

Università degli Studi di Padova

First studies for a 10 TeV Muon Collider detector

Laura Buonincontri, Luca Giambastiani, Alessandro Montella

Tracker and Calo meeting - 13 Sept. 2022

Outlook

- Tracking system
 - \circ p_T resolution
 - Requirement on B decay vertex
- Electromagnetic calorimeter design
- Hadronic calorimeter (very first studies)

Tracking system

Goals:

- Apply the formulas for the momentum resolution to the 3 TeV case
- Check difference between formulas and tracking with BIB
- Study how the resolution varies at different p_T

Procedure:

- Assume the same magnetic field (3.57 T), dimensions and material budget of the 3 TeV detector
- Assume a hit resolution of 7 µm in the transverse plane
- Select 6 polar angles with respect to the beam pipe
- Count the number of layers that a particle have to cross at different angles
- Apply formulas to determine the resolution for particles of various energies

• Spatial hit resolution: 7 µm

Figure 26: Transverse view of the sixth inner disk and the third outer tracker disk.

Polar Angle [°]	x/X ⁰	L [m]	N layers (double layers are double counted)
14	0.24	0.550	11
25	0.22	0.950	13
36	0.205	1.350	12
52	0.125	1.500	14
69	0.105	1.500	14
90	0.1	1.500	14

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu m \times 25\mu m$	$50\mu m imes 1mm$	$50\mu m \times 10mm$
Sensor Thickness	50µm	$100 \mu m$	$100 \mu m$
Time Resolution	30ps	60ps	60ps
Spatial Resolution	$5\mu\mathrm{m} imes5\mu\mathrm{m}$	$7\mu m \times 90\mu m$	$7\mu m imes 90\mu m$

- 10 TeV and 1 TeV curves from formulas overlap because the spatial resolution dominates over mult. scattering: divided by p_T², spatial resolution is independent from p_T, while multiple scattering goes down with p_T
- At 90° the efficiencies are comparable in all three cases (central region of the detector, less affected by BIB)
- Simulations show that in the forward region (15°)
 - \circ ~ at 10 GeV both with and w/o BIB ~3 $10^{\text{-3}}$
 - \circ at 100 GeV both with and w/o BIB ~4 10^{-4}
- Formulas show:
 - \circ 1 10⁻³ at 10 GeV
 - 2 10⁻⁴ at 100 GeV

Contributions to resolution $(\Delta P_T / P_T^2)$ for two angles

25 °

69°

P _T	Multiple scattering	Single point resolution	Total resolution $\Delta P_T / P_T^2 (\Delta P_T / P_T)$	P _T	Multiple scattering	Single point resolution	Total resolution $\Delta P_T / P_T^2 (\Delta P_T / P_T)$
10 GeV	5.5e-4	4.7e-5	5.5e-4 (0.55%)	10 GeV	2.3e-4	1.8e-5	2.3e-4 (0.23%)
100 GeV	5.4e-5	4.7e-5	7.2e-5 (0.72%)	100 GeV	2.3e-5	1.8e-5	2.9e-5 (0.29%)
1 TeV	5.4e-6	4.7e-5	4.7e-5 (4.7%)	1 TeV	2.3e-6	1.8e-5	1.9e-5 (1.9%)
10 TeV	5.4e-7	4.7e-5	4.7e-5 (47%)	10 TeV	2.3e-7	1.8e-5	1.8e-5 (18%)

- With the current layout the formulas results are not very far from the simulation (especially in the central region)
- Above 1 TeV p_T multiple scattering contribution is negligible
 - Optimize material budget is useful only at low energy (<~ 1 TeV)
 - Can increase magnetic field, hit resolution and tracker dimension

$$\begin{split} \frac{\Delta p_T}{p_T}|_{res.} &\approx \frac{\sigma[\mathbf{m}] \, p_T [\mathrm{GeV/c}]}{0.3 \, B[\mathbf{T}] \, L[\mathbf{m}]^2} \sqrt{\frac{720}{N+4}} \\ \frac{\Delta p_T}{p_T}|_{m.s.} &\approx \frac{0.014}{\beta \, 0.3 \, B[\mathbf{T}] \, L[\mathbf{m}]} \sqrt{\frac{x_{\mathrm{tot}}}{X_0}} \left(1 + 0.038 \ln \frac{x_{\mathrm{tot}}}{N \, X_0}\right) \end{split}$$

7

B decay vertex in the tracking system

Layer Number	Radius [mm]	Ratio in H -> bb	Ratio in Z' -> jj
Layer 1	31	0.97	0.51
Layer 2	51	0.990	0.60
Layer 3	74	0.998	0.68
Layer 4	104	1	0.74
Layer 5	127	1	0.78
Layer 6	340	1	0.93
Layer 7	554	1	0.97
Layer 8	819	1	0.991
Layer 9	1153	1	0.997
Layer 10	1486	1	0.999

Ratio of B⁺ B⁻ and B⁰ with $|\eta| < 2.44$, that decay before the N-th layer

Half of the B meson decay within the first layer for the Z'

Electromagnetic calorimeter

- Study of electrons energy spectrum from the processes:
 - $\circ \quad \mu^{+}\mu^{-} \rightarrow Hvv \rightarrow ZZvv \rightarrow I^{+}I^{-}jjvv$
 - $\circ \qquad \mu^{+}\mu^{-} \rightarrow Z' \rightarrow e^{+}e^{-} (M_{Z'} = 9.5 \text{ TeV})$
- Separate central/forward electrons
- Run of a Geant4 simulation

Electron energy for $\mu^+\mu^- \rightarrow H\nu\nu \rightarrow ZZ\nu\nu \rightarrow I^+I^-jj\nu\nu$

Electron energy for $\mu^+\mu^- \rightarrow Z' \rightarrow e^+e^-$ at 10 TeV: all at 5 TeV

Simulation with Geant4

- ECAL setup for 3 TeV: 40 layers for a total of 20 cm, corresponding to 22 X₀
- Simulation of the Si+W ECAL calorimeter in order to understand how many radiation lengths are necessary to contain ~99% of the energy of 200 electrons with E = 400 GeV, 800 GeV and 5 TeV

layer repeat="40" vis="ECalLayerV	'is">
<pre><slice <="" material="TungstenDen</pre></th><th>s24" th="" thickness="1.90*mm"></slice></pre>	
<slice <="" material="G10" th=""><th>thickness = "0.15*mm"</th></slice>	thickness = "0.15*mm"
<slice <="" material="GroundOrHVM</th><th>ix" th="" thickness="0.10*mm"></slice>	
<slice <="" material="Silicon" th=""><th>thickness = "0.50*mm"</th></slice>	thickness = "0.50*mm"
<slice <="" material="Air" th=""><th>thickness = "0.10*mm"</th></slice>	thickness = "0.10*mm"
<slice <="" material="siPCBMix" th=""><th>thickness = "1.30*mm"</th></slice>	thickness = "1.30*mm"
<slice <="" material="Air" th=""><th>thickness = "0.25*mm"</th></slice>	thickness = "0.25*mm"
<slice <="" material="G10" th=""><th>thickness = "0.75*mm"</th></slice>	thickness = "0.75*mm"

E	Number of X ₀	Number of Layers	ECAL length	λ _I	B (z)
400 GeV	27.1	45	22.73 cm	1.20	ОТ
400 GeV	27.1	45	22.73 cm	1.20	4 T
800 GeV	28.3	47	23.73 cm	1.26	ОТ
5 TeV	30.8	51	25.76 cm	1.36	ОТ

Plot from the simulation

Hadronic Calorimeter

- 3 TeV HCAL: 60 layers of steel absorber and plastic scintillating tiles, 159 cm corresponding to 7.5 λ₁
- Study of energy spectrum for positive pions and protons from the process $\mu^+\mu^- \rightarrow Z' \rightarrow jj$
- Divide central (|eta| < 1.06) and forward (1.06 < |eta| < 2.44) regions

Steel235:	500	um	>	sum =	бст	-	3.398 Radl = 0.3541 NuclearInteractionLength
Steel235:	1.9	CM	>	sum =	2.28 m	=	129.1 Radl = 13.45 NuclearInteractionLength
G4_POLYSTYRENE:		3 mm		> sum =	36 C	m	= 0.8714 Radl = 0.5236 NuclearInteractionLength
Copper:	100	um	>	sum =	1.2 cm	=	0.8359 Radl = 0.07698 NuclearInteractionLength
PCB:	700	um	>	sum =	8.4 cm	=	0.4798 Radl = 0.1737 NuclearInteractionLength
Steel235:	500	um	>	sum =	б ст	=	3.398 Radl = 0.3541 NuclearInteractionLength
Air_MC:	2.7	ጦጦ	>	sum =	32.4 CM	=	0.001061 Radl = 0.0004545 NuclearInteractionLength

First attempts: only HCAL

- The two showers have very similar profile
- Unable to absorb 100% of energy: 6% is missing with very large number of layers
 - Lost neutrinos?
 - Slow neutrons?
- Should include ECAL in front of HCAL

Particle	Energy [GeV]	N layers to lose 90% E _{TOT}	N layers to lose 80% E _{TOT}	Energy released in 51 ECAL layers
Pion (+)	780 GeV	69 layers (8.6 λ _l)	48 Layer	24%
Proton	1150 GeV	69 layers (8.6 λ _ι)	48 layers	20%

Summary

- Tracking resolution from formulas is close to values from simulation
 - A factor 2-3 underestimate in the forward region
 - Discuss on how to modify in order to better suit 10 TeV collisions
 - It already gives values similar to FCC-hh in the central region
 - To optimize for high-energy particles, can increase B, dimension or get better hit spatial resolution
 - To-do: apply resolution from formulas to H->µ⁺µ⁻ and tune parameters to get a certain invariant mass resolution
- ECAL thickness of 51 layers (vs 40 of 3 TeV detector) is enough to absorb 99% of energy from a 5 TeV electron
- HCAL thickness of 69 layers (vs 60 of 3 TeV detector) can absorb 90% of energy from 780 GeV positive pions and 1150 GeV protons (99th percentile with µ⁺µ⁻→Z'→jj)

Backup

Comparison with FCC-hh

P _T	Multiple scattering	Single point resolution	Total resolution $\Delta P_T / P_T^2 (\Delta P_T / P_T)$			
10 GeV	2.3e-4	1.8e-5	2.3e-4 (0.23%)			
100 GeV	2.3e-5	1.8e-5	2.9e-5 (0.29%)			
1 TeV	2.3e-6	1.8e-5	1.9e-5 (1.9%)			
10 TeV	2.3e-7	1.8e-5	1.8e-5 (18%)			
	2	5° (η=1.5)				
P _T	Multiple scattering	Single point resolution	Total resolution $\Delta P_T / P_T^2 (\Delta P_T / P_T)$			
10 GeV	5.5e-4	4.7e-5	5.5e-4 (0.55%)			
100 GeV	5.4e-5	4.7e-5	7.2e-5 (0.72%)			
1 TeV	5.4e-6	4.7e-5	4.7e-5 (4.7%)			
10 TeV	5.4e-7	4.7e-5	4.7e-5 (47%)			

 CO° (Compare with n=0 in the plat)

- 12 detector layers
- Transverse path length (L=1.55 m)
- σ = 7 µm in the r- ϕ plane
- B = 4 T

•
$$x/X_0 = 0.2$$

FCC week 2017: New FCC-hh Detector Baseline

Main solenoid:

- Trackers and calorimeters inside bore, supported by the bore tube
- Muon chambers (for tagging) on outside of main and forward solenoids
- Assembly and Services see next talk

Forward solenoid:

- Tracker inside solenoid
- Forward calorimeters after forward solenoids
- Enclosed by radiation shield (to shield muon chambers from neutrons emanating from forward calorimeters)

Material Budget

21