
IV FLAG Meeting “The Quantum and Gravity”, Trento

Classical and Quantum – Correspondence

or Duality?

Alexander Yu. Kamenshchik

University of Bologna and INFN, Bologna

October 6 - October 7, 2022



Based on:

Alexander Yu. Kamenshchik, Alessandro Tronconi,
Tereza Vardanyan and Giovanni Venturi,

Time in quantum theory, the Wheeler-DeWitt equation and
the Born-Oppenheimer approximation,

International Journal of Modern Physics D 28, 1950073
(2019).



Content

1. Introduction

2. Wheeler-DeWitt equation, the problem of time in
quantum cosmology and reparametrisation invariance

3. The problem of time in non-relativistic quantum
mechanics

4. Classical motion behind a quantum state

5. Inverse problem: quantum state and Hamiltonian behind
a classical motion

6. Conclusions



Introduction

I The origin of our Universe is quantum.

I The universe in which we live is classical.

I How it is possible?

I The correspondence principle tells us that at some
conditions the quantum system behaves as classical.

I How universal is this principle?

I Is the problem of time typical only for quantum
cosmology?



Introduction

I I shall try to show that the problem of time in quantum
theory is more general than that arising during the
reparametrisation invariance of the General Relativity or
its modifications or generalisations.

I Moreover, the correspondence principle can be substitute
by a more general duality principle.



Wheeler-DeWitt equation, the problem of time in quantum
cosmology and reparametrisation invariance

I The Hilbert-Einstein Lagrangian of General Relativity is
reparametrisation invariant.

I It contains the Lagrange multipliers N and N i , lapse and
shift functions.

I The dynamical degrees of freedom are connected with the
spatial components of the metric gij and with the
non-gravitational fields present in the universe.

I One introduces the conjugate momenta and makes a
Legendre transformation in order to use the canonical
formalism.

I Then one discovers that the Hamiltonian is proportional
to the linear combination of the constraints, multiplied by
the Lagrange multipliers.

I Thus, the Hamiltonian vanishes if the constraints are
satisfied.



I This can be interpreted as the impossibility of writing
down a time-dependent Schrödinger equation.

I One can see this problem from a somewhat different
point of view.

I If one applies the Dirac quantisation procedure, then the
constraints, wherein the classical phase variables are
substituted by the quantum operators, should annihilate
the quantum state of the system.

Hi |Ψ〉 = 0.

I Gravitational constraints contain momenta, which
classically are time derivatives of fields, but their origin
connected with the classical notion of time vanishes in
the quantum theory, where momenta are simply operators
satisfying some commutation relations.



I The main constraint arising in General Relativity is
quadratic in momenta and gives rise to the so called
Wheeler-DeWitt equation.

I It looks like that the problem of time in quantum
cosmology arises due to a particular combination of the
reparametrisation invariance and “quantumness”.

Gianni has given a great contribution to the study of the
Wheeler-DeWitt equation, specially in the Born-Oppenheimer
approach.



The problem of time in non-relativistic quantum mechanics

Let us imagine an isolated quantum system, which finds itself
in an energy eigenstate. Its wave function is

Ψ(xA, t) = e−iEtψ(xA),

where the time parameter appears only in the phase factor,
which does not depend on the variables xA and is not essential
for the definition of the quantum state. Quantum states are
determined up to a constant complex phase. All the
probability distributions are independent of time.



This situation just coincides with that of the Wheeler-DeWitt
equation with the peculiarity that in the case of the
Wheeler-DeWitt equation the value of E is always equal to
zero.

The problem of time in quantum mechanics and its analogy
with the absence of time in the Wheeler-DeWitt equation was
analysed in some detail in paper
F. Englert, Quantum physics without time, Physics Letters
B228, 111 (1989).

If the set of variables includes more than one element, we can
introduce an effective time parameter, identifying it with a
certain function of the variables xA (a quantum clock).



The topic incites an essential interest. We would like to
mention the book
E. Anderson, The Problem of Time. Quantum Mechanics
Versus General Relativity, Fundamental Theories of Physics,
Vol. 190, Springer, 2017,

and two-volume collection of papers
Time in Quantum Mechanics, edited by G. Muga, R. Sala
Mayato and I. Egusquiza (Springer, 2008: Vol 1 and 2010: Vol
2),
where different conceptual and experimental aspects of the
appearance of time in quantum mechanics are presented.



A very clear presentation of the problem is given in paper
A. Schild, Time in quantum mechanics: A fresh look at the
continuity equation, Phys. Rev. A 98, 052113 (2018).

Let us consider a quantum system consisting of two
subsystems, whose wave function satisfies a time-independent
Schrödinger equation with a fixed value of energy. One can
always represent the wave function as a product of two
functions:

ψ(R , r) = χ(R)φ(r |R).

The function χ(R) describes a subsystem, which plays the
role of quantum clock, while φ(r |R) describes the subsystem,
whose evolution is traced by the quantum clock.

The expression |χ(R)|2 gives the marginal probability density
for the quantum clock and |φ(r |R)|2 gives the conditional
probability for the system under consideration.



The clock-dependent Schrödinger equation for the subsystem
under consideration, has the form

A
d lnχ

dR

∂φ

∂R
= Heffφ.

We have chosen a convenient gauge fixing of the phase in the
decomposition, A is some coefficient and Heff is an effective
Hamiltonian for the subsystem.

The left-hand side of this equation does not represent a partial
derivative with respect to a time parameter.

if the clock has some particular semiclassical properties and if
the wave function χ has a semiclassical form χ ∼ exp(iS),
then the left-hand side of the above equation behaves as a
partial derivative with respect to the classical time.



One can underline two important features:

I The exact factorisation of the wave function is always
possible and it is always possible to obtain the
clock-dependent Schrödinger equation from the
time-independent Schrödinger equation.

I A quantum clock does not always give rise to
(semi)-classical time.

In some situations it is necessary to use a coarse-graining
procedure to obtain a (semi)-classical time from a quantum
clock.



In cosmology the corresponding models were studied in the
papers:

A. Tronconi, G. P. Vacca and G. Venturi, The Inflaton and
time in the matter gravity system, Phys. Rev. D 67, 063517
(2003);

A. Yu. Kamenshchik, A. Tronconi, T. Vardanyan and G.
Venturi, Quantum Gravity, Time, Bounces and Matter, Phys.
Rev. 97, 123517 (2018).



Difference

In quantum mechanics the wave function ψ(R , r) is
normalisable and both the system under consideration and the
clock can be treated to some extent on equal footing.

The solutions of the Wheeler-DeWitt equation are
non-normalizable, because the configuration space on which
they are defined contains some superfluous (gauge or
non-physical) degrees of freedom.

The variables r should be chosen to make the wave function
φ(r |R) normalisable and to satisfy the Schrödinger equation
with some effective Hamiltonian, while the variable R and the
wave function χ(R) play an auxiliary role and serve for the
introduction of the quantum clock and, sometimes, of the
classical time.



Classical motion behind a quantum state

Some analogue of the classical time can be introduced even in
the system with one degree of freedom:
A. Sommerfeld, Wave Mechanics, London, Methuen, 1930;
E. G. Peter Rowe, The classical limit of quantum mechanical
hydrogen radial distributions, European J. Physics 8, 81
(1987);
L. Pauling and E. B. Wilson, Introduction to Quantum
Mechanics, Reading, MA: Addison-Wesley, 1935.

I Let us consider a particle with one spatial coordinate and
a stable probability distribution for this coordinate.

I One can suppose that behind this probability distribution
there is a classical motion which we can observe
stroboscopically.

I We can detect its position many times and obtain a
probability distribution for this position.



I Classically this measured probability is inversely
proportional to the velocity of the particle.

I The higher is the velocity of a particle in some region of
the space the less is the time that it spends there.

I In quantum mechanics this probability is given by the
squared modulus of its wave function.

ψ∗(x)ψ(x) =
1

|v(x)|T
,

where T is a normalising time scale.

In paper by Rowe the probability distributions for the energy
eigenstates of the hydrogen atom with a large principal
quantum number n were studied.
The distributions with the orbital quantum number l having
the maximal possible value l = n − 1, being interpreted as
above, describe the corresponding classical motion of the
electron on the circular orbit.



The state with l = 0 cannot produce immediately a correct
classical limit. One should apply a coarse-graining procedure
based on the Riemann - Lebesgue theorem.

nother interesting example: the harmonic oscillator with a
large value of the quantum number n. In this case, making a
coarse-graining of the probability density one can again
reproduce a classical motion of the oscillator (Pauling).



Inverse problem: quantum state and Hamiltonian behind a
classical motion

I Usually, when one studies the question of the
classical-quantum correspondence, one looks for the
situations where this correspondence is realised.

I It is reasonable to suppose that such situations are not
always realised.

I Moreover, they can be rather exceptional.

I Here we would like to attract attention to another
phenomenon: a particular quantum-classical duality
between the systems governed by different Hamiltonians.



Example

Let us suppose that we have a classical motion of the
harmonic oscillator, governed by the law

x(t) = x0 sinωt.

The velocity is
ẋ(t) = ωx0 cosωt.

We can believe that behind this classical motion there is a
stationary wave function

ψ(x) =
1√

π(x20 − x2)1/4
e if (x)θ(x20 − x2),

where θ is the Heaviside theta-function and f is a real
function.



Applying the energy conservation law and the stationary
Schrödinger equation we can find the corresponding potential
for the quantum problem:

V (x) =
mω2x20

2

+
~2

2m

(
1

2(x20 − x2)
+

5x2

4(x20 − x2)2
+ if ′′ + if ′

x

x20 − x2
− f ′2

)
,

if x2 < x20 .

To guarantee the reality of the potential and, hence, the
hermiticity of the Hamiltonian, we must choose the phase
function f such that

f ′ = C
√

x20 − x2,

where C is a real constant.



Then the potential is equal to

V (x) =
mω2x20

2

+
~2

2m

(
1

2(x20 − x2)
+

5x2

4(x20 − x2)2
+ C 2(x2 − x20 )

)
,

if x2 < x20 .

Then for x2 > x20 we can treat the potential as an infinite
since there the wave function is zero.



Conclusions

I The example constructed above is a rather artificial.

I We have elaborated it to hint at the possibility of
encountering similar effects in cosmology .

I One can imagine a situation where behind the visible
classical evolution of the universe looms a quantum
system, whose Hamiltonian is quite different from the
classical Hamiltonian governing this visible classical
evolution.

I It was Gianni who has attracted our attention to the
paper by Rowe and the books by Sommerfeld and Polling,
leading us to a new hypothesis about the possibility of a
classical-quantum duality.



I Another research line initiated by Gianni: the
Pauli-Zeldovich mechanism for the cancellation of the
ultraviolet divergences in vacuum energy.

I This mechanism arises because bosons and fermions give
contributions of the opposite signs.


