

Testing Inflation with Cosmological Observations

Michele Liguori

Dept. of Physics and Astronomy, Univ. of Padova

In collaboration with: Gabriel Jung, Dionysis Karagiannis, Marco Baldi, William Coulton, Benjamin Wandelt, Francisco Villaescusa Navarro, Licia Verde

ArXiv: Jung et al. 2022 (2206.01624) Coulton et al. 2022 (2206.01619, 2206.15450)

Beyond power spectra: non-Gaussianity

Primordial non-Gaussianity. Measures interactions. Many inflationary scenarios (notably, multi-field Inflation) predict small, model-dependent deviations from Gaussianity.
 Additional information in 3-point (bispectrum) and 4-point (trispectrum) functions.

- Multi-field
- Curvaton
- Ekpyrotic/cyclic

- Non-canonical kinetic terms (K-inflation, DBI)
- Higher derivative terms (Ghost Inflation)
- EFT

- Variants of non canonical
- Kinetic terms and higher derivatives

• EFT

Planck LEO constraints

$f_{\rm NL}({\rm KSW})$

Shape and method	Independent	ISW-lensing subtracted	
SMICA (T) LocalEquilateralOrthogonal	6.7 ± 5.6 4.0 ± 67 -38 ± 37	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
SMICA $(T+E)$ LocalEquilateralOrthogonal	4.1 ± 5.1 -25 ± 47 -47 ± 24	$\begin{array}{rrrrr} -0.9 & \pm & 5.1 \\ -26 & \pm & 47 \\ -38 & \pm & 24 \end{array}$	

Planck 2018 results. IX, arXiv:1905.05697

Future goals

- It is generally accepted that the next sensitivity target should be $f_{NL} \sim 1$
- Local shape: f_{NL} > 1 would rule out single-field inflation. f_{NL} < 1 would rule out a large class of multi-field models ("spectator fields")
- Equilateral, Orthogonal: the f_{NL} ~ 1 threshold allows discriminating between the single-field slow-roll and non-slow-roll regimes.

	$f_{ m NL}^{ m loc} \lesssim 1$	$f_{ m NL}^{ m loc}\gtrsim 1$
$f_{\rm NL}^{\rm eq,orth} \lesssim 1$	Single-field slow-roll	Multi-field
$f_{\rm NL}^{\rm eq,orth} \gtrsim 1$	Single-field non-slow-roll	Multi-field

(from Alvarez et al., arXiv:1412.4671)

• This talk is mostly focused on LEO shapes, but keep in mind that there are many interesting additional shapes (e.g. oscillatory features)

LEO shapes: forecasts

	LiteCOrE-120	COrE+	Planck 2015	LiteBird	ideal
T local	3.7	3.4	5.7	9.4	2.7
T equil.	59	56	70	92	46
T ortho.	25	25	33	58	20
E local	4.5	3.9	32	11	2.4
E equil.	46	43	141	76	31
E ortho.	21	19	72	42	13
T+E local	2.2	1.9	5.0	5.6	1.4
T+E equil.	22	20	43	40	15
T+E ortho.	10	9.1	21	23	6.7

• A cosmic variance dominated E-mode reconstruction up to $I_{max} \sim 3000$ (PRISM, CMBpol) allows an improvement in f_{NL} error bars by a factor ~2 for <u>all shapes</u> .

PNG from LSS

- Future LSS galaxy clustering data have the potential to improve over CMB bounds: 3D LSS density field vs 2D CMB anisotropies field => more modes
- **Power spectrum**. Biased tracers of the dark matter field. Specific NG scale-depedent feature in the bias. For local shape:

$$\Delta b(k) = 2(b-1)f_{\rm NL}\delta_c \frac{3\Omega_m}{2a\,g(a)r_H^2k^2}$$

 Bispectrum. Major challenge: if we want to increase S/N we need to include Fourier modes that are in the non-linear regime of structure formation.
 Late time NG ~ 1000 x primordial NG !

Needs very precise modeling of non-linearities

- Resort on analytical perturbative approach. Hard to go beyond k ~ 0.2 h/Mpc
- Resort on numerical, simulation-based approaches (implicit likelihood inference)

Data

N-body simulations

Quijote

Modal bispectrum estimator

Data \Rightarrow **Summary** statistics

• Weighted expansion of the bispectrum:

$$w(k_1, k_2, k_3)\mathbf{B}(k_1, k_2, k_3) = \sum_{n}^{N} \beta_n Q_n(k_1, k_2, k_3)$$

- Separable modal basis: $Q_n(k_1, k_2, k_3) = q_r(k_1)q_s(k_2)q_t(k_3) + \text{perms, with } n \equiv \{r, s, t\}$
- Method originally developed for CMB
 - Fergusson, Liguori & Shellard (0912.3411)
 - Planck NG (1905.05697)

- Later implemented in the LSS context
 - Schmittfull, Regan & Shellard (1207.5678)
 - Hung, Fergusson & Shellard (1902.01830)
 - Byun, Oddo, Porciani & Sefusatti (2010.09579)

Modal bispectrum estimator

Data \Rightarrow **Summary** statistics

Weighted expansion of the bispectrum:

$$w(k_1, k_2, k_3) \mathbf{B}(k_1, k_2, k_3) = \sum_{n}^{N} \beta_n Q_n(k_1, k_2, k_3)$$

- Separable modal basis: $Q_n(k_1, k_2, k_3) = q_r(k_1)q_s(k_2)q_t(k_3) + \text{perms, with } n \equiv \{r, s, t\}$
- Method originally developed for CMB
 - Fergusson, Liguori & Shellard (0912.3411)
 - Planck NG (1905.05697)

- Later implemented in the LSS context
 - Schmittfull, Regan & Shellard (1207.5678)
 - Hung, Fergusson & Shellard (1902.01830)
 - Byun, Oddo, Porciani & Sefusatti (2010.09579)

 \Rightarrow Only ~100 well chosen modes to describe the bispectrum up to $k_{\text{max}} = 0.5h/\text{Mpc}$

Optimal compression

Summary statistics \Rightarrow Compressed statistics

Compression to the score function:

1712.00012 (J. Alsing, B. Wandelt)

~100 modal coefficients β_n

1 per parameter θ ($f_{\rm NL}^{\rm local}$, $f_{\rm NL}^{\rm equil}$...)

Optimal compression

Summary statistics \Rightarrow Compressed statistics

Assuming a Gaussian likelihood for the summary statistics:

compression equivalent to MOPED, astro-ph/9911102 (A. Heavens, R. Jimenez & O. Lahav)

N-body simulations

Data

• Quijote simulations ($f_{\rm NL} = 0$)

https://quijote-simulations.readthedocs.io (F. Villaescusa-Navarro)

Large suite (~44000) of N-body simulations with 512³ particles and a size of 1 Gpc/h

- \Rightarrow 8000 simulations at fiducial cosmology to estimate covariances
- \Rightarrow Sets of 500 simulations for numerical derivatives (σ_8 , Ω_m , Ω_b , h, n_s)

• Non-Gaussian Quijote-like ($f_{\rm NL} = \pm 100$)

- \Rightarrow Sets of 500 simulations for three primordial shapes: local, equilateral and orthogonal
- $\Rightarrow \text{Numerical derivatives } (f_{\text{NL}}^{\text{local}}, f_{\text{NL}}^{\text{equil}}, f_{\text{NL}}^{\text{ortho}})$

N-body simulations

Data

• Quijote simulations ($f_{\rm NL} = 0$)

https://quijote-simulations.readthedocs.io (F. Villaescusa-Navarro)

Large suite (~44000) of N-body simulations with 512³ particles and a size of 1 Gpc/h

- \Rightarrow 8000 simulations at fiducial cosmology to estimate covariances
- \Rightarrow Sets of 500 simulations for numerical derivatives (σ_8 , Ω_m , Ω_b , h, n_s)

• Non-Gaussian Quijote-like ($f_{\rm NL} = \pm 100$)

⇒ Sets of 500 simulations for three primordial shapes: local, equilateral and orthogonal ⇒ Numerical derivatives ($f_{\rm NL}^{\rm local}, f_{\rm NL}^{\rm equil}, f_{\rm NL}^{\rm ortho}$)

Compressed statistics \Rightarrow **Parameters**

• Pseudo maximum-likelihood estimator:

$$\hat{\theta} = \theta_* + F^{-1} \tilde{\beta}$$

where the Fisher information is $F = \text{Cov}[\tilde{\beta}, \tilde{\beta}]$.

Compressed statistics \Rightarrow **Parameters**

• Pseudo maximum-likelihood estimator:

$$\hat{\theta} = \theta_* + F^{-1} \tilde{\beta}$$

where the Fisher information is $F = \text{Cov}[\tilde{\beta}, \tilde{\beta}]$.

• Constraints on $f_{\rm NL}^{\rm local}$: $f_{\rm NL}^{\rm local}$ 2000 β_n 1000 500 $\sigma(f_{\mathsf{NL}})$ 200 100 75 50 25 0 0.07 0.2 0.5 $k_{\rm max} (h \, {\rm Mpc^{-1}})$

• Nonlinear regime ($k_{max} = 0.5h/Mpc$ here) improves the constraints significantly

 Combining power spectrum and bispectrum also improves the constraints by a factor ~2

• Nonlinear regime ($k_{max} = 0.5h/Mpc$ here) improves the constraints significantly

 Combining power spectrum and bispectrum also improves the constraints by a factor ~2, even if the power spectrum constraining power is very small

Summary of the talk

Conclusions

- Nonlinear scales \rightarrow (a lot of) extra information about cosmology and primordial NG
- Combining power spectrum + bispectrum, constraints on primordial NG comes for free
- Pipeline (first version) combining forward simulations, modal bispectrum estimator and data compression

Future

- Extending the pipeline to halos and galaxies
- Find better summary statistics to study primordial NG