Muon Collider Joint Tracker and Calorimeter Meeting

$H \rightarrow \gamma \gamma$ reconstruction

DAVIDE ZULIANI, 13/09/2022

State of the art

- Higgs physics is a hot topic for the muon collider
- So far, a lot of channels have been analysed, with full simulation and BIB contribution $(H \rightarrow bb/c\bar{c}, H \rightarrow \mu\mu, H \rightarrow WW, H \rightarrow ZZ, HH)$
- To complete the picture, it might be interesting to study the remaining decays:
 - $H \rightarrow \gamma \gamma$ (this talk)
 - $H \rightarrow Z\gamma$ (doable, several channels)
 - $H \rightarrow \tau \tau$ and $t\bar{t}H$ (lots of final objects...)

- well before what Karol presented today
- Disclaimer 2: results here are preliminary and yet without BIB (work in progress)

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

• Disclaimer 1: photon reconstruction is based on studies done by <u>Alessandro</u> and <u>Massimo</u>, so

State of the art — CLIC strategy

- Starting point for this analysis: <u>CLIC</u> paper on Higgs physics
- The analysis is quite standard:
 - Select two high $p_{\rm T}$ photons
 - $E_{\gamma} > 15 \text{ GeV}$ and $p_{\rm T} > 10 \text{ GeV}$
 - Additional cuts on invariant mass and photon isolation
 - Classify signal and background events with **BDT**
 - Estimation of the statistical uncertainty Δ

$$\frac{\Delta[\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to \gamma\gamma)]}{\sigma(H\nu_{e}\overline{\nu}_{e}) \times BR(H \to \gamma\gamma)} = 15\%$$

Process	$\sigma/{ m fb}$	$\epsilon_{\rm presel}$	$\epsilon_{\rm BDT}$	$N_{\rm BDT}$
$e^+e^- \to H\nu_e\overline{\nu}_e ; H \to \gamma\gamma$	0.56	85%	47%	337
$e^+e^- \to \nu \overline{\nu} \gamma$	29.5	34%	7.3%	1110
$e^+e^- \rightarrow v \overline{v} \gamma \gamma$	17.3	31%	8.6%	688
$e^+e^- \rightarrow \gamma\gamma$	27.2	20%	0.68%	55
$e^+e^- \rightarrow e^+e^-\gamma$	289	9.2%	0.66%	265
$e^+e^- \rightarrow e^+e^-\gamma\gamma$	12.6	5.2%	0.2%	2
$e^+e^- \rightarrow q \overline{q} \gamma$	67.0	0.8%	0.0%	0
$e^+e^- \to q \overline{q} \gamma \gamma$	16.6	1.4%	0.57%	2

$$\Delta \sigma / \sigma$$

Signal and background preselection

- We expect the same types of backgrounds as CLIC
- Signal and background contribution have been computed with MADGRAPH+PYTHIA
- Events have been generated with the following generation cuts:

Process	σ (fb)	Expected events	Simulated events	• $\mathscr{L} = 1 \text{ ab}^{-1}$ and $\sqrt{s} = 3 \text{ TeV}$
$\mu\mu \to H\nu\nu, H \to \gamma\gamma$	0.5754 ± 0.0017	575	10000	• $\mu\mu \rightarrow \mu\mu\mu$ not considered (see later)
$\mu\mu \to \nu\nu\gamma\gamma$	81.98 ± 0.27	81980	10000	• $\mu\mu \rightarrow \nu\nu\gamma$ not considered (see later)
$\mu\mu ightarrow ll\gamma\gamma$	4.419 ± 0.016	4419	10000	• $\mu\mu \rightarrow q\bar{q}\gamma\gamma$ not simulated (to do, but in
$\mu\mu ightarrow ll\gamma$	159.0 ± 0.6	159000	10000	principle not relevant)
$\mu\mu \to \gamma\gamma$	60.15 ± 0.03	60150	10000	

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

• $p_T(\gamma, l^{\pm}) > 10$ GeV (increase generation eff.), $\eta(\gamma, l^{\pm}) < 2.436$ (avoid interaction with nozzles)

- simulation

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

Event reconstruction

- Track reconstruction:
 - Double-layer filter ON
 - ACTS tracking
- Calorimeter reconstruction:
 - ECAL and HCAL hit threshold $E_{thr} = 2 \text{ MeV}$
- Photon reconstruction and identification:
 - Default Pandora setting

Parameters used by Massimo with BIB, in principle no problems when applied without BIB

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

cessor name="MyCKFTracking" type="ACTSSeededCKFTrackingProc">

```
<!-- Path to material description -->
<parameter name="MatFile" type="string">
 /opt/ilcsoft/muonc/ACTSTracking/v1.0.0/data/material-maps.json
</parameter>
<!-- Path to tracking geometry -->
<parameter name="TGeoFile" type="string">
 /opt/ilcsoft/muonc/ACTSTracking/v1.0.0/data/MuColl_v1.root
</parameter>
<!-- Vol Layer, use -1 for all, ACTS numbers -->
<parameter name="SeedingLayers" type="string">
 13 2
 13 6
 13 10
 13 14
 14 2
 14 6
 14 10
 14 14
 15 2
 15 6
 15 10
 15 14
</parameter>
<parameter name="SeedFinding_RMax" type="float">150</parameter>
<parameter name="SeedFinding_DeltaRMin" type="float">5</parameter>
<parameter name="SeedFinding_DeltaRMax" type="float">80</parameter>
<parameter name="SeedFinding_CollisionRegion" type="float">1</parameter>
<parameter name="SeedFinding_RadLengthPerSeed" type="float">0.1</parameter>
<parameter name="SeedFinding_SigmaScattering" type="float">50</parameter>
<parameter name="SeedFinding_MinPt" type="float">500</parameter>
<!-- CKF Configuration -->
<parameter name="CKF_Chi2Cut0ff" type="float">10</parameter>
<parameter name="CKF_NumMeasurementsCutOff" type="int">1</parameter>
```


Event reconstruction

- Cuts on photons*:
 - $E_{\gamma} > 15 \text{ GeV}$ and $p_{\rm T} > 10 \text{ GeV}$
- Select two most energetic photons in each e
 - The "first" photon is required to have $p_{\rm T}$ >
- Reconstruct invariant mass and ask $m_{\gamma\gamma} > 40$

- *Disclaimer 1: photons are identified by Pandora feature rctyp[irec] (ok if no BIB)
- Disclaimer 2: so far no cuts on $E_{\rm T}^{\rm miss}$

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

	Process	$\varepsilon_{\rm reco} = N_{\rm reco}/N_{\rm gen}$	Events
	$\mu\mu \to H\nu\nu, H \to \gamma\gamma$	0,783	450
event > 40 GeV	$\mu\mu o u u \gamma \gamma$	0,368	30168
	$\mu\mu ightarrow ll\gamma\gamma$	0,609	2678
	$\mu\mu ightarrow ll\gamma$	0,029	4738
) GeV	$\mu\mu o \gamma\gamma$	0,996	59933

In principle one should find isolated clusters and identify them as photons

Photon reconstruction

Photon energy correction from previous studies by Alessandro and Massimo

- Definitely it can be improved

Photon reconstruction

• A quick look at $m_{\gamma\gamma}$ for $H \to \gamma\gamma$ shows that energy correction is working quite well

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

• Fitting the Higgs mass with a gaussian function gives:

$$m_H = 105.93 \pm 0.06 \text{ GeV}$$

 $\sigma_H = 4.16 \pm 0.04 \text{ GeV}$

- There is quite a shift in the invariant mass value, energy correction to be cross checked
- CLIC gets a mass resolution $\sigma = 3.3$ GeV

Invariant mass $m_{\gamma\gamma}$ weighted for luminosity (left) and normalised to 1 (right)

Energy of photon 1 (left) and photon 2 (right)

 $\Delta \theta$ (left) and $\Delta \phi$ (right) between photons

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

BDT classification

- A BDT is used to perform signal vs. background separation
- The following variables have been used:
 - Invariant mass $m_{\gamma\gamma}$
 - Higgs' $p_{\rm T}$
 - Photons' $p_{\rm T}$
 - $\Delta\theta$ and $\Delta\phi$ between photons
 - Acollinearity between photons
 - Acollinearity between photon and Higgs

BDT classification

- Given the good separation between signal and background, a cut approach is used

DAVIDE ZULIANI – $H \rightarrow \gamma \gamma$ **RECONSTRUCTION**

*CLIC results are obtained for $\sqrt{s} = 1.5$ TeV and $\mathscr{L} = 1.4$ ab⁻¹

Conclusions and future steps

- While being preliminary results, pipeline for $H \to \gamma \gamma$ is in place (thanks to Massimo & Lorenzo)
- Results might will deteriorate due to BIB contribution, but so far it's competitive with CLIC

- Future steps:
 - Add the **BIB**
 - Perform photon reconstruction using ECAL cluster instead of Pandora rctyp[irec]
 - Understand better photon reconstruction
 - Very high energetic photon go into HCAL \rightarrow "new" processors
 - Maybe better cuts and better BDT classification (more variables)

