### Muon Collider Full Simulation Studies

Shivani Lomte, Sridhara Dasu

**UW Madison** 

Sept 13, 2022

# Jet reconstruction performance in presence of BIB

Signal Process:  $\mu^+\mu^- \to \nu\bar{\nu}H, H \to b\bar{b}$  overlaid with BIB at 1.5TeV. Anti- $k_T$  jet with R=0.5 used.



- Number of daughter particles further reduces fake jets (few high energy deposits).

# Higgs reconstruction performance in presence of BIB

Two leading AK5 jets used to reconstruct Higgs invariant mass. Jet energy correction (JEC) applied to account for lost energy due to tight  $E_{th}$ =2MeV cut on reco hits in ECaI, along with timing cut of 250ps.



- BIB hits increase energy of b-jets, need BIB mitigation.
- Need a jet cleaning strategy to improve mass resolution.

## Using jet substructure to mitigate BIB: trial variables

Longitudinal width  $\Delta Z = |Z_{max} - Z_{min}|$  of jet daughter particles.





Figure: Right: Simulation of  $H \to b\bar{b}$  in presence of BIB. Credit: D Lucchesi et al.

- Fake jets from BIB hits have higher longitudinal width.
- Develop a jet cleaning strategy using variables constructed from daughter particles information.

# Using jet substructure to mitigate BIB: trial variables

Transverse width  $\Delta R = |R_{max} - R_{min}|$ , where  $R = \sqrt{X^2 + Y^2}$  of jet daughter particles.



- b-jets without BIB seem to penetrate further into detector.
- Repeated use of rotated BIB particles leads to bizarre distributions.
- Need more bunch crossing event statistics to understand these patterns better.

#### **Conclusions**

- We wish to use jet substructure variables to develop a jet cleaning algorithm which improves the mass resolution.
- Need multiple BIB simulation events to capture the relevant features.