Different Regime

Model and background

Perturbative Approach

Results 000000

New Analytical Approach to Analog Hawking Radiation for Subcritical and Transcrical Regimes

Simone Trevisan strevisan@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como.

October 6, 2022

Different Regimes

Model and background

Perturbative Approact

Results

Schedule

Introduction to Analog Event Horizons

The Effects of Dispersion and the Different Regimes

The model and the background field

Perturbative Approach to the Solution

Results and Discussion

Different Regime

Model and background

Perturbative Approach

Results

Analog Gravity

¹Illustration: Carusotto, Balbinot, Nature Phys12,897898 (2016)

Different Regime

Model and background

Perturbative Approach

Results 000000

Analog Gravity

William Unruh, 1981: Also some earth-based systems can present event horizons, similar to those of Black Holes.

¹Illustration: Carusotto, Balbinot, Nature Phys12,897898 (2016)

Different Regime

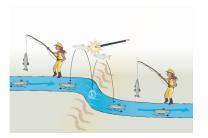
Model and background

Perturbative Approach

Results 000000

Analog Gravity

William Unruh, 1981: Also some earth-based systems can present event horizons, similar to those of Black Holes.



If quantum mechanics plays a significant role in the system, we should be able to observe something analogous to Hawking Radiation¹.

¹Illustration: Carusotto, Balbinot, Nature Phys12,897898 (2016)

Different Regimes

Model and background

Perturbative Approach

Results 000000

Optical Black Holes - I

²Phys. Rev. Lett. 105, 203901 (2010), Como.

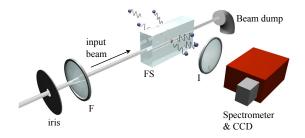
Different Regimes

Model and background

Perturbative Approach

Results 000000

Optical Black Holes - I



Optical Black Holes are created by sending a high-energy laser pulse into a dielectric medium.²

²Phys. Rev. Lett. 105, 203901 (2010), Como.

Different Regimes

Model and background 000000

Perturbative Approach

Results 000000

Optical Black Holes - II

Different Regimes

Model and background

Perturbative Approach

Results 000000

Optical Black Holes - II

• The high-energy pulse induces a **nonlinear response** in the medium;

Different Regimes

Model and background

Perturbative Approach

Results 000000

Optical Black Holes - II

- The high-energy pulse induces a **nonlinear response** in the medium;
- Modification of the refraction index (Kerr effect)

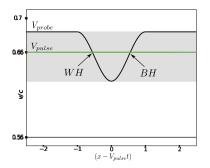
 $\delta n(x,t) \propto I(x,t)$

Results 000000

Optical Black Holes - II

- The high-energy pulse induces a nonlinear response in the medium;
- Modification of the refraction index (Kerr effect)

 $\delta n(x,t) \propto I(x,t)$

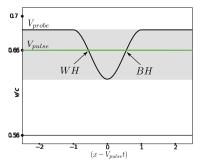


Results 000000

Optical Black Holes - II

- The high-energy pulse induces a **nonlinear response** in the medium;
- Modification of the refraction index (Kerr effect)

 $\delta n(x,t) \propto I(x,t)$



 $T\sim 80 {
m K}$

 \rightarrow The radiation can in principle be observed directly!

Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

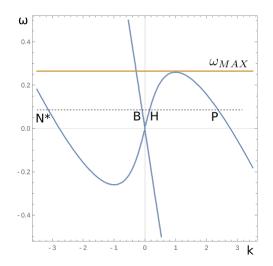
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

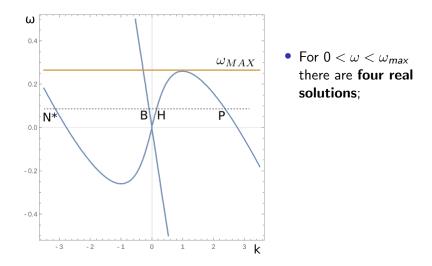


Different Regimes

Model and background

Perturbative Approach 00000 Results 000000

The effects of dispersion: different regimes



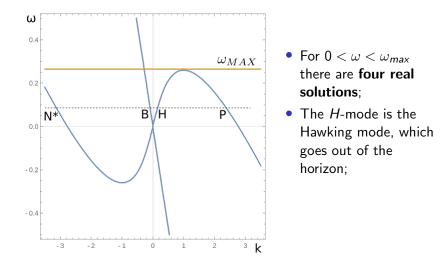
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes



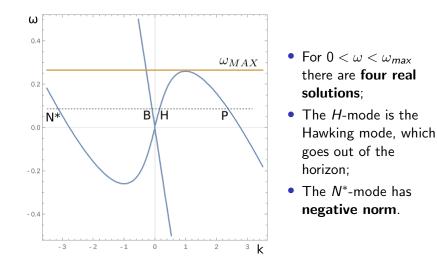
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes



Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

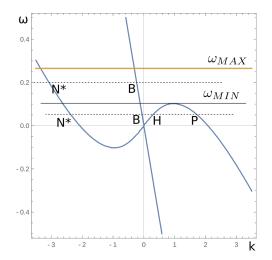
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes



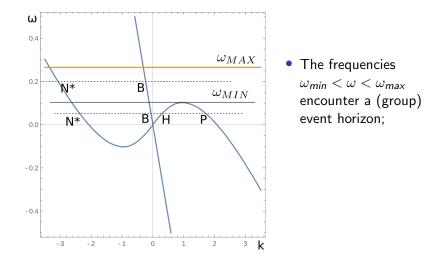
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes



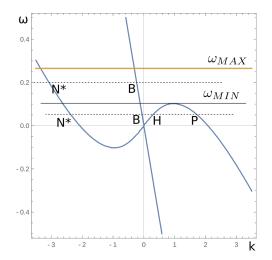
Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes



- The frequencies
 ω_{min} < ω < ω_{max}
 encounter a (group)
 event horizon;
- The frquencies $0 < \omega < \omega_{min}$ encounter **no horizon** (subcritical regime).

Different Regimes

Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

Dispersion relation at x' = 0 (peak of the perturbation): b) Critical case

Different Regimes

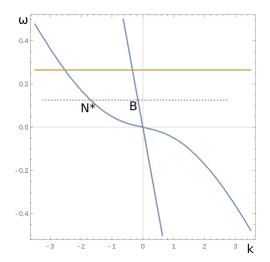
Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

Dispersion relation at x' = 0 (peak of the perturbation): b) Critical case



Different Regimes

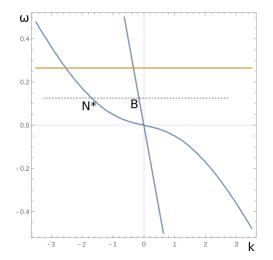
Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

Dispersion relation at x' = 0 (peak of the perturbation): b) Critical case



Different Regimes

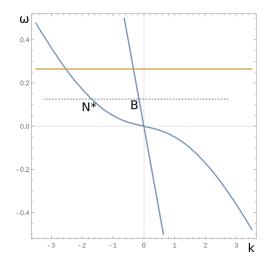
Model and background

Perturbative Approach

Results

The effects of dispersion: different regimes

Dispersion relation at x' = 0 (peak of the perturbation): b) Critical case



- Thermal spectrum predicted, at least at low frequencies.

Different Regime

Model and background

Perturbative Approach

Results

The model

³Belgiorno, Cacciatori, Faccio, *Hawking Radiation: From Astrophysical Black Holes to Analogous Systems in Lab* (World Scientific Publishing, Singapore, 2018).

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model

We consider the following Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2} \left((\partial_0 \psi)^2 + \mu^2 \psi^2 \right) + g \phi \partial_x \psi - \frac{\lambda}{4!} \psi^4 \qquad (1)$$

³Belgiorno, Cacciatori, Faccio, *Hawking Radiation: From Astrophysical Black Holes to Analogous Systems in Lab* (World Scientific Publishing, Singapore, 2018).

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model

We consider the following Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2} \left((\partial_0 \psi)^2 + \mu^2 \psi^2 \right) + g \phi \partial_x \psi - \frac{\lambda}{4!} \psi^4 \qquad (1)$$

• This model is a simplication of the preceding ϕ - ψ model³ (scalar electrodynamics in dielectrics);

³Belgiorno, Cacciatori, Faccio, *Hawking Radiation: From Astrophysical Black Holes to Analogous Systems in Lab* (World Scientific Publishing, Singapore, 2018).

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model

We consider the following Lagrangian

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2} \left((\partial_0 \psi)^2 + \mu^2 \psi^2 \right) + g \phi \partial_x \psi - \frac{\lambda}{4!} \psi^4 \qquad (1)$$

- This model is a simplication of the preceding ϕ - ψ model³ (scalar electrodynamics in dielectrics);
- It is designed so that the free particles of the model ($\lambda = 0$) satisfy the Cauchy dispersion relation:

$$n^{2}(\omega) := \frac{k^{2}}{\omega^{2}} = \frac{\mu^{2}}{g^{2}} + \frac{\omega^{2}}{g^{2}} =: A + B\omega^{2}$$
(2)

³Belgiorno, Cacciatori, Faccio, *Hawking Radiation: From Astrophysical Black Holes to Analogous Systems in Lab* (World Scientific Publishing, Singapore, 2018).

Different Regimes

Model and background

Perturbative Approach

Results

The model - II

Different Regime

Model and background

Perturbative Approach

Results

The model - II

The interaction term $\propto \lambda \psi^4$ reproduces the **nonlinear response**:

Different Regime

Model and background

Perturbative Approach

Results

The model - II

The interaction term $\propto \lambda \psi^4$ reproduces the **nonlinear response**:

• Consider a background configuration $\overline{\psi}(x, t)$;

Different Regimes

Model and background

Perturbative Approach

Results

The model - II

The interaction term $\propto \lambda \psi^4$ reproduces the **nonlinear response**:

- Consider a background configuration $\bar{\psi}(x, t)$;
- Linearizing the Lagrangian around this perturbation gives

$$\mu^2 \mapsto \mu^2 - \frac{\lambda}{2} \bar{\psi}(x,t)^2$$

$$\implies n^2(\omega; x, t) = A + B\omega^2 + 2\delta n(x, t)$$

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model - II

The interaction term $\propto \lambda \psi^4$ reproduces the **nonlinear response**:

- Consider a background configuration $\bar{\psi}(x, t)$;
- Linearizing the Lagrangian around this perturbation gives

$$\mu^2 \mapsto \mu^2 - \frac{\lambda}{2} \bar{\psi}(x,t)^2$$

$$\implies n^2(\omega; x, t) = A + B\omega^2 + 2\delta n(x, t)$$

• $\delta n \propto \bar{\psi}(x,t)^2 \propto I(x,t)$: the model reproduces the Kerr effect.

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model - III

We can define a **conserved scalar product** and a norm:

Different Regimes

Model and background

Perturbative Approach

Results

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}) := \left(ilde{\phi}\partial_0\phi^* - \phi^*\partial_0 ilde{\phi} + ilde{\psi}\partial_0\psi^* - \psi^*\partial_0 ilde{\psi}
ight)\,.$$

Different Regimes

Model and background

Perturbative Approach

Results

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}) := \left(ilde{\phi}\partial_0\phi^* - \phi^*\partial_0 ilde{\phi} + ilde{\psi}\partial_0\psi^* - \psi^*\partial_0 ilde{\psi}
ight)\,.$$

Notes:

Different Regimes

Model and background

Perturbative Approach

Results 000000

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}) := \left(ilde{\phi}\partial_0\phi^* - \phi^*\partial_0 ilde{\phi} + ilde{\psi}\partial_0\psi^* - \psi^*\partial_0 ilde{\psi}
ight)\,.$$

Notes:

• The model is *not* Lorentz invariant (preferred laboratory frame);

Different Regimes

Model and background

Perturbative Approach

Results

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}):=\left(ilde{\phi}\partial_0\phi^*-\phi^*\partial_0 ilde{\phi}+ ilde{\psi}\partial_0\psi^*-\psi^*\partial_0 ilde{\psi}
ight)\,.$$

Notes:

- The model is *not* Lorentz invariant (preferred laboratory frame);
- But we checked that the *sign* of the norm is not dependent of the reference frame:

Different Regimes

Model and background

Perturbative Approach

Results

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}) := \left(ilde{\phi}\partial_0\phi^* - \phi^*\partial_0 ilde{\phi} + ilde{\psi}\partial_0\psi^* - \psi^*\partial_0 ilde{\psi}
ight)\,.$$

Notes:

- The model is *not* Lorentz invariant (preferred laboratory frame);
- But we checked that the *sign* of the norm is not dependent of the reference frame:
- In fact we have

$$||\Phi_k||^2 \propto \omega_{lab} = \gamma(\omega + Vk)$$

in any inertial frame moving with velocity V w.r.t the lab;

Different Regimes

Model and background

Perturbative Approach

Results

The model - III

We can define a **conserved scalar product** and a norm:

$$(\Phi| ilde{\Phi}) := \left(ilde{\phi}\partial_0\phi^* - \phi^*\partial_0 ilde{\phi} + ilde{\psi}\partial_0\psi^* - \psi^*\partial_0 ilde{\psi}
ight)\,.$$

Notes:

- The model is *not* Lorentz invariant (preferred laboratory frame);
- But we checked that the *sign* of the norm is not dependent of the reference frame:
- In fact we have

$$||\Phi_k||^2 \propto \omega_{lab} = \gamma(\omega + Vk)$$

in any inertial frame moving with velocity V w.r.t the lab;

• This allows to consistently quantize the theory defining a Fock space of free particles which satisfy the Cauchy D.R.

Different Regimes

Model and background

Perturbative Approach

Results 000000

Solitonic solution

Different Regimes

Model and background

Perturbative Approach

Results 000000

Solitonic solution

The EOM have an exact solitonic solution

$$\psi_{s}(x - Vt) = \frac{\alpha}{\cosh(\beta(x - Vt))},$$
$$\alpha^{2} = \frac{12V^{2}\beta^{2}}{\lambda},$$
$$\beta^{2} = \frac{1}{V^{4}}(g^{2} - \mu^{2}V^{2})$$

Different Regime

Model and background

Perturbative Approach

Results

Solitonic solution

The EOM have an exact solitonic solution

$$\psi_{s}(x - Vt) = \frac{\alpha}{\cosh(\beta(x - Vt))},$$
$$\alpha^{2} = \frac{12V^{2}\beta^{2}}{\lambda},$$
$$\beta^{2} = \frac{1}{V^{4}}(g^{2} - \mu^{2}V^{2})$$

Solitons of this type are also known to show up as approximate solutions of the Maxwell equations inside a Kerr medium (cfr. "nonlinear Schrödinger equation").

Different Regimes

Model and background

Perturbative Approach

Results

The mode equation in soliton background

Different Regimes

Model and background

Perturbative Approach

Results 000000

The mode equation in soliton background

We consider the linearized EOM around a background field (δn)

$$ar{\psi}^2(x-Vt) = rac{arepsilon}{\cosh^2(eta(x-Vt))}$$

⁴Belgiorno et al., Phys. Rev. **D** 102, 105003 (2020)

Different Regimes

Model and background

Perturbative Approach

Results

The mode equation in soliton background

We consider the linearized EOM around a background field (δn)

$$ar{\psi}^2(x-Vt) = rac{arepsilon}{\cosh^2(eta(x-Vt))}$$

• This is to be thought as a *small* perturbation.

⁴Belgiorno *et al.*, Phys. Rev. **D** 102, 105003 (2020)

Different Regimes

Model and background

Perturbative Approach

Results

The mode equation in soliton background

We consider the linearized EOM around a background field (δn)

$$ar{\psi}^2(x-Vt)=rac{arepsilon}{\cosh^2(eta(x-Vt))}$$

- This is to be thought as a *small* perturbation.
- We write the equation in the *comoving* frame

$$egin{aligned} & \mathbf{x}' = \gamma(\mathbf{x} - \mathbf{V}t) \ & t' = \gamma(t - \mathbf{V}\mathbf{x}) \end{aligned}$$

Different Regimes

Model and background

Perturbative Approach

Results

The mode equation in soliton background

We consider the linearized EOM around a background field (δn)

$$ar{\psi}^2(x-Vt)=rac{arepsilon}{\cosh^2(eta(x-Vt))}$$

- This is to be thought as a *small* perturbation.
- We write the equation in the *comoving* frame

$$egin{aligned} \mathbf{x}' &= \gamma(\mathbf{x} - \mathbf{V}t) \ t' &= \gamma(t - \mathbf{V}\mathbf{x}) \end{aligned}$$

• The solution is in the form $\psi(x, t) = e^{-i\omega t'} f(x')$:

Different Regimes

Model and background

Perturbative Approach

Results

The mode equation in soliton background

We consider the linearized EOM around a background field (δn)

$$ar{\psi}^2(x-Vt)=rac{arepsilon}{\cosh^2(eta(x-Vt))}$$

- This is to be thought as a *small* perturbation.
- We write the equation in the *comoving* frame

$$egin{aligned} \mathbf{x}' &= \gamma(\mathbf{x} - \mathbf{V}t) \ t' &= \gamma(t - \mathbf{V}\mathbf{x}) \end{aligned}$$

- The solution is in the form $\psi(x, t) = e^{-i\omega t'} f(x')$:
- f(x') satisfies a fourth-order equation of generalized Orr-Sommerfeld type⁴.

Different Regime

Model and background

Perturbative Approach

Results 000000

Reduction to Fuchsian equation

Different Regimes

Model and background

Perturbative Approach

Results 000000

Reduction to Fuchsian equation

By changing the variable to

$$z = -e^{2\beta x'}$$

we obtain a **Fucshian** equation of fourth order and three regular singular point at $z = 0, 1, \infty$ ($x = -\infty, i\frac{\pi}{2\beta}, +\infty$);

Different Regimes

Model and background

Perturbative Approach

Results 000000

Reduction to Fuchsian equation

By changing the variable to

$$z = -e^{2\beta x'}$$

we obtain a **Fucshian** equation of fourth order and three regular singular point at $z = 0, 1, \infty$ ($x = -\infty, i\frac{\pi}{2\beta}, +\infty$);

$$0 = \left(V^{4}\gamma^{4}\right)z^{4}f^{(4)} + \left(6V^{4}\gamma^{4} - 4iV^{3}\Omega\gamma^{4}\right)z^{3}f^{(3)} \\ + \left(-G^{2}\gamma^{2} - \mu^{2}V^{2}\gamma^{2} + 7V^{4}\gamma^{4} - 12iV^{3}\Omega\gamma^{4} - 6V^{2}\Omega^{2}\gamma^{4} + \varepsilon \frac{V^{2}\gamma^{2}z^{3}}{(1-z)^{2}}\right)z^{2}f^{(2)} \\ + \left(-G^{2}\gamma^{2} - \mu^{2}V^{2}\gamma^{2} + 2iG^{2}V\Omega\gamma^{2} + 2i\mu^{2}V\Omega\gamma^{2} + V^{4}\gamma^{4} - 4iV^{3}\Omega\gamma^{4} - 6V^{2}\omega^{2}\gamma^{4} + 4iV\omega^{3}\gamma^{4} \\ + \varepsilon \left(\frac{3V^{2}\gamma^{2}z^{2} - 2iV\Omega\gamma^{2}z^{2}}{(1-z)^{2}} + \frac{4V^{2}\gamma^{2}z^{3}}{(1-z)^{3}}\right)\right)zf^{(1)} \\ + \left(\mu^{2}\Omega^{2}\gamma^{2} + G^{2}V^{2}\Omega^{2}\gamma^{2} + \Omega^{4}\gamma^{4} + \varepsilon \left(\frac{V^{2}\gamma^{2}z - 2iV\Omega\gamma^{2}z - \Omega^{2}\gamma^{2}z}{(1-z)^{2}} + \frac{6V^{2}\gamma^{2}z^{2} - 4iV\Omega\gamma^{2}z^{2}}{(1-z)^{3}} + \frac{6V^{2}\gamma^{2}z^{3}}{(1-z)^{4}}\right)\right)f$$

Different Regime

Model and background

Perturbative Approach

Results 000000

New perturbative approach

Different Regimes

Model and background

Perturbative Approach

Results 000000

New perturbative approach

Previous perturbative approaches to similar equations in analog gravity were made:

Model and background

Perturbative Approach

Results

New perturbative approach

Previous perturbative approaches to similar equations in analog gravity were made:

• In the low-dispersion limit for the *critical* case⁵;

Model and background

Perturbative Approach

Results

New perturbative approach

Previous perturbative approaches to similar equations in analog gravity were made:

- In the low-dispersion limit for the *critical* case⁵;
- Using the Bremmer series (generalization of the WKB expansion) in the *subcritical* case⁶.

Previous perturbative approaches to similar equations in analog gravity were made:

- In the low-dispersion limit for the *critical* case⁵;
- Using the Bremmer series (generalization of the WKB expansion) in the *subcritical* case⁶.

Both these approaches are valid in one regime and **fail intrinsecally** if we want to describe the transition between critical and subcritical regimes.

⁵Belgiorno et al., Phys. Rev. **D** 102, 105003 (2020).

⁶Coutant, Weinfurtner, Phys. Rev. **D** 94, 064026 (2016).

Previous perturbative approaches to similar equations in analog gravity were made:

- In the low-dispersion limit for the *critical* case⁵;
- Using the Bremmer series (generalization of the WKB expansion) in the *subcritical* case⁶.

Both these approaches are valid in one regime and **fail intrinsecally** if we want to describe the transition between critical and subcritical regimes.

We propose a different approach, expanding in ε :

⁵Belgiorno *et al.*, Phys. Rev. **D** 102, 105003 (2020).

⁶Coutant, Weinfurtner, Phys. Rev. **D** 94, 064026 (2016).

Previous perturbative approaches to similar equations in analog gravity were made:

- In the low-dispersion limit for the *critical* case⁵;
- Using the Bremmer series (generalization of the WKB expansion) in the *subcritical* case⁶.

Both these approaches are valid in one regime and **fail intrinsecally** if we want to describe the transition between critical and subcritical regimes.

We propose a different approach, expanding in ε :

• This is suppose to reproduce the subcritical case without any approximation in the dispersion;

⁵Belgiorno *et al.*, Phys. Rev. **D** 102, 105003 (2020).

⁶Coutant, Weinfurtner, Phys. Rev. **D** 94, 064026 (2016).

Previous perturbative approaches to similar equations in analog gravity were made:

- In the low-dispersion limit for the *critical* case⁵;
- Using the Bremmer series (generalization of the WKB expansion) in the *subcritical* case⁶.

Both these approaches are valid in one regime and **fail intrinsecally** if we want to describe the transition between critical and subcritical regimes.

We propose a different approach, expanding in ε :

- This is suppose to reproduce the subcritical case without any approximation in the dispersion;
- There is no theoretical obstacle in extending the approach to the critical case (maybe just some higher orders in the perturbation).

Different Regime

Model and background

Perturbative Approach

Results 000000

The perturbative expansion⁷

⁶A.V. Chueshev, V.V. Chueshev, Journal of Siberian Federal University. Mathematics & Physics 2022, **15**(3), 308318.

Different Regimes

Model and background

Perturbative Approach

Results 000000

The perturbative expansion⁷

• We express the solution as a power series:

$$u(z) = u_0(z) + \varepsilon u_1(z) + \varepsilon^2 u_2(z) + \dots$$

⁶A.V. Chueshev, V.V. Chueshev, Journal of Siberian Federal University. Mathematics & Physics 2022, **15**(3), 308318.

Different Regimes

Model and background

Perturbative Approach

Results 000000

The perturbative expansion⁷

• We express the solution as a power series:

$$u(z) = u_0(z) + \varepsilon u_1(z) + \varepsilon^2 u_2(z) + \dots$$

• We obtain an infinite set of recursive equations:

⁶A.V. Chueshev, V.V. Chueshev, Journal of Siberian Federal University. Mathematics & Physics 2022, **15**(3), 308318.

Different Regimes

Model and background

Perturbative Approach

Results

The perturbative expansion⁷

• We express the solution as a power series:

$$u(z) = u_0(z) + \varepsilon u_1(z) + \varepsilon^2 u_2(z) + \dots$$

• We obtain an infinite set of recursive equations:

$$\begin{split} & u_1^{(4)} + v_1(z)u_1^{(2)} + v_2(z)u_1^{(1)} + v_3(z)u_1 = w_1(z)u_0^{(2)} + w_2(z)u_0^{(1)} + w_3(z)u_0 \,, \\ & \dots \,, \\ & u_n^{(4)} + v_1(z)u_n^{(2)} + v_2(z)u_n^{(1)} + v_3(z)u_n = w_1(z)u_{(n-1)}^{(2)} + w_2(z)u_{(n-1)}^{(1)} + w_3(z)u_{(n-1)} \end{split}$$

⁶A.V. Chueshev, V.V. Chueshev, Journal of Siberian Federal University. Mathematics & Physics 2022, **15**(3), 308318.

Different Regimes

Model and background

Perturbative Approach

Results 000000

The perturbative expansion⁷

• We express the solution as a power series:

$$u(z) = u_0(z) + \varepsilon u_1(z) + \varepsilon^2 u_2(z) + \dots$$

• We obtain an infinite set of recursive equations:

$$\begin{split} & u_1^{(4)} + v_1(z)u_1^{(2)} + v_2(z)u_1^{(1)} + v_3(z)u_1 = w_1(z)u_0^{(2)} + w_2(z)u_0^{(1)} + w_3(z)u_0 \,, \\ & \dots \,, \\ & u_n^{(4)} + v_1(z)u_n^{(2)} + v_2(z)u_n^{(1)} + v_3(z)u_n = w_1(z)u_{(n-1)}^{(2)} + w_2(z)u_{(n-1)}^{(1)} + w_3(z)u_{(n-1)} \end{split}$$

• We were able to **solve exactly** the first-order equation using the method of variation of constants.

⁶A.V. Chueshev, V.V. Chueshev, Journal of Siberian Federal University. Mathematics & Physics 2022, **15**(3), 308318.

Different Regimes

Model and background

Perturbative Approach

Results

Boundary conditions for the solution

Different Regimes

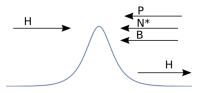
Model and background

Perturbative Approach

Results

Boundary conditions for the solution

We impose asymptotics conditions that reproduce the inverse scattering of a H-mode:



Different Regimes

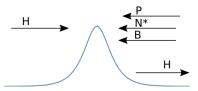
Model and background

Perturbative Approach

Results

Boundary conditions for the solution

We impose asymptotics conditions that reproduce the inverse scattering of a H-mode:



From the conserved scalar product of the theory we get

$$1 = |H| + |P| - |N| + |B|$$
$$\implies |N| = \frac{1 - |H| + |B|}{\frac{|P|}{|N|} - 1} =: \frac{1}{e^{\frac{\omega}{T_{\omega}}} - 1}$$

Different Regimes

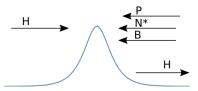
Model and background

Perturbative Approach

Results 000000

Boundary conditions for the solution

We impose asymptotics conditions that reproduce the inverse scattering of a H-mode:



From the conserved scalar product of the theory we get

$$1 = |H| + |P| - |N| + |B|$$
$$\implies |N| = \frac{1 - |H| + |B|}{\frac{|P|}{|N|} - 1} =: \frac{1}{e^{\frac{\omega}{T_{\omega}}} - 1}$$

In the Bogolubov analysis, |N| can be identified as the the rate of **spontaneus particle emission**.

Different Regimes

Model and background

Perturbative Approach

Results

The first-order solution - Exact espression

Different Regimes

Model and background

Perturbative Approach

Results 000000

The first-order solution - Exact espression

The exact expression of $u_1(z)$ with the imposed boundary condition is

$$\begin{split} u_{1}(z) &= -\frac{i}{4V^{2}\gamma^{2}z} \\ & \left(\frac{4i(\frac{\omega}{V} + (k_{H}+i))^{2}z_{F_{1}}(2;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z})}{(k_{H}-k_{P})(k_{H}-k_{P})(k_{H}-k_{P})(k_{H}-k_{P})(k_{H}-k_{P})} + \frac{16\left(k_{H}+\frac{\omega}{V}+\frac{3i}{2}\right)z_{F_{1}}(3;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z})}{(k_{H}-k_{P})}{k_{H}^{2}(z-1)^{2}(z-1)^{2}(k_{H}-k_{P})(k_{H}-k_{P})(k_{H}-k_{P})}\right) \end{pmatrix}$$

Different Regimes

Model and background

Perturbative Approach

Results 000000

The first-order solution - Exact espression

The exact expression of $u_1(z)$ with the imposed boundary condition is

$$\begin{split} u_{1}(z) &= -\frac{i}{4\sqrt{2}}\frac{1}{2\sqrt{2}}\\ &\left(\frac{4i(\frac{\omega}{\nu}+(k_{H}+i))^{2}}{(k_{H}-k_{P})(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{P}-k_{P})}{(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{H}-k_{P})} + \frac{16\left(k_{H}+\frac{\omega}{\nu}+\frac{3}{2}\right)_{2}F_{1}\left(3.i((k_{H}-k_{P})+1:i((k_{H}-k_{P})+2;\frac{1}{2}\right)}{(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{P}-k_{P})} + \frac{24i_{2}F_{1}\left(4.i((k_{H}-k_{P})+1:i((k_{H}-k_{P})+2;\frac{1}{2}\right)}{(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{P}-k_{R})} + \frac{4i(\frac{\omega}{\nu}+(k_{H}+i))^{2}}{(k_{H}-k_{P}-i)(k_{P}-k_{R})(k_{H}+\frac{\omega}{\nu}+\frac{3}{2})}{(k_{H}-k_{R}-i)(k_{R}-k_{R})(k_{H}-k_{R})} + \frac{4i(\frac{\omega}{\nu}+(k_{H}+i))^{2}}{(k_{H}-k_{P})^{2}} + \frac{16\left(k_{H}+\frac{\omega}{\nu}+\frac{3}{2}\right)}{(k_{H}-k_{P})(k_{H}-k_{R})} + \frac{1i(k_{H}-k_{R})+2;\frac{1}{2}\right)}{(k_{H}-k_{R})(k_{H}-k_{R})} + \frac{1i(k_{H}-k_{R})+2;\frac{1}{2}\right)}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})} + \frac{1i(k_{H}-k_{R})+2;\frac{1}{2}\right)}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})} + \frac{1i(k_{H}-k_{R})+2;\frac{1}{2}\right)}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})+2;\frac{1}{2})} + \frac{1}{(k_{H}-k_{R})+2i(k_{H}-k_{R})+2;\frac{1}{2})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{H}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{H}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{H}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})} + \frac{1}{(k_{R}-k_{R})(k_{R}-k_{R})(k_{R}-k_{R})}$$

From this form one can easily derive the asymptotic expression at z = ∞ (x = +∞);

Different Regimes

Model and background

Perturbative Approach

Results

The first-order solution - Exact espression

The exact expression of $u_1(z)$ with the imposed boundary condition is

$$\begin{split} u_{1}(z) &= -\frac{i}{4V^{2}\gamma^{2}z_{c}} \\ & \left(\frac{4i(\frac{\omega}{\nabla} + (k_{H}+i))^{2}z_{f}(2;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z})}{(k_{H}-k_{P}-i)(k_{P}-k_{H})(k_{P}-k_{P})} + \frac{16\left(k_{H}+\frac{\omega}{\nabla}+\frac{3}{2}\right)z_{f}(3;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z})}{(k_{H}-k_{P}-i)(k_{P}-k_{H})(k_{P}-k_{P})} - \frac{24iz_{f}(4;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z})}{(k_{H}-k_{P}-i)(k_{P}-k_{H})(k_{P}-k_{H})} + \frac{4i(\frac{\omega}{\omega} + (k_{H}+i))^{2}z_{f}(2;(k_{H}-k_{P})+1;i(k_{H}-k_{H})+2;\frac{1}{z}) + 16\left(k_{H}+\frac{\omega}{\omega}+\frac{3}{2}\right)z_{f}(3;(k_{H}-k_{H})+1;i(k_{H}-k_{H})+2;\frac{1}{z}) - 24iz_{f}(4;(k_{H}-k_{P})+1;i(k_{H}-k_{P})+2;\frac{1}{z}) + \frac{4i(\frac{\omega}{\omega} + (k_{H}+i))^{2}z_{f}(2;(k_{H}-k_{H})+1;i(k_{H}-k_{H})+2;\frac{1}{z}) + 16\left(k_{H}+\frac{\omega}{\omega}+\frac{3}{2}\right)z_{f}(3;(k_{H}-k_{H})+1;i(k_{H}-k_{H})+2;\frac{1}{z}) - 24iz_{f}(4;(k_{H}-k_{H})+1;i(k_{H}-k_{H})+2;\frac{1}{z}) + \frac{4i(\frac{\omega}{\omega} + (k_{H}+i))^{2}z_{f}(2;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) + 16\left(k_{H}+\frac{\omega}{\omega}+\frac{3}{2}\right)z_{f}(3;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) - 24iz_{f}(4;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) + \frac{4i(\frac{\omega}{\omega} + (k_{H}+i))^{2}z_{f}(2;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) + 16\left(k_{H}+\frac{\omega}{\omega}+\frac{3}{2}\right)z_{f}(3;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) - 24iz_{f}(4;(k_{H}-k_{B})+1;i(k_{H}-k_{B})+2;\frac{1}{z}) + \frac{2i(k_{H}-k_{H}-k_{H})(k_{H}-k_{B})(k_{H}-k_{B})(k_{H}-k_{B})(k_{B}-k_{H})}{(k_{H}-k_{B})(k_{H}-k_{B})(k_{B}-k_{H})} \right) \\ + \frac{4z^{2}\left(V^{2}\left(k_{H}^{2}(z-1)^{2}-2ik_{H}(z-1)-z-1\right) + 2V\omega(z-1)(k_{H}(z-1)-i) + \omega^{2}(z-1)^{2}\right)}{V^{2}(z-1)^{3}(k_{H}-k_{P})(k_{H}-k_{P})(k_{H}-k_{P})}\right)} \right)$$

- From this form one can easily derive the asymptotic expression at z = ∞ (x = +∞);
- Thanks to the connection formulas of the Hypergeometric function we also derived the asymptotic expression at z = 0 (x = -∞).

Different Regime

Model and background

Perturbative Approach

Results

The first-order solution - Asymptotics

Different Regimes

Model and background

Perturbative Approach

Results

The first-order solution - Asymptotics

The asymptotic expression of the solution is

$$f(x') \sim \begin{cases} e^{-ik_H x'} & , x' \to -\infty \\ H e^{-ik_H x'} + P e^{-ik_P x'} + N e^{-ik_N x'} + B e^{-ik_B x'} & , x' \to +\infty \end{cases},$$

where

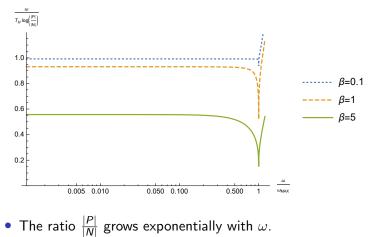
$$\begin{split} H &= 1 - i\varepsilon \frac{(k_H V + \omega)^2}{V^4 \gamma^2 (k_H - k_P) (k_H - k_N) (k_H - k_B)} + O(\varepsilon^2) \\ P &= -i\varepsilon \frac{\pi (k_P V + \omega)^2 (-1)^{-i(k_H - k_P)} \operatorname{esch}[(k_H - k_P)\pi/(2\beta)]}{2\beta V^4 \gamma^2 (k_P - k_N) (k_P - k_B)} + O(\varepsilon^2) \\ N &= -i\varepsilon \frac{\pi (k_N V + \omega)^2 (-1)^{-i(k_H - k_N)} \operatorname{esch}[(k_H - k_N)\pi/(2\beta)]}{2\beta V^4 \gamma^2 (k_N - k_P) (k_N - k_B)} + O(\varepsilon^2) \\ B &= -i\varepsilon \frac{\pi (k_B V + \omega)^2 (-1)^{-i(k_H - k_B)} \operatorname{esch}[(k_H - k_B)\pi/(2\beta)]}{2\beta V^4 \gamma^2 (k_B - k_P) (k_B - k_N)} + O(\varepsilon^2) \,. \end{split}$$

Different Regime

Model and background

Perturbative Approach 00000 Results

Estimation of the temperature

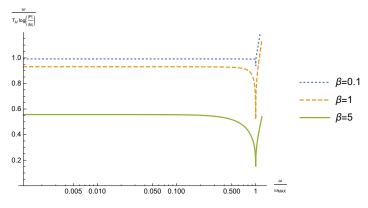


Different Regimes

Model and background

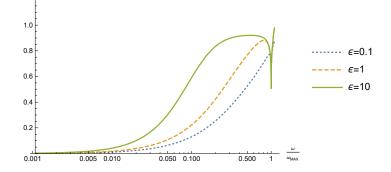
Perturbative Approach 00000 Results

Estimation of the temperature

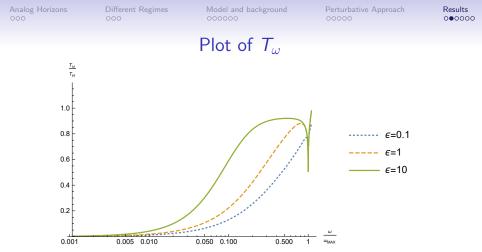


- The ratio $\frac{|P|}{|N|}$ grows exponentially with ω .
- The estimated temperature $T_H = \frac{\beta \gamma^2 V(g^2 \mu^2 V^2)}{2\pi g(2g + \mu V)}$ is less accurate as β increases.

og Horizons Different Regimes Model and background Perturbative Approach Results 00000 Plot of \mathcal{T}_{ω}

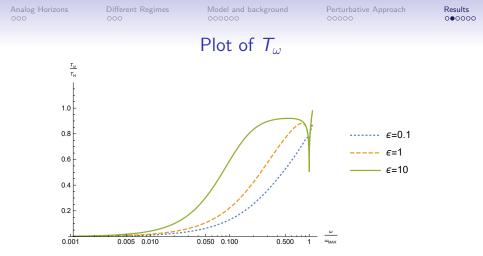


⁸Michel, Parentani, Phys. Rev. **D** 90, 044033 (2014).



• Plateau appearing at $T_{\omega} \approx T_H$ for high frequencies.

⁸Michel, Parentani, Phys. Rev. **D** 90, 044033 (2014).



- Plateau appearing at $T_{\omega} \approx T_H$ for high frequencies.
- The behaviour is similar to what was found by numerical studies of the transcritical flow in shallow water⁸.

⁸Michel, Parentani, Phys. Rev. **D** 90, 044033 (2014).

alog Horizons Differen

10

برا بر

0.005 0.010

0.100

0.001

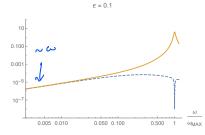
10⁻⁵

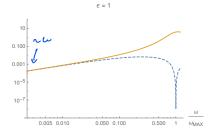
10-7

Model and backgrou

Perturbative Approach 00000 Results

Plot of |P| and |N|





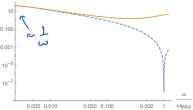
 $\epsilon = 100$

0.050 0.100

0.500

ω

 ω_{MAX}



Different Regimes

Model and background

Perturbative Approach

Results 000000

Different Regime

Model and background

Perturbative Approach

Results 000000

Some comments

• We found **analytical** expressions of the scattering coefficients, with a new perturbative approach and no approximation in dispersion;

Different Regimes

Model and background

Perturbative Approach

Results

- We found **analytical** expressions of the scattering coefficients, with a new perturbative approach and no approximation in dispersion;
- The results are in line with previous numerical simulaitons for subcritical and transcritical case and analytical studies of the subcritical regime;

Different Regimes

Model and background

Perturbative Approach

Results

- We found **analytical** expressions of the scattering coefficients, with a new perturbative approach and no approximation in dispersion;
- The results are in line with previous numerical simulaitons for subcritical and transcritical case and analytical studies of the subcritical regime;
- Differently from previous approaches, our method has **no intrinsecal difficulty** in describing the critical limit;

Different Regimes

Model and background

Perturbative Approach

Results 000000

- We found **analytical** expressions of the scattering coefficients, with a new perturbative approach and no approximation in dispersion;
- The results are in line with previous numerical simulaitons for subcritical and transcritical case and analytical studies of the subcritical regime;
- Differently from previous approaches, our method has **no intrinsecal difficulty** in describing the critical limit;
- Our plots show signs of criticality (i.e. thermality of the spectrum) for high values of ε: to this values the results shouldn't be trusted, but this fact is qualitatively interesting nonetheless.

Different Regimes

Model and background

Perturbative Approach

Results 000000

Future work

Different Regimes

Model and background

Perturbative Approach

Results 000000

Future work

• Apply to monotonic backgrounds to study the **transition to critical** regime;

Different Regimes

Model and background

Perturbative Approact

Results

Future work

- Apply to monotonic backgrounds to study the **transition to critical** regime;
- Study and classify other similar Fuchsian equations that come from analog systems;

Different Regimes

Model and background

Perturbative Approact

Results

Future work

- Apply to monotonic backgrounds to study the **transition to critical** regime;
- Study and classify other similar Fuchsian equations that come from analog systems;
- Investigate the possibility of finding **exact** (non-perturbative) integrals of such equations.

Different Regimes

Model and background

Perturbative Approach

Results 000000

Thank you for the attention!