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The final stages of black hole evaporation in quadratic gravity

Introduction

Physical motivation

Why black hole evaporation? - Semiclassical gravity

Classical curved spacetime + Quantum Field Theory

⇓

Black hole evaporation

Fundamental assumption: EQuantum Gravity � EStandard Model
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The final stages of black hole evaporation in quadratic gravity

Introduction

Physical motivation

Why black hole evaporation? - Information paradox

Final stages of evaporation

Initial state: pure

Final state: thermal radiation

=⇒ Information paradox

(Divergent entropy of radiation)

Solution: quantum corrections for gravity?
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Introduction

Physical motivation

Why quadratic gravity? - The Quantum and Gravity

Coupling constant [G ] = E−2 =⇒ one-loop corrections G 2E 2
cutoff →∞
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The final stages of black hole evaporation in quadratic gravity

Introduction

Physical motivation

Why quadratic gravity? - Wilsonian approach

Non-renormalizable theory =⇒ effective field theory at low energies

Seff =

∫
d4x
√
−g

c1 + c2R︸ ︷︷ ︸
GR

+ c3R
2 + c4R

µνRµν + c5R
3︸ ︷︷ ︸

QuadraticGravity

+ . . .

 (1)
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The final stages of black hole evaporation in quadratic gravity

Introduction

The theory in exam

Quadratic gravity: a classical model for quantum corrections

SQG =

∫
d4x
√
−g
[
γ R + β R2 − αCµνρσCµνρσ

]
S = 2, m = 0

S = 0, m2
0 = γ/6β

S = 2, m2
2 = γ/2α

(2)

PRO: renormalizable, general, IR limit of fundamental theories
K. Stelle (1977), B. Zwiebach (1985)

CON: negative energy states =⇒ non-unitary theory

Effective theory: classical solutions as first quantum corrections
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The final stages of black hole evaporation in quadratic gravity

Methods

Symmetries and boundary conditions

A no-(scalar) hair theorem

Cµνρσ is traceless =⇒ trace of vacuum e.o.m. is
(
�−m2

0

)
R = 0


staticity

asymptotic flatness =⇒ R = 0 in all spacetime

presence of event horizon

R2 term is irrelevant =⇒ CµνρσCµνρσ term is crucial (ghosts!)
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The final stages of black hole evaporation in quadratic gravity

Methods

Symmetries and boundary conditions

Symmetries and weak field limit
Staticity, spherical symmetry:

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2 (3)

Asymptotic flatness (isolated objects):
K. Stelle (1978), A. Bonanno and S.S. (2019)

h(r) ∼1− 2M

r
+ 2 S−2

e−m2 r

r

f (r) ∼1− 2M

r
+ S−2

e−m2 r

r
(1 + m2 r)

(4)
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The final stages of black hole evaporation in quadratic gravity

Methods

Symmetries and boundary conditions

Internal boundaries

Series expansion around fixed radius r0:
A. Perkins et al. (2015)

h(r) = (r − r0)t

[
N∑

n=0

ht+n/∆ (r − r0)
n
∆ + O

(
(r − r0)

N+1
∆

)]

f (r) = (r − r0)s

[
N∑

n=0

fs+n/∆ (r − r0)
n
∆ + O

(
(r − r0)

N+1
∆

)] (5)

Generic solution: t = 0, s = 0, ∆ = 1

Black holes: t = 1, s = 1, ∆ = 1

Wormholes: t = 0, s = 1, ∆ = 2
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The final stages of black hole evaporation in quadratic gravity

Methods

Symmetries and boundary conditions

Behaviour close to the origin
Series expansion around origin:
A. Perkins et al. (2015)

h(r) = r t

[
N∑

n=0

ht+nr
n + O

(
rN+1

)]

f (r) = r s

[
N∑

n=0

fs+nr
n + O

(
rN+1

)] =⇒

t = lim
r→0

χh = lim
r→0

d log (h(r))

d log (r)

s = lim
r→0

χf = lim
r→0

d log (f (r))

d log (r)

(6)

Regular solutions (stars): t = 0, s = 0

Divergent metric: t = −1, s = −1

Vanishing metric: t = 2, s = −2
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Methods

Symmetries and boundary conditions

Behaviour close to the origin
Series expansion around origin:
A. Perkins et al. (2015)

h(r) = r t

[
N∑

n=0

ht+nr
n + O

(
rN+1

)]

f (r) = r s

[
N∑

n=0

fs+nr
n + O

(
rN+1

)] =⇒

t = lim
r→0

χh = lim
r→0

d log (h(r))

d log (r)

s = lim
r→0

χf = lim
r→0

d log (f (r))

d log (r)

(6)

Regular solutions (stars): t = 0, s = 0

Divergent metric: t = −1, s = −1

Vanishing metric: t = 2, s = −2 =⇒ Not present in GR
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The final stages of black hole evaporation in quadratic gravity

Methods

Numerical methods

Numerical methods: shooting method
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole metric

Large distances behaviour: gravitational field

S−2 > 0 =⇒ Yukawa repulsive, S−2 < 0 =⇒ Yukawa attractive

Attractive in the “ghost” sector =⇒ repulsive gravitational field
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole metric

Near-horizon behaviour: thermodynamical properties

Black hole temperature: TBH = κ
2π Black hole entropy: δSWald = 1

TBH
δM

Negative entropy: S ∝ −〈log (p)〉 < 0 =⇒ Non-unitarity: p > 1
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole metric

Near-origin behaviour: characterization of the singularity

Yukawa attractive/repulsive: are they that different?

Yukawa repulsive =⇒ vanishing, Yukawa attractive =⇒ divergent
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole stability

Instability of Schwarzschild black holes

Transverse and traceless perturbation of Schwarzschild metric in General Relativity

∆L hµν = �hµν + 2Rµρνσh
ρσ = 0 (7)

Transverse and traceless perturbation of Schwarzschild metric in quadratic gravity
K. Stelle et al. (2017)

(
∆L −m2

2

)
∆Lhµν = 0 (8)
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole stability

Instability of Schwarzschild black holes

a) ∆Lhµν = 0 =⇒ Schwarzschild in Schwarzschild

b)
(
∆L −m2

2

)
hµν = 0 =⇒ Schwarschild in non-Schwarzschild

Equation b) is satisfied only at rH ∼ 0.876 =⇒ analytical check

rH ∼ 0.876 is also the minimum radius stable Schwarzschild solutions!
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole stability

Black hole phase transition: a thermodynamical argument

Yukawa repulsive have{
free energy smaller than

specific heat greater than

stable Schwarzschild black holes

⇓

more thermodynamically stable
K. Stelle et al. (2017)
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole stability

Black hole phase transition: a dynamical argument

Equations for χh and χf :

χ′h =
1

2

(
χhχf + 4χf + χ2

h + 2χh + 4
)

χ′f =
1

2(χh − 2)

(
2χ2

f χh − χ2
f + χsχ

2
h +

+ 8χf − χ3
h + 3χ2

h + 8
)
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The final stages of black hole evaporation in quadratic gravity

Results

Black hole stability

Black hole phase transition: consequences

Schwarzschild =⇒ Yukawa repulsive phase transition

No black hole explosion?
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: time evolution

Time dependent equations of motion in adiabatic approximation

Htr =
1

2
〈Ttr 〉 (9)

Exact calculations at large distances or close to the horizon

dM

dt
= T

dSWald

dt
= −

∑
l ,m

∫
dω

2π
|Blmω|2

ω

eω/T − 1
∼ −αT 2 (10)
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: time evolution

t = − 1

α

∫ M

M0

dM

T 2
= − 1

α

∫ S

S0

dSWald

T
(11)
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: no way out?

{
Thermodynamical stability

Dynamical stability
=⇒ Schwarzschild evaporates in Yukawa repulsive

Energy flux =⇒ Yukawa repulsive evaporates in Scharzschild/Yukawa attractive
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: ghost Hawking radiation

Quadratic gravity predicts ghost particles!

Toy-model: ghost scalar field

dM

dt
= T

dSWald

dt
= +

∑
l ,m

∫
dω

2π
|Blmω|2

ω

eω/T − 1
= +αT 2 (12)

Fundamental assumption: ghosts dominate radiation after the phase transition
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: time evolution with ghosts

Infinite time of evaporation, no diverging entropies =⇒ no information paradox?
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The final stages of black hole evaporation in quadratic gravity

Results

Time evolution

Black hole evaporation: time evolution with ghosts

Vanishing quasi-local quantities =⇒ pure ghost radiation?
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The final stages of black hole evaporation in quadratic gravity

Conclusions

Conclusions

Simple and conservative approach:

Information paradox: semiclassical gravity breaks down at high energies

=⇒ inclusion of first order quantum corrections to gravity

Many strong (but sensible) assumptions:

- classical solutions of quadratic gravity as first-order quantum corrections

- Schwarzschild =⇒ Yukawa repulsive phase transition

- ghosts dominated Hawking radiation
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The final stages of black hole evaporation in quadratic gravity

Conclusions

Conclusions

Consequences:

- infinite time of evaporation

- finite entropies

- finite temperatures

Thank you, and see you soon!

Simple semiclassical assumptions =⇒ simple remnants?
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The final stages of black hole evaporation in quadratic gravity

Conclusions

Black hole evaporation: ghost Hawking radiation

Grey body factor for spin 2 particles =⇒ Teukolsky equation

(
(D − 3ε+ ε̄− 4ρ− ρ̄) (∆ + µ− 4γ)− (δ + π̄ − ᾱ− 3β − 4τ)

(
δ̄ + π − 4α

)
− 3ψ2

)
ψ̃0 = T (13)

T is a said to be a source term given that T = T (Rµν)

- General Relativity: vacuum =⇒ T = 0

- quadratic gravity: vacuum =⇒ T 6= 0
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The final stages of black hole evaporation in quadratic gravity

Conclusions

Black hole phase transition: a geometrical argument

Riemannian Penrose Inequality:

Rµνu
µuν ≥ 0 =⇒ M ≥

√
A

16π

M <

√
A

16π
=⇒ Rµνu

µuν < 0

Locally repulsive gravity!
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