


Outline
• Jordan and Einstein frame (JF and EF)

• Hamiltonian analysis of  Brans-Dicke theory with GHY-boundary term (case 𝜔 ≠ − !
"
and ω = − !

"
).

• Hamiltonian transformations from Jordan to the Einstein Frame. “Vexata Questio”: are these transformations 
canonical? “Anti-Newtonian”transformations as Hamiltonian canonical transformations.

• Confronting and contrasting e.o.m. of  Brans- Dicke FLRW flat, k=0, case in JF and EF. Study of  the 
Hamiltonian canonicity on the extended phase space and gauge fixed (N=0) phase space.

• Hamiltonian analysis of  JF and EF in spherical symmetric case. Two inequivalent solutions, Janis and BBMB, 
mapped one into the other upon gauge fixing lapse and radial shift. Physical considerations 

• Conclusions. 



Jordan-Einstein Frames

• Old paper: Dicke (Phys. Rev. (1962) 125, 6 2163-2167)
Suppose the proton mass is         in mass units         and, in “natural       

units”, we scale the unit of  measurement by a factor         (length)-1  

. In the new unit the proton mass                            .

• Confronting the measurement of  the proton mass in the two mass units 
(Faraoni and  Nadeau 2006)



Jordan-Einstein Frames
• Since                      and                                    , then the covariant metric 

functions scales as 

• Invariance under rescaling of  unit of  measurement  implies Weyl (conformal 
invariance) of  the metric tensor 

• The starting frame is called “Jordan” frame and the conformal transformed 
the “Einstein Frame. One observable can be computed in both frames. Its 
measure, obviously different in the two frames, is related by conformal 
rescaling according to the observable’s dimensions.(e.g.                           ). 



Scalar-Tensor Theory
• In general, one starts from a scalar-tensor theory, with GHY-like 

boundary term,  in the Jordan Frame

• and passes to the Einstein Frame with the transformation

• therefore the action becomes



Scalar-Tensor Theory

where

• One is looking for solutions of  the equation of  motions such that if  

is solution in the Jordan Frame, 

is solution in the Einstein frame



Brans-Dicke Theory
• Brans-Dicke, with GHY boundary term, is a particular case of  Scalar 

Tensor theory 

• We studied the 3+1 ADM (Hamiltonian) decomposition 

• The ADM Lagrangian is



Brans-Dicke Theory

• Therefore               is the sum of  the Hamiltonian constraint      and the 
momentum constraint  

• The constraint algebra is like Einstein’s Geometrodynamics



Brans-Dicke Theory-Einstein Frame

• Implementing the Weyl (conformal) transformation, we get the following 
ADM metric    in the Einstein Frame 

• Now we recall that in the Brans-Dicke case 



Brans-Dicke Theory-Einstein Frame

• Canonical momenta (            is ADM-Lagrangian density in the E-F)

• The ADM Hamiltonian density               in the E-F is 



Canonical Transformations

• Here, for simplicity, we repeat the transformations from the Jordan to the Einstein 
Frame in Hamiltonian formalism

• One can check they are not Hamiltonian Canonical Transformations

• Therefore it is meaningless to perform the Dirac’s constraint analysis in the Einstein 
Frame and show that the constraint algebra, for Brans-Dicke, closes in this frame





Main criticism to this non-canonicity argument
• In litterature, people object N, Ni   are mere  Lagrangian multipliers and 

canonicity should be checked on the true physical degrees of  freedom.

• This could be misleading. Lapse and Shifts cannot be eliminated ❝ad hoc❞, 
they are still canonical variables

• The only way we can ❝safely❞ treat them is by making a gauge fixing (ex. 
N≈c1 , Ni≈ci  so that 𝜋 ≈ 0 , 𝜋! ≈ 0 becomes second class constraints). 

• N, Ni , 𝜋 , 𝜋! are then eliminated defining Dirac’s brackets. 



Canonical Transformations

• There exist Hamiltonian Canonical Transformations (Anti-Gravity transformations)
(in two dim.                                         )

• In this case the ADM Hamiltonian 

• Since this theory is canonically equivalent to B-D, the constraint algebra of  secondary first 
class constraints (    ,      ) is like B-D’s one.
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Carrolian Gravity,
G→ ∞ , 𝑐 →0



BRANS-DICKE PARTICULAR CASE 𝜔 = − !
"

• The B-D action for 𝜔 = − !
"

is (for consistency reasons here U(𝜙)=𝛼𝜙" 𝛼 is a 
constant)

• It is invariant under this conformal transformations

• The ADM Hamiltonian in this particular case is 



BRANS-DICKE PARTICULAR CASE 𝜔 = − !
"

• Clearly the Hamiltonian and momenta constraints are

• We also have a further primary constraint due to conformal invariance

• All the constraints (shown through lengthy and technically complicated calculations) are 
first class . 



BD PARTICULAR CASE EINSTEIN FRAME

• The B-D action for 𝜔 = − !
"

in the Einstein Frame is nothing else but (the potential   is now 
a constant function) 

• Notice that the theory is just Einstein GR and is not (Weyl)-Conformal invariant

• The relative ADM Hamiltonian 

• The Dirac primary constraint $𝐶# ≈ 0 becomes        ≈0. The other Dirac’s constraints are 
the same as Einstein’s GR. 





Finite Dimensional Example

• We can apply these considerations on a finite dimensional example: FLRW case 
with k=0

• If  we put this metric in the B-D action, we obtain the following finite dimensional 
Lagrangian

Transformations from the Jordan to Einstein frame Canonical momenta from Lagrangian to Hamiltonian formalism



Non-Equivalence and Equivalence of  the Equations of  Motion



CONFRONTING AND CONTRASTING THE E.O.M 

• Gauge fixing of  the lapse N implemented as secondary constraints.  

• We can define Dirac’s Brackets



E.O.M IN J.F. AND E.F. WITH DIRAC’S BRACKETS 

• Here                                           and the Lapses and their conjugate momenta do not evolve  

• We can pass, on the e.o.m, form the EF to the J.F. and we get the same e.o.m as in the J.F. The Hamiltonian canonical
transformations from the J.F. to the  E.F. are Hamiltonian canonical transformations. 



AN EXAMPLE IN SPHERICAL SYMMETRY 
JORDAN FRAME

• ADM metric in spherical symmetry

• E-H action in the JF

• ADM decomposition of  E-H action in spherical symmetry and Lagrangian density



AN EXAMPLE IN SPHERICAL SYMMETRY 
JORDAN FRAME

• Momenta in the Jordan frame 

• Hamiltonian density function



AN EXAMPLE IN SPHERICAL SYMMETRY 
EINSTEIN FRAME

• ADM metric in spherical symmetry in EF

• Action in spherical symmetry in the  Einstein Frame

• Hamiltonian density



CANONICAL TRANSFORMATIONS
• Relations among the canonical variables in the JF and EF

• Poisson Brackets

• The transformations from JF to EF result to be not Hamiltonian canonical



PHYSICAL IN-EQUIVALENT SOLUTIONS IN JF ANF EF

• BBMB is solution of  e.o.m in JF upon gauge fixing the lapse and shift 

• The corresponding solution of  the e.o.m. in the EF is the Janis solution

• As before, gauge fixing  the lapse and radial shift make the Hamiltonian transformations from JF to EF 
canonical transformations. 



Conclusions

• Hamiltonian analysis of  Brans-Dicke theory for ω ≠ − !
"
, and ω = − !

"
shows that the 

Weyl(conformal) transformation from Jordan to Einstein frame are not Hamiltonian canonical 
transformations on the “extended phase space”. 

• We have confronted and contrasted the e.o.m. of  F.L.R.W. flat metric on Brans-Dicke theory in 
the Jordan and Einstein frame. Gauge fixing the lapse function N and introducing Dirac’s 
Brackets, the transformation from the Jordan to the Einstein frame are Hamiltonian canonical 
transformations. (Does it imply JF and EF are physically equivalent?) 

• We have studied an example of  ADM Hamiltonian analysis in spherical symmetry. The 
Hamiltonian transformation from JF to EF are still Hamiltonian non-canonical on the extended 
phase space. Gauge fixing the lapse and the radial shift, we show that we can map the BBMB 
solution in JF to the Janis solution in EF. The transformations are Hamiltonian canonical upon 
gauge fixing, but the two solutions are physically inequivalent.  


