IV FLAG Meeting 'The Quantum and Gravity', University of Trento, 6/10/2022

The role of geometry projection and of regularization in Asymptotic Safety: lessons from 'CREH'

Speaker: Maria Conti Università degli Studi dell'Insubria

Supervisor: **S.L. Cacciatori** Università degli Studi dell'Insubria

Collaborators: **A.M. Bonanno** Università degli studi di Catania

Index

- Why Asymptotic Safety?
- Background independence
- The problem of truncation
- The problem of the choice of geometry

Introduction on AS

Perspectives on previous results

- Motivation
- The role of a simpler model: 'CREH'
- Our results in the CREH +R² model
- Beyond our first steps

Our research

Why Asymptotic Safety?

Introduction on AS

perturbatively non renormalizable QFT

treat it as an **EFT**: renormalization includes ∽ counterterms when > Planck scale

Is there a way to renormalize gravity non perturbatively?¹

AS = EFT + constraint

GR (EH action)

'Our world is located within the UV critical hypersurface of a suitable renormalization group (RG) **fixed point**' ^{2,3}

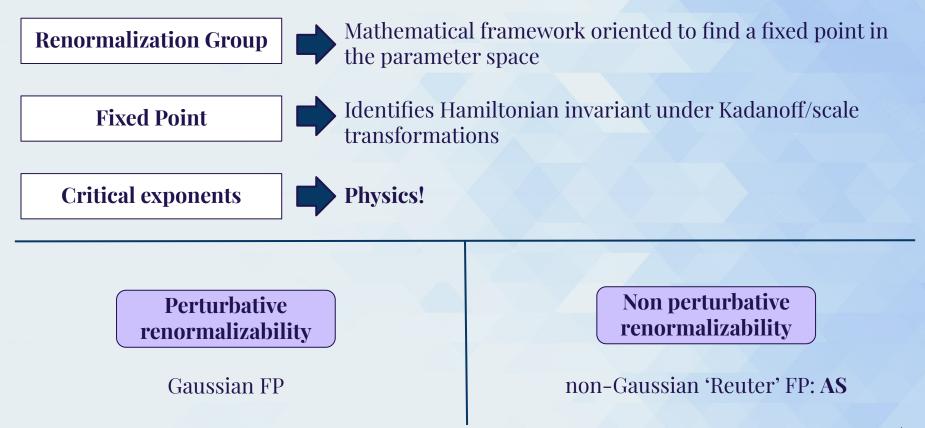
¹ S. Weinberg, in '*General Relativity: An Einstein centenary survey*', ed. S.W. Hawking and W. Israel, 790–831, Cambridge University Press (1979)

² A. Bonanno and F. Saueressig, 'Asymptotically safe cosmology – a status report', 254-264, Comptes Rendus Physique 18 (2017)

³ **R. Percacci**, '*A short introduction to Asymptotic Safety*', part of Time and Matter: Proceedings, 3rd International Conference, TAM2010, Budva, Montenegro, 4–8 October, 123–142 (2010)

Why Asymptotic Safety?

Introduction on AS



Background independence

Introduction on AS

RG framework choice = 'cutting away field configurations'

'k scale of RG must be almost physical' ⁴ $\Gamma_{\mathbf{k}}$ = action describing effective action at scale k

Problem: **k** must be proper momentum (i.e. related to a specific metric).

Here the metric is **dynamical**!

⁴ M. Reuter and H. Weyer, '*The role of background independence for asymptotic safety in Quantum Einstein Gravity*', Phys. Rev. D 79 (2009)

Background independence

Introduction on AS

Background field technique

to be quantized

1) fix arbitrary background metric $\bar{g}_{\mu\nu}$ + fluctuation $h_{\mu\nu}$

2) at the end adjust $\bar{g}_{\mu\nu}$ s.t. $\bar{h}_{\mu\nu} := \langle h_{\mu\nu} \rangle = 0$

Background independence

chosen by the system!

k is proper

k is related to the surviving metric: the background

Gravitational effective action: all terms compatible with symmetry under diffeomorphisms!

$$\Gamma[g_{\mu\nu}] = \int d^d x \sqrt{g} \left\{ q_0 + q_1 R + q_2 R^2 + \cdots \right\}$$

Right now, we cannot say for sure that we found the Reuter fixed point (as not as with 3D Wilson Fisher model ^{5,6}). We must show it does not depend on the truncation!

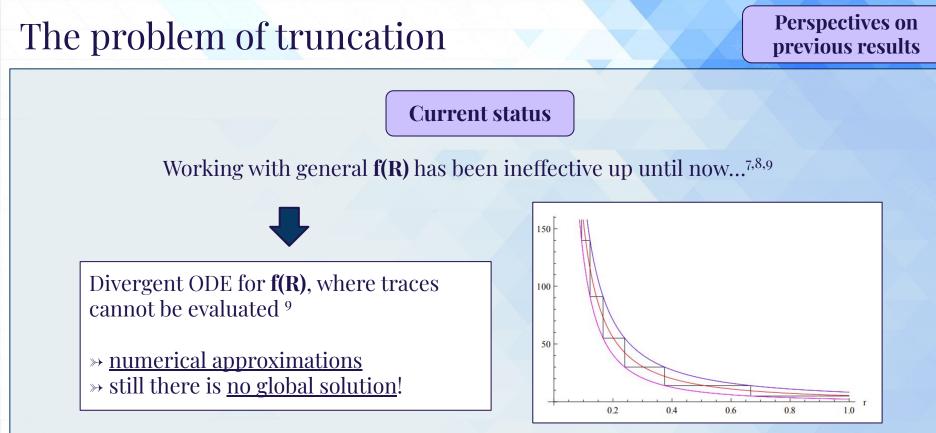
Many results have been obtained, but always working with truncations!^{7,8}

⁵ **T. Morris**, *'On Truncations of the Exact Renormalization Group'*, Phys. Lett. B, Vol. 334, Issues 3–4 (1994)

⁶ T. Morris, 'Derivative Expansion of the Exact Renormalization Group', Phys. Lett. B, Vol. 329 (1994)

⁷ **P.F. Machado** and **F. Saueressig**, 'On the renormalization group flow of f(R)-gravity', Phys. Rev. D, Vol. 77 (2008)

⁸ K. Falls et. al., 'Asymptotic safety of quantum gravity beyond Ricci scalars', Phys. Rev. D, Vol. 97, Issue 8 (2018)



⁹ M. Demmel et al., JHEP, Vol. 06 (2014), Fig. 2

⁷ P.F. Machado and F. Saueressig, 'On the renormalization group flow of f(R)-gravity', Phys. Rev. D, Vol. 77 (2008)
⁸ K. Falls et. al., 'Asymptotic safety of quantum gravity beyond Ricci scalars', Phys. Rev. D, Vol. 97, Issue 8 (2018)
⁹ M. Demmel et al., 'RG flows of Quantum Einstein Gravity on maximally symmetric spaces', JHEP, Vol. 06 (2014)

The problem of the choice of geometry

Perspectives on previous results

Much of the work has been done projecting onto **flat geometry** (but also spherical geometry)

But **IF** and **HOW** is the choice of the geometry affecting results?

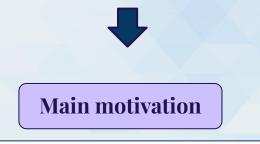
(Difference from the 'background independence' problem)

And what about the role of the **regulator**?

$$k\partial_k\Gamma_k = -\frac{1}{2}\int_0^\infty \frac{ds}{s} (k\partial_k\rho_k(s)) \mathrm{Tr} e^{-s\Gamma_k^{(2)}}$$
 regulator

Motivation

- 1) What is the role of the space we project onto when determining the **universal properties** of our theory?
- 2) How is the regulator concretely affecting these properties?



Determine a regulator for which the impact of the geometry is minimized!

We need a tool to study the effects of switching geometries and regulators

'CREH'

Conformally Reduced Einstein's Gravity

All the metrics involved are **conformal factors** of a reference metric.

$$g_{\mu\nu} = \phi^2 \hat{g}_{\mu\nu}$$
$$\bar{g}_{\mu\nu} = \chi_B^2 \hat{g}_{\mu\nu}$$

. . .

Each metric is represented by a single **scalar** function!

Our research

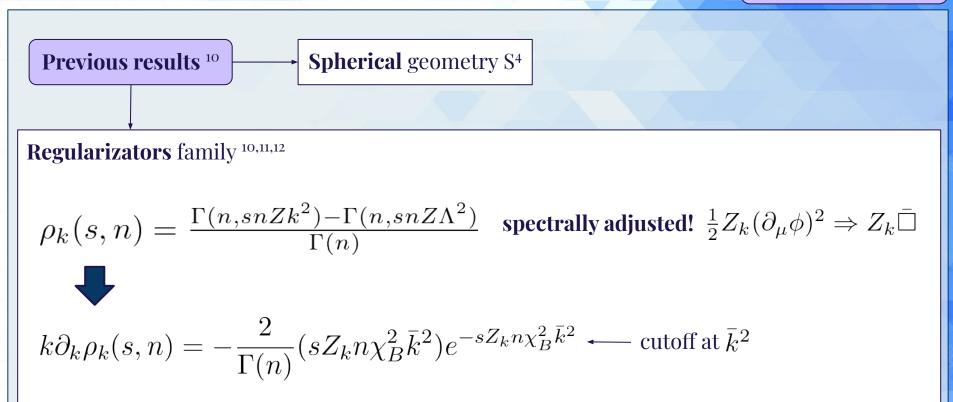
Einstein-Hilbert action: universe of pure curvature + cosmological constant

$$S = -\frac{1}{16\pi G} \int d^4x \sqrt{g} \left[R(g) - 2\Lambda \right]$$

$$S = \left(-\frac{3}{4\pi G} \right) \int d^4x \sqrt{\hat{g}} \left[\frac{1}{2} \hat{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{12} R(\hat{g}) \phi^2 - \frac{1}{6} \Lambda \phi^4 \right]$$

extremely similar to a scalar theory!

Our research

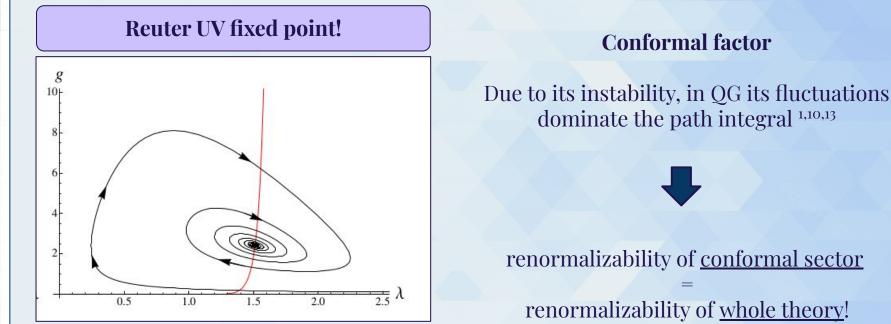


¹⁰ A. Bonanno and F. Guarnieri, 'Universality and symmetry breaking in conformally reduced quantum gravity', Phys. Rev. D, vol. 86, Issue 10, (2012)

¹¹ A. Bonanno et al., 'On Exact Proper Time Wilsonian RG Flows', Eur. Phys. J. C, Vol. 80, Issue 3 (2020)

¹² A. Bonanno et al., 'Structural aspects of FRG in quantum tunnelling computations', Annals Phys., Vol. 445 (2022)

Our research



¹⁰ **A. Bonanno** and **F. Guarnieri**, Phys. Rev. D, vol. 86, Issue 10, (2012), Fig. 2

¹ S. Weinberg, in '*General Relativity: An Einstein centenary survey*', ed. S.W. Hawking and W. Israel, 790–831, Cambridge University Press (1979)
 ¹⁰ A. Bonanno and F. Guarnieri, 'Universality and symmetry breaking in conformally reduced quantum gravity', Phys. Rev. D, vol. 86, Issue 10, (2012)
 ¹³ M. Reuter, 'Nonperturbative Evolution Equation for Quantum Gravity', Phys. Rev. D, Vol. 57, (1998)

Our research

Starting point

Einstein-Hilbert action + **R**²: what happens at bigger orders in curvature?

$$S = \int d^4x \sqrt{g} \left[\left(-\frac{1}{16\pi G} \right) \left(R(g) - 2\Lambda \right) + \beta R^2 \right]$$

- 1) Spherical geometry
- **2)** Usual regulator family

Our research

Reduced number of degrees of freedom: we are able to compute traces exactly

$$\partial_t \Gamma_k = -\frac{1}{2} \int_0^\infty \frac{ds}{s} (\partial_t \rho_k(s, n)) \operatorname{Tr} e^{-s\Gamma_k^{(2)}} \quad \clubsuit \quad \phi = \phi_0 + \tilde{\phi}$$

$$\partial_t \Gamma_k = \int d^d x \sqrt{\hat{g}} \left[-\frac{1}{2} (\partial_t \tilde{Z}_k[\phi_0]) \tilde{\phi} \hat{\Box} \tilde{\phi} + (\partial_t U_k[\phi_0]) + 36 (\partial_t \beta_k[\phi_0]) \frac{(\hat{\Box} \tilde{\phi})^2}{\phi_0^2} \right]$$

$$\partial_t U_k[\phi_0] = \frac{1}{12} (\partial_t Z_k) \hat{R} \phi_0^2 - \frac{1}{6} (\partial_t Z_k \Lambda_k) \phi_0^4 + (\partial_t \beta_k) \hat{R}^2.$$

Our research

$$\begin{array}{c} \textbf{r.h.s} \quad \textcircled{} \quad \overbrace{} \quad \Gamma_{k}^{(2)} = \mathcal{X} + \mathcal{Y} \\ \end{array} \\ \hline \mathcal{K} = -Z_{0}\hat{\Box} + U_{0}^{(2)} + 36c_{1}\hat{\Box}^{2} \\ \mathcal{Y} = -\frac{Z_{0}'}{2}[(\hat{\Box}\tilde{\phi}) + \hat{\Box}(\tilde{\phi} \cdot) + \tilde{\phi}\hat{\Box}] + \tilde{\phi}U_{0}^{(3)} + 72c_{2}[(\hat{\Box}\tilde{\phi})\hat{\Box} + \hat{\Box}((\hat{\Box}\tilde{\phi}) \cdot) + \hat{\Box}(\tilde{\phi}\hat{\Box})] + \\ - \frac{Z_{0}''}{2}[\tilde{\phi}(\hat{\Box}\tilde{\phi}) + \frac{1}{2}\hat{\Box}(\tilde{\phi}^{2} \cdot) + \frac{1}{2}\tilde{\phi}^{2}\hat{\Box}] + \frac{\tilde{\phi}^{2}}{2}U_{0}^{(4)} + 36c_{3}[\hat{\Box}(\tilde{\phi}^{2}\hat{\Box}) + 2\hat{\Box}(\tilde{\phi}(\hat{\Box}\tilde{\phi}) \cdot) + 2\tilde{\phi}(\hat{\Box}\tilde{\phi})\hat{\Box} + (\hat{\Box}\tilde{\phi})^{2}] \end{array}$$

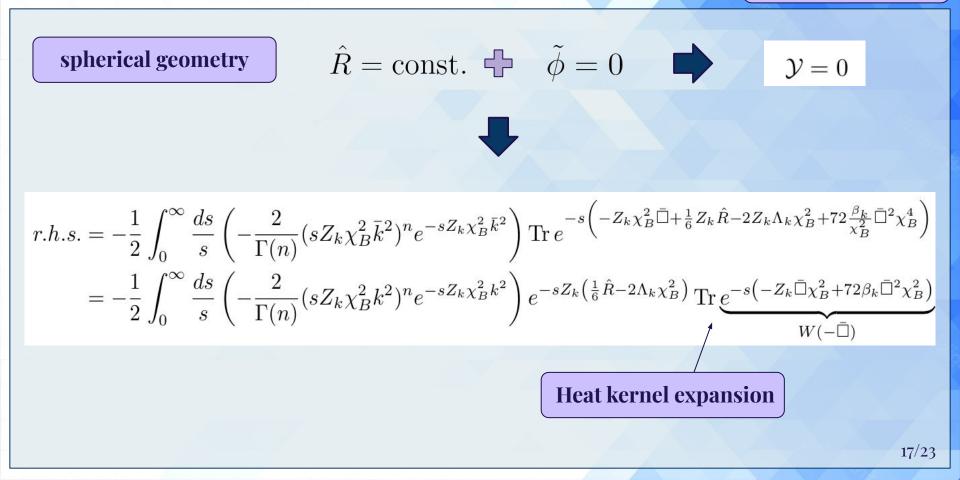
$$c_{1} = 2\frac{\beta_{0}}{\phi_{0}^{2}},$$

$$c_{2} = \frac{\beta_{0}'}{\phi_{0}^{2}} - 2\frac{\beta_{0}}{\phi_{0}^{3}},$$

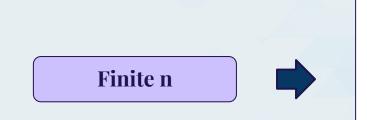
$$c_{3} = 6\frac{\beta_{0}}{\phi_{0}^{4}} - 4\frac{\beta_{0}'}{\phi_{0}^{3}} + \frac{\beta_{0}''}{\phi_{0}^{2}}.$$

16/23

Our research



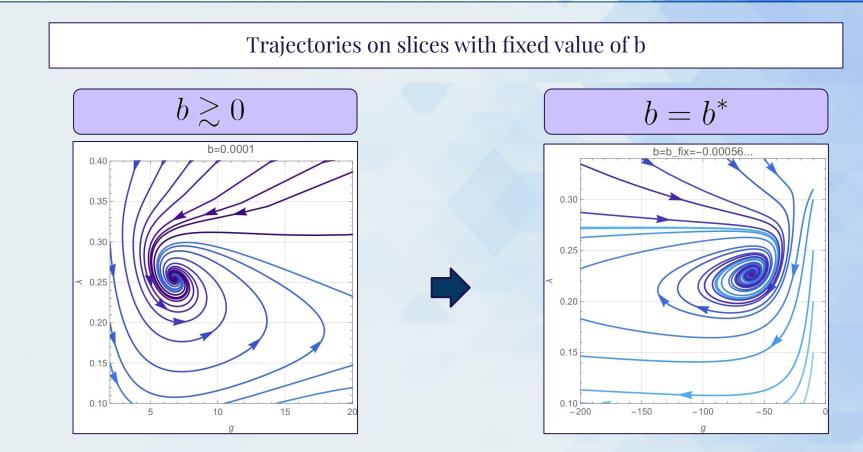
Our research



- 1) Beta functions without divergencies
- 2) \forall n there is a single fixed point located at $(g^* < 0, \lambda^* > 0, b^* < 0)$
- 3) The structure of critical exponents depends on n: slight regulator dependence

n	z^*	g^*	λ^*	b^*	$g^*\lambda^*$	λ_1	λ_2	λ_3
3	0.00984	-24.25919	0.39148	-0.00061	-9.49699	12.928	-3.32257 + i1.08259	-3.32257 - i1.08259
5	0.00966	-24.70644	0.31413	-0.00056	-7.76122	12.54881	-3.47640 + i 0.97049	-3.47640 + i 0.97049
7	0.00825	-28.92136	0.26102	-0.00051	-7.54914	12.61331	-4.14312	-3.51035
9	0.00686	-34.80991	0.22289	-0.00047	-7.75899	12.78006	-5.47819	-2.95752
20	0.00278	-85.98612	0.12301	-0.00030	-10.57733	13.84397	-10.32259	-2.45510

Our research



19/23

$$\begin{array}{|c|c|c|c|c|} \hline n & \text{Beta functions } \beta_z, \beta_\lambda \text{ and } \beta_b \\ \hline \\ \hline \\ +\infty & \partial_t z = -2z + \frac{e^{2\lambda}z\left(\sqrt{2\pi}\sqrt{z}e^{\frac{z}{288b}}\operatorname{erfc}\left(\frac{\sqrt{z}}{12\sqrt{2}\sqrt{b}}\right) - 24\sqrt{b}\right)}{27648\pi^2b^{3/2}} \\ \partial_t \lambda = \frac{24\sqrt{b}\left(e^{2\lambda}(\lambda-3) - 2304\pi^2b\lambda\right) - \sqrt{2\pi}(\lambda-3)\sqrt{z}\operatorname{erfc}\left(\frac{\sqrt{z}}{12\sqrt{2}\sqrt{b}}\right)e^{\frac{z}{288b}+2\lambda}}{27648\pi^2b^{3/2}} \\ \partial_t b = \frac{e^{2\lambda}z\left(24\sqrt{b} - \sqrt{2\pi}\sqrt{z}e^{\frac{z}{288b}}\operatorname{erfc}\left(\frac{\sqrt{z}}{12\sqrt{2}\sqrt{b}}\right)\right)}{3981312\pi^2b^{3/2}} \end{array}$$

There is no common fixed point!

Dependence on regulator! Small n seems to capture more info

Our research

Notice that previous results in flat space (R² truncation) do not show any fixed point! ¹⁴ At least for $g^* > 0$

₽

Work in progress in the CREH+R² model to study $g^* < 0$

Evidence for dependence on geometry projection?

¹⁴ B. Knorr, 'Lessons from conformally reduced quantum gravity', "Class. Quant. Grav., Vol. 38, Issue 6 (2021)

Beyond our first step

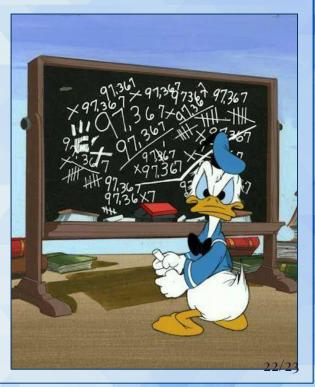
Our research

Starting point

• **CREH** + **R**², projection onto **S**⁴ sphere

And then?

- **CREH** + **R**², projection onto **R**⁴ flat space ?
- **CREH** + **R**³, projection onto **S**⁴ sphere ?
- Can we write the equations for $\mathbf{R}^{\mathbf{n}}$ on the \mathbf{S}^{4} sphere ?
- Can we write the equations for **f(R)** on the **S**⁴ sphere ?



• Etc.

Thanks!