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Primordial non-Gaussianity. Measures interactions. Many inflationary scenarios 
(notably, multi-field Inflation) predict small, model-dependent deviations from Gaussianity.
Additional information in 3-point (bispectrum) and 4-point (trispectrum) functions.
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Beyond power spectra: non-Gaussianity
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• Multi-field
• Curvaton
• Ekpyrotic/cyclic

• Non-canonical kinetic 
terms (K-inflation, DBI)

• Higher derivative terms 
(Ghost Inflation)

• EFT 

• Variants of non canonical
• Kinetic terms and higher 

derivatives
• EFT 

l1 << l2,l3 l1 ~ l2 ~ l3

l2 ~ l3

M. Liguori, “PNG, Planck and beyond” M. Liguori, Testing primordial non-Gaussianity Beyond19, Warsaw, 2019
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Planck LEO constraints

Concordances and challenges… , Sesto 2019

Planck Collaboration: Planck 2018 Results. Constraints on primordial NG

Table 5. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 6.7 ± 5.6 �0.5 ± 5.6

Equilateral . . . . . . 4.0 ± 67 ,4.7 ± 67

Orthogonal . . . . . �38 ± 37 �15 ± 37

SMICA (T+E)
Local . . . . . . . . . 4.1 ± 5.1 �0.9 ± 5.1

Equilateral . . . . . . �25 ± 47 �26 ± 47

Orthogonal . . . . . �47 ± 24 �38 ± 24

do not include polarization in this analysis. We show the PDF
inferred from all the three methodologies described. Each point
is derived from a KSW estimate of the amplitude for the corre-
sponding scale-dependent template with the given running. The
KSW pipeline and the maps processing are the same applied for
the estimation of the local, equilateral and orthogonal shapes;
we include in this analysis the multipole range from 2 to 2000;
the results are corrected for the ISW-lensing bias; All curves are
normalized to integrate to one. We consider possible values of
the running in the interval nNG = [�10, 10]. This interval is two
order of magnitude wider than the theoretical expectation of the
models, that are valid in the regime of mild scale dependence,
i.e. nNG ⇠ 10�1.

The e↵ects of the prior choice are glaring: while assuming a
constant prior (blue squares) we can always identify a peak in the
distribution and define proper constraints, this is not the case for
the other methods. Implementing an uninformative prior (green
circles), the shape of the distribution becomes complex, show-
ing multiple peaks or even diverging on the boundaries, mak-
ing it impossible to define constraints. A similar behavior ap-
pears in the profiled likelihood (red triangles). We used the like-
lihood also to perform a likelihood ratio test between its max-
imum value and its value in nNG = 0. Notice that, in case of
zero running, these models reduce to the usual local or equilat-
eral shapes. From this test, we do not find evidence in favor of
scale dependent models, assuming an acceptance threshold of
↵ = 0.01.

5.2.2. Isocurvature non-Gaussianity

Here we show the results obtained for a study of the isocurva-
ture NG in the Planck 2018 SMICA map using the binned bis-
pectrum estimator. As explained in Sect. 2.4, we only investi-
gate isocurvature NG of the local type, and in addition always
consider only one isocurvature mode (either cold dark matter
(CDM), neutrino density, or neutrino velocity isocurvature) next
to the adiabatic mode. In that case there are six di↵erent fNL pa-
rameters: a purely adiabatic one (a,aa, which corresponds to the

scale-dependent one-field local model

Fig. 2. PDF of the running parameter nNG for the one-field local model.
Left panel: SMICA map. Right panel: Commander map. Blue squares:
Marginalized posterior assuming constant prior. Green circles: posterior
assuming a Je↵reys prior. Red triangles: profiled Likelihood.

result from Sect. 5.1), a purely isocurvature one (i,ii), and four
mixed ones.

The results are given in Table 6.5 As in our 2015 analy-
sis (Planck Collaboration XVII 2016) we see no clear signs of
any isocurvature NG. There are a few values that deviate from
zero by up to about 2.5�, but such a small deviation, in particular
given the large number of results and the fact that the deviations
are not consistent between T-only and T+E, cannot be consid-
ered a detection.

We see that many constraints are tightened considerably
when including polarization, by up to the predicted factor of
about five to six for the cold dark matter a,ii, i,ai, and i,ii modes
in the joint analysis. Focussing now on the independent results,
where the interpretation is more direct, we see that the error bars
of some of the cold dark matter and neutrino velocity modes
improve by up to a factor of about two when going from the T-
only to the full T+E analysis, while the improvements for the
neutrino density modes are much smaller, of the order of what

5 As opposed to definitions in the literature based on ⇣ and S (see
e.g., Langlois & van Tent 2012), but similarly to our 2015 analysis, we
adopt definitions based on �adi = 3⇣/5 and �iso = S/5, in order to
make the link with the standard adiabatic result more direct. Conversion
factors to obtain results based on ⇣ and S are 6/5, 2/5, 2/15, 18/5, 6/5,
and 2/5, for the six modes respectively.

14

Planck 2018 results. IX, arXiv:1905.05697



Future goals

Concordances and challenges… , Sesto 2019CosmoGold, IAP, 2019

• It is generally accepted that the next sensitivity target should be fNL ~ 1

• Local shape: fNL > 1 would rule out single-field inflation. fNL < 1 would rule 
out a large class of multi-field models  (“spectator fields”)

• Equilateral, Orthogonal: the fNL ~ 1 threshold allows discriminating between the 
single-field slow-roll and non-slow-roll regimes.

f loc

NL
. 1 f loc

NL
& 1

f eq, orth

NL
. 1 Single-field slow-roll Multi-field

f eq, orth

NL
& 1 Single-field non-slow-roll Multi-field

Table 1. Table summarizing physical implications for qualitatively di↵erent measurements of the shapes of
primordial non-Gaussianity.

As emphasized above, the interpretation of each scenario requires some caveats. It is our

assessment that this table represents a baseline interpretation for each observational outcome. It is

clear that if any experiment reaches these forecasts level, we are going to learn a lot, no matter what

we find, which is an ideal situation for an experiment to be. In the event of a detection of either

shape, measuring the scaling in the squeezed limit is an important distinguishing tool.

2.5 Targets for the power spectrum

The power spectrum of density fluctuations encodes a degenerate combination of the initial state and

evolution of the primordial comoving horizon. In the context of inflationary cosmology, the evolution

of the comoving horizon is fixed by the precise shape of the scalar field potential. Measuring the first

two coe�cients in a logarithmic expansion of the power spectrum, the spectral index ns and running

↵s, provides constraints on the inflaton potential. For example, the simplest single-field models of

inflation would be ruled out by a measurement of significant running. Ultra-precise measurements

of ns and ↵s could greatly constrain the model-space of inflationary cosmology 4.

Access to pre-inflationary initial conditions imprinted in the two-point function at the largest

scales is possible when there is just-enough inflation. A host of ideas including an initial period of

fast-roll [67, 68], excited states [69, 70], and connections to the eternally inflating multiverse [71, 72]

have recently been invoked to explain the anomalously low power at ` . 30 5. Future LSS may

provide improved constraints on the power on large scales [71]. In addition, an important exercise is

determining how distinguishable all of these scenarios are by incorporating information beyond the

two-point function (e.g. [18, 74]).

Another signature of significant theoretical interest are oscillations in the power spectrum,

bispectrum, and beyond. This is motivated by the symmetry structure of string theory along axion

directions in field space, e.g. as an auxiliary signature of axion monodromy inflation [75], as well as

from the point of view of weakly broken discrete shift symmetries in low energy e↵ective field theory

[76]. The oscillatory features have a model-dependent amplitude which is exponentially sensitive

to couplings in the theory, and may be undetectably small, but there are interesting theoretical

thresholds in simple examples [77]. In particular, in the case of high-scale inflation there are bounds

4
The utility of this exercise is arguably highly dependent on appropriate theoretical priors, as many models will be

indistinguishable even within the ultimate cosmic variance limited error bars.
5
Further motivation to study novel phenomena at large scales arises from a tension between the tensor power

claimed to be observed by BICEP2 and the CMB temperature power spectrum, e.g. [73].
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(from Alvarez et al., arXiv:1412.4671) 

• This talk is mostly focused on LEO shapes, but keep in mind that there are 
many interesting additional shapes (e.g. oscillatory features) 
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LEO shapes: forecasts

LiteCOrE-120       COrE+ Planck 2015 LiteBird ideal

T local 3.7                     3.4                   5.7                   9.4               2.7
T equil. 59                      56  70                    92 46
T ortho. 25 25                    33 58 20

E local 4.5 3.9 32 11 2.4
E equil. 46 43 141 76 31
E ortho. 21 19 72 42 13

T+E local 2.2 1.9 5.0 5.6 1.4
T+E equil. 22 20 43 40 15
T+E ortho. 10 9.1 21 23 6.7

Concordances and challenges… , Sesto 2019

• A cosmic variance dominated E-mode reconstruction up to lmax ~ 3000 
(PRISM, CMBpol) allows an improvement in fNL error bars by a 
factor ~2 for all shapes c



PNG from LSS

Concordances and challenges… , Sesto 2019

3

peak height, and hence no change in the abundance of
massive halos. However, δ and φ are correlated, imply-
ing that rare peaks are systematically raised or lowered,
depending upon the sign of fNL. Therefore, we expect
changes in the mass function and the correlation func-
tion.

In the appendix, we derive expressions for the abun-
dance and clustering of regions above a given threshold,
which then give the clustering and mass function of halos
in the Press-Schechter model. However, we can derive the
form of the halo correlation function using a very simple
argument. The halo correlation function is usually pa-
rameterized in terms of the halo bias b, which is the rate
of change of the halo abundance as the background den-
sity is varied. Writing the matter overdensity as δ and
the halo overdensity as δh, we can define the halo bias as

δh = b δ. (6)

It is normally assumed that b → const on large scales,
but we will not make this assumption here. Consider a
long-wavelength mode, providing a background density
perturbation δ and corresponding potential fluctuation
φ. In the absence on nongaussianity, this perturbation
raises subthreshold peaks above threshold, and thereby
enhances the abundance of super-threshold peaks by bLδ,
where bL is the usual (Gaussian) Lagrangian bias. For
nonzero fNL, the long-wavelength mode also enhances the
peak height by 2fNLφpδpk, and we will focus on peaks
near threshold, such that δpk " δc. This provides an
additional enhancement factor, giving a total

δh = bL(δ + 2fNLφpδc). (7)

In Fourier space, the potential and density modes are
related by φ = (3Ωm/2ar2

Hk2)δ, and so we see that the
nongaussian bias acquires a correction

∆b(k) = 2bLfNLδc
3Ωm

2ag(a) r2
Hk2

, (8)

where again bL refers to the usual Lagrangian bias for
halos of this mass with Gaussian fluctuations. The total
Lagrangian bias is then bL(k) = bL + ∆b(k).

Since we have been working with the clustering of
peaks in the initial density distribution, the above ex-
pression for the bias applies only to the early-time, La-
grangian bias. Translating these results to late-time, Eu-
lerian bias is straightforward, however. The bias of Eule-
rian halos is simply b = 1+bL : the excess of halos in some
Eulerian volume with overdensity δ is bδ = bLδ + δ. The
first term corresponds to the excess of peaks in the initial
Lagrangian volume, which are advected into the Eulerian
volume. The second term arises because an Eulerian vol-
ume with overdensity δ has δ times more mass than an
average volume, and therefore δ times more peaks.

In summary, local NG generates a scale-dependent cor-
rection to the bias of galaxies and halos, of the form

∆b(k) = 2(b − 1)fNLδc
3Ωm

2a g(a)r2
Hk2

(9)

FIG. 1: Slice through simulation outputs at z = 0 gener-
ated with the same Fourier phases but with fNL =−5000,
−500, 0, +500, +5000 respectively from top to bottom. Each
slice is 375 h−1 Mpc wide, and 80 h−1 Mpc high and deep.
We can easily match by eye much of the large scale struc-
ture; for example, an overdense region sits on the left, while
an underdense region (void) falls on the right, in all panels.
Note that for positive fNL, overdense regions are more evolved
and produce more clusters than their Gaussian counterparts,
while underdense regions are less evolved (e.g. grid lines are
still visible). For negative fNL, underdense regions are more
evolved, producing deeper voids, while overdense regions are
less evolved, as illustrated by the grid lines apparent in the
left of the top panel.

where b here now refers to the Eulerian bias of the tracer
population. In subsequent sections, we show that this
simple expression, despite the underlying assumptions
and approximations in its derivation, matches surpris-
ingly well the halo clustering measured in our numerical
simulations.

III. NUMERICAL SIMULATIONS

We numerically simulate the growth of structure in
nongaussian cosmologies using the adaptive P3M par-
allel N-body code GRACOS

2 [63, 64]. Non-gaussian ini-
tial conditions were generated using the following pro-
cedure. First, we generated a Gaussian random poten-
tial field φ(x) using a power-law power spectrum with a
scalar (density) index ns = 0.96, and normalized so that

2 http://www.gracos.org

CosmoGold, IAP, 2019

• Future LSS galaxy clustering data have the potential to improve over 
CMB bounds: 3D LSS density field vs 2D CMB anisotropies field => more modes

• Power spectrum. Biased tracers of the dark matter field. Specific NG 
scale-depedent feature in the bias. For local shape:

• Bispectrum. Major challenge: if we want to increase S/N we need to include 
Fourier modes that are in the non-linear regime of structure formation. 
Late time NG ~ 1000 x primordial NG !

Needs very precise modeling of non-linearities

Ø Resort on analytical perturbative approach. Hard to go beyond k ~ 0.2 h/Mpc

Ø Resort on numerical, simulation-based approaches 
(implicit likelihood inference)



Pipeline 

Data 
N-body simulations

Quijote 



Pipeline 

Data 
N-body simulations

Quijote 

Modal estimator

Summary statistics 
- Bispectrum 
- Power spectrum



Pipeline 

Data 
N-body simulations

Quijote 

Modal estimator

Summary statistics 
- Bispectrum 
- Power spectrum

Score compression


Compressed 
statistics



Pipeline 

Data 
N-body simulations

Quijote 

Modal estimator
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- Bispectrum 
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Compressed 
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Quasi maximum 

likelihood estimator

Parameters 

- , , , ,  

- , ,  

σ8 Ωm Ωb h ns

f local
NL f equil

NL f ortho
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Modal bispectrum estimator

• Method originally developed for CMB 
- Fergusson, Liguori & Shellard (0912.3411) 

- Planck NG (1905.05697)

• Later implemented in the LSS context 
- Schmittfull, Regan & Shellard (1207.5678)

- Hung, Fergusson & Shellard (1902.01830)

- Byun, Oddo, Porciani & Sefusatti (2010.09579)

• Weighted expansion of the bispectrum: 
 
 
 

• Separable modal basis: , with  Qn(k1, k2, k3) = qr(k1)qs(k2)qt(k3) + perms n ≡ {r, s, t}

 w(k1, k2, k3)B(k1, k2, k3) =
N

∑
n

βnQn(k1, k2, k3)

Data  Summary statistics ⇒



Modal bispectrum estimator

 Only ~100 well chosen modes to describe the bispectrum up to  ⇒ kmax = 0.5h /Mpc

• Method originally developed for CMB 
- Fergusson, Liguori & Shellard (0912.3411) 

- Planck NG (1905.05697)

• Later implemented in the LSS context 
- Schmittfull, Regan & Shellard (1207.5678)

- Hung, Fergusson & Shellard (1902.01830)

- Byun, Oddo, Porciani & Sefusatti (2010.09579)

• Weighted expansion of the bispectrum: 
 
 
 

• Separable modal basis: , with  Qn(k1, k2, k3) = qr(k1)qs(k2)qt(k3) + perms n ≡ {r, s, t}

 w(k1, k2, k3)B(k1, k2, k3) =
N

∑
n

βnQn(k1, k2, k3)

Data  Summary statistics ⇒



Optimal compression 
Summary statistics  Compressed statistics⇒

• Compression to the score function:                               1712.00012 (J. Alsing, B. Wandelt) 

       βn β̃θ

~100 modal coefficients βn 1 per parameter  ( , …)θ f local
NL f equil

NL



Optimal compression 
Summary statistics  Compressed statistics⇒

• Compression to the score function:                               1712.00012 (J. Alsing, B. Wandelt) 

       βn β̃θ

~100 modal coefficients βn 1 per parameter  ( , …)θ f local
NL f equil

NL

• Assuming a Gaussian likelihood for the summary statistics:                               
compression equivalent to MOPED, astro-ph/9911102 (A. Heavens, R. Jimenez & O. Lahav) 

 β̃θ = ∂βi

∂θ
C−1

ij (βj − β̄j)

Data to compress

Inverse covariance of 
β

Mean of 
β

Derivative


 Computed from simulations 
at fiducial cosmology  
⇒

θ*

∂β
∂θ

= β(θ* + Δθ) − β(θ* − Δθ)
2Δθ

 Computed from simulations where 
 is a step  away from fiducial  

⇒
θ Δθ θ*



N-body simulations 
• Quijote simulations (  ) 

 
Large suite (~44000) of N-body simulations with 5123 particles and a size of 1 Gpc/h 

 8000 simulations at fiducial cosmology to estimate covariances 
 Sets of 500 simulations for numerical derivatives ( , , , , ) 

• Non-Gaussian Quijote-like (  ) 
 Sets of 500 simulations for three primordial shapes: local, equilateral and orthogonal 
 Numerical derivatives ( , ,  ) 

fNL = 0

⇒
⇒ σ8 Ωm Ωb h ns

fNL = ± 100
⇒
⇒ f local

NL f equil
NL f ortho

NL

https://quijote-simulations.readthedocs.io (F. Villaescusa-Navarro)  

Data 
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Large suite (~44000) of N-body simulations with 5123 particles and a size of 1 Gpc/h 

 8000 simulations at fiducial cosmology to estimate covariances 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• Non-Gaussian Quijote-like (  ) 
 Sets of 500 simulations for three primordial shapes: local, equilateral and orthogonal 
 Numerical derivatives ( , ,  ) 

fNL = 0
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⇒ σ8 Ωm Ωb h ns
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⇒
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NL

https://quijote-simulations.readthedocs.io (F. Villaescusa-Navarro)  

Data 

Bispectrum: ratio non-Gaussian/Gaussian




Constraints 
Compressed statistics  Parameters⇒

• Pseudo maximum-likelihood estimator:   
 
 
 
 
where the Fisher information is .                              F = Cov[β̃, β̃]

̂θ = θ*+F−1β̃



Constraints 
Compressed statistics  Parameters⇒

• Pseudo maximum-likelihood estimator:   
 
 
 
 
where the Fisher information is .                              F = Cov[β̃, β̃]

̂θ = θ*+F−1β̃

• Constraints on  :   
 
                         

f local
NL



Constraints 

 Including small scales 
(nonlinear regime) improves 
significantly the constraints on all 
parameters (cosmological + PNG) 

⇒



Constraints 
• Constraints on  :   
 
                         

f local
NL

• Nonlinear regime (  here) improves the constraints significantly 
• Combining power spectrum and bispectrum also improves the constraints by a 

factor ~2 
 
                         

kmax = 0.5h /Mpc



Constraints 
• Constraints on  :   
 
                         

f local
NL

• Nonlinear regime (  here) improves the constraints significantly 
• Combining power spectrum and bispectrum also improves the constraints by a 

factor ~2, even if the power spectrum constraining power is very small 
 
                         

kmax = 0.5h /Mpc



Constraints 

 Power spectrum + bispectrum 
fully decorrelates cosmological 
parameters and primordial non-
Gaussianity amplitudes! 

⇒



Summary of the talk 

Conclusions 
• Nonlinear scales  (a lot of) extra information about cosmology and primordial NG


• Combining power spectrum + bispectrum, constraints on primordial NG comes for 
free


• Pipeline (first version) combining forward simulations, modal bispectrum estimator and 
data compression

→

Future 
• Extending the pipeline to halos and galaxies


• Find better summary statistics to study primordial NG


