 CR Track: CRIN Board \#: 148 Presented by Shoichi OGIO on 30 Jul 2015 at 15:30

Infill surface detector array of more densely packed surface detectors (lower energy threshold)

10 new telescopes to look higher in the sky $\left(31-59^{\circ}\right)$ to see shower development to much lower energies

TALE-SD array (103 SDs, $70 \mathrm{~km}^{2}$)

Nearby Events with Cerenkov

TA June 22, 2016

Combined TA Energy Spectrum

Telescope Array Energy Spectrum: TALE + SD

Combined TA Energy Spectrum

Telescope Array Energy Spectrum: TALE + SD

Published Hybrid Composition (MD)

Slant Depth $\left[\mathrm{gm} / \mathrm{cm}^{2}\right]$
4 yrs, 297 Events > $10^{18.4} \mathrm{eV}$
Cuts based on pattern recognition to improve resolutions $\mathrm{s} \leq 25 \mathrm{~g} / \mathrm{cm}^{2}$, all energies.

TA MD Hybrid Composition

Left: <Xmax> vs $\log (E)$ plot

Middle Drum Hybríd

Update:
7 yr, 613 Events > $10^{18.4} \mathrm{eV}$

$X_{\text {mAX }}$ vs. logE for hybrid events from Black Rock and Long Ridge FD

Proton $X_{\max }$ resolution, $E \geq 10^{18.4} \mathrm{eV}$

[^0]
TA data compared to QGSJet-II. 3

$\ln A$

Meta-analysis: Auger-TA Composition Working Group

TA data cannot distinguish between mix and QGSJETII-03 protons at this level of systematic uncertainty.

Anisotropy Analysis: ICRC 2015

- SD data from period 12.05.2008 - 11.05.2015 (full 7 years)
- Zenith angle up to 55°, loose border cut
- Geometrical acceptance; exposure 8600 km² yr sr
- 2996 above 10 EeV
- 210 above 40 EeV
- 83 above 57 EeV
- Angular resolution: better than 1.5°
- Energy resolution: 20\%

The TA Hot Spot

First 5-year data (72 events) -- ApJ 790 L21 (2014)	Period	Total	Signal	B.G.	Prob.
New 2-year data (37 events)	6-th Year	15	3	0.94	7%
Total (2008 May $11-2015$ May 11) 109 events	7-th Year	22	1	1.37	74%
	6th + 7th	37	4	2.31	20%

TA June 22, 2016
Chance

Excess Map

Max significance 5.1 $\sigma\left(N_{\text {SIG }}=24, N_{B G}=6.88\right)$ for 7 years Centered at R.A $=148.4^{\circ}$, Dec. $=44.5^{\circ}$ (shifted from SGP by 17°) Global Excess Chance Probability: $3.7 \times 10^{-4}: 3.4 \sigma$ (\sim same as first 5 years)

Consistent with Fluctuation

K.S. Test shows data is consistent with fluctuation for hotspot (Poisson: average = 3.43 per year, no time variation),
but inconsistent with chance excess from isotropic distribution (Poisson: average $=0.9$ per year) at $\sim 2.6 \sigma$

Energy Spectrum in the hot spot

MC normalized to spectrum outside hot spot region

Global Distributions

Low energy sets: E > 10 EeV and E > 40 EeV are compatible with isotropy; the smallest $\mathrm{KS} p$-value is 0.12 .

$z<55, E>57,83$ events, SG coordinates

Frame	Long.	Lat.
Equatorial	0.07	0.04
Supergalactic	0.01	0.03

$z<55, E>57$, 83 events, SG coordinates

Autocorrelation

For each angular bin:

1. Count number of pairs of events at in the bin at separation δ
2. Chance Probability is given by the fraction of isotropic MC sets (with equal statistics) with as many or more than the number of pairs seen in data
Compatible with isotropy at $\mathrm{E}>10 \mathrm{EeV}$ and $\mathrm{E}>40 \mathrm{EeV}$, Tension with isotropy at $\mathrm{E}>57 \mathrm{EeV}$

TA June 22, 2016

Correlation with

 Large-Scale Structure (LSS)Gray patterns: expected flux density from proton (E>57 EeV)
LSS 2MASS Galaxy Redshift catalog (XSCz)

1D Kolmogorov-Smirnov p values comparing expected flux distribution (gray map from previous page) vs. simulation: Marginally Incompatible with isotropic source simulation Compatible with LSS source simulation

Cannot distinguish between LSS and isotropic simulations for $\mathrm{E}>10 \mathrm{EeV}$ andE>40 EeV

TA $\times 4$ project

Quadruple TA SD (~3000 km²)
500 scintillator SDs
2.08 km spacing
$\underline{2}$ additional FD stations

Proposals

SD: approved in Japan
April 2015
FD: approved by NSF in U.S
June 2016
Collect 19 TA-euivalent years of SD data by 2020

Incl. 16.3 TA-equivalent years of hybrid data

Summary

- TA has measured the energy spectrum, composition and arrival direction of UHE cosmic rays
- New TA Low Energy Extension (TALE) is coming on line. TALE surface detector array has now been funded by Gov't of Japan.
- TA and TALE has measured energy spectrum between $6 \times 10^{15} \mathrm{eV}$ to over $10^{20} \mathrm{eV}$ and have observed spectral features
- The spectrum and composition of UHE cosmic rays measured by TA remain compatible with a single light component at above the ankle ($\sim 6 \times 10^{18} \mathrm{eV}$).
- We have seen a hot spot in the direction of Ursa Major with 3.4σ global signficance
- Much more data are needed!
- TAx4 upgrade has been approved for funding both in Japan and in the U.S.

End

Reserve Slides

Analyzing SD Event

2008/Jun/25-19:45:52.588670 UTC

Geometry Fit (modified Linsley)

Fit with AGASA LDF

$$
\begin{gathered}
\rho(r) \propto\left(\frac{r}{R_{M}}\right)^{-1.2}\left(1+\frac{r}{R_{M}}\right)^{-(\eta-1.2)}\left\{1+\left(\frac{r}{1000}\right)^{2}\right\}^{-0.6} \\
\eta=(3.97 \pm 0.13)-(1.79 \pm 0.62)(\sec \theta-1)
\end{gathered}
$$

- S(800): Primary Energy
- Zenith attenuation by MC

$$
r=800 m
$$

Surface Array Energy Measurement

- Energy table is constructed using the MC (CORSIKA)
- Determination of event energy by interpolating between S800 vs. $\sec (\theta)$ lines
- Uses novel "dethinning" of CORSIKA (paper draft in internal review)

Surface Detector Data-MC Comparisons

Comparison of TA and Auger (+8.5\% energy scale)

Energy Resolution and Exposure

CR17 EAS spec, Presented by Dmitri IVANOV

TALE-FD: 2013/10/01 06:18:19.419991
Time, [$\mu \mathrm{s}$]

TALE Fluorescence Dominant Event

Fitting the UHE Spectrum with TA

Fitting parameters:
Power law at the source, E^{-p}
Evolution of the sources, $(1+z)^{m}$

Composition: Xmax Technique

- Shower longitudinal development depends on primary particle type.
- FD observes shower development directly.
- Xmax is the most efficient parameter for determining primary particle type.

Shower longitudinal development

Latest TA Hybrid Composition Analysis

New: Patter recognition test on shower profile

- 5 Years MD FD+SD hybrid data
- Geometrical Event Selection Criteria:
- Geometry fit χ^{2} /dof <4.5
- $\log _{10} \mathrm{E}(\mathrm{eV})>18.2$
- Hybrid core < 1600m from SD core
- Hybrid Core inside SD array or < 500m outside
- Zenith angle < 58°
- Xmax within view ($20 \mathrm{~g} / \mathrm{cm}^{2}$ at start, and $0 \mathrm{~g} / \mathrm{cm}^{2}$ at end)

Passed: Right Min. Area-Failed: Large Max. Obliqueness

Failed: large triangle obliqueness test

Failed: Right triangle Area Test

Quartic polynomial (weight squared) fit used to determine the apex of the large triangle

Large (blue) triangle obliqueness: Ratio of perimeter to area

Hybrid $X_{\text {max }}$ Measurement

Xmax Data comparison to QGSjet II-03 proton and iron models

Astrophysically p and He are very different

Interaction lengths of $p, \mathrm{He}, \mathrm{O}$ and Fe

<Xmax> Uncertainty from Extrapolation of Cosmic Ray Air Shower Parameters

Study the effect on the <Xmax> of HE Model using CONEX4.44 at $\underline{10^{19.5}}$ eV

Gordon Thomson \& R. Abbasi U12

Photon Limits

Photon-induced showers: arrive younger contain fewer muons
\Rightarrow multiple SD observables affected:
Front curvature, Area-over-peak, \# of FADC signal peaks,x2/d.o.f.

AGASA, Astrophys. J. 571, L117 (2002)
Yakutsk, Phys. Rev. D82, 041101 (2010)
Auger, Astropart. Phys. 29, 243 (2008); Astropart.
Phys. 31, 399-406 (2009)

TA + PAO All Sky

No correction for Energy scale difference b/w TA and PAO !!

TA : 7 years 109 events ($>57 \mathrm{EeV}$)
PAO : 10 years 157 events (>57EeV) Oversampling with 20°-radius circle Southern hotspot is seen at Cen A(Pre-trial ~3.6б)

Nearby Prominent Sources

管路

Nearby Galaxy Clusters

Ursa Major Cluster

TA hotspot is found near the Ursa Major Cluster TA \& PAO found no excess in the direction of Virgo.

Energy Spectrum in the hot spot

The black line shows the best fit broken power law expressed by the function

$$
\begin{aligned}
\frac{\Delta N(E)}{\Delta \log _{10}\left(\frac{E}{E_{0}}\right)}= & C_{0}\left(\varepsilon\left(E, E_{b}\right)\left(\frac{E}{E_{o}}\right)^{-\alpha_{1}}+\left(1-\varepsilon\left(E, E_{b}\right)\right)\left(\frac{E}{E_{o}}\right)^{-\alpha_{2}}\right) \\
& \varepsilon\left(E, E_{b}\right)=\left\{1:\left(E<E_{b}\right), 0:\left(E>E_{b}\right) \quad\left(E_{0}=1 \mathrm{EeV}\right) .\right.
\end{aligned}
$$

Fig. 1: The energy distributions of observed events for the On/Off areas using SGP.

Fig. 2: The confidence contours of E_{b} and α_{2} Red and blue colors denote CL for the On/Off regions respectively.

Observed cosmic ray energy spectra are compared between sky areas that have larger density of nearby objects, such as the super-galactic plane, and others that do not. The distributions differ. We found the chance probability to obtain the difference in statistically equivalent distributions is estimated as 6.2×10^{-4} (3.2б).
... observed energy distributions of events within 11° from VCV AGNs and out of this region were compared. Chance probability to obtain observed difference in statistically equivalent distributions is estimated as 1.5×10^{-2} after considering penalty factor.
Same analysis with SGP case are repeated for energy distribution from On/Off area.

Fig. 4: Fraction of number of events in the Off source area to the expected Number. ("fraction plot")

Fig. 5: The energy distributions of observed events for the On/Off areas using VCV AGNs.

Fig. 6: The confidence contours of E_{b} and α_{2}. Red and blue corresponds On/Off regions respectively.

Comparison with Large-Scale Structure (LS

E > 10 EeV: 2130 events

E $>57 \mathrm{EeV}$: 52 events

E > 40 EeV: 132 events

White dots: 5-year TA data with zenith angle < 55 deg.

Gray patterns: expected flux density from proton LSS 2MASS Galaxy Redshift catalog (XSCz)

FD Geometrical Reconstruction

The trajectory of the EAS can be determined in one of two ways:

1. Monocular reconstruction using the arrival time of light signal at the detector.
2. By intersecting the shower-detector planes (SDP) seen from the two detector sites.
anPE

[^0]: TA June 22, 2016

