

Digital Multi-Parametric Detector Readout Systems

Alessandro lovene (a.iovene@caen.it)

Traditional readout system

Digital Readout: all-in-one

Analog vs Digital readout systems

- **Conventional readout electronics**: several interconnected modules, mainly analog processors (amplifiers, shapers, discriminators) followed by an ADC that converts the parameter of interest and builds the spectrum
- No flexibility: functions hard-coded in electronic circuits!
- Digital readout: an all-in-one, multi-parametric acquisition system
- Provides Time Stamps (Discriminator + TDC), Energy (PHA, QDC), PSD, Counts and Waveforms
- Signals from detectors continuously digitized and processed on-line by reprogrammable FPGAs
- Digital algorithms (filters) take the place of the conventional analog processors
- Software controlled Settings
- Embedded oscilloscope for signal inspection
- Advantages: flexibility, size and weight, stability, scalability, performances

Benefits of the digital readout

- Analog signals coming from the detectors are digitized (A/D conversion) at a very early stage
- Minimal analog conditioning: no signal shaping, no discriminators, no delay lines
- Dead-timeless signal capture (no conversion time) \rightarrow preserve signal information
- Multi-parametric (Energy, PSD, Timing) acquisition: on-line digital DPP algorithms applied to waveforms to extract the quantities of interest
- Three acquisition modes:
 - Waveform Mode (digital oscillocope): mainly used for system monitoring and configuration
 - List Mode: read list with time stamp, energy, PSD, etc...
 - Histogram Mode: read spectra (Energy, TAC, PSD). Histograms are built in PC in most cases.
- Embedded Logic: Coincidence, Anti-coincidence, Veto, trigger propagation
- Typ. Throughput (assuming 10 kcps/ch): > 10 MB/s/ch in waveform mode, 100 KB/s/ch in list mode, < 1KB/s in Histogram mode.

Digital Acquisition Chain

Scalable systems

Desktop / Handheld

Mini crates / enclosures

Crates / Racks

100-10000 ch.

Models and Algorithms

Model	# channels	MS/s	# bit	нν	LV	Wave	РНА	PSD	CFD	QDC	Histo	Notes
V1730 / DT5730	16 / 8	500	14	-	-	V	V	V	V	V		Waveform recorder + Pulse Processor
V1725 / DT5725	16 / 8	250	14	-	-	V	V	V	V	V		Waveform recorder + Pulse Processor
V1751 / DT5751	8/4	1000	10	-	-	V		V	V	V		Waveform recorder + Pulse Processor
V1724 / DT5724	8/4	100	14	-	-	V	V					Waveform recorder + Pulse Processor
V1720 / DT5720	8/4	250	12	-	-	V		V		V		Waveform recorder + Pulse Processor
V1740 / DT5740	64 / 32	62.5	12	-	-	V				V		Waveform recorder + Pulse Processor
V1742 / DT5742	32 / 16	5000 (1)	12	-	-	V						Waveform recorder
V1743 / DT5743	16 / 8	3200 (1)	12	-	-	V						Waveform recorder
DT5780	2	100	14	2	2	V	V					MCA (no histo memory, List readout)
DT5781	4	100	14	-	-	V	V					MCA (no histo memory, List readout)
DT5790	2	250	12	2	-	V		V		V		Pulse Processor
DT5770	1	100	16	-	1	V	V				V	MCA
Hexagon	1 or 2	100	16	2	2	V	V				V	MCA with Embedded PC
GammaStream	1	62.5	12	1	-	V	V				V	Tube base MCA with Embedded PC

(1) switched capacitor ADC: fast sampling, slower A/D conversion (=> dead time)

Readout interfaces

- Optical Link (CONET 2)
 - Requires a PCIe card in the host PC (A3818); can read up to 32 boards (up to 2048 channels)
 - 80 MB/s per board \rightarrow aggregate bandwidth = 320 MB/s
- USB
 - No external hardware required, plug and play
 - 30 MB/s per board.
- Ethernet
 - Only supported by MCAs (DT5770, Hexagon, Gamma-Stream)
 - Will be supported (up to 10 Gbps) in the next generation digitizers
- VME
 - up to 200 MB/s in 2eSST mode (Bandwidth shared between boards in the crate)
 - SBC required for 2eSST; PCI bridges A3818/V2718 support BLT/MBLT only (up to 80 MB/s)

NOTE: The use of the VME bus for communication is discouraged. Front panel readout is backplane independent. VME used for power supply, ventilation and mechanics

Multi-Board Readout example (Xmass)

- 16 digitizers in one VME crate read out by 1 computer @ 350 MB/s
- One 4 link A3818 PCIe card. Each link reads 4 digitizers in daisy chain
- ~22 MB/s per digitizer (can be 4 times higher in a P-to-P topology)
- VME crate just for power and mechanics (no backplane communication)

Digitizers 2.0: highlights

Communication

- 1/10 GbE, Copper or Fiber
- **CONET 3** daisy chainable optical link (expected ~300MB/s)
- USB 3.0
- Legacy VME interface

Memory buffers

- Acquisition Memory (FPGA): DDR4, 5 Gbytes, 384 Gb/s
- Readout Memory (ARM): DDR4

Models (preliminary)

- 16 channel, 14 bit, 1 GS/s (replace x751)
- 16 channel, 14 bit, 500/250 MS/s (replace x730/x725/x720)
- 16/32 channel, 16 bit, 100-125 MS/s (replace x724)
- 64 channel, 14 or 16 bit, 100 MS/s (replace x740)

Firmware

- Single FPGA architecture; 650 kLE (Zync US+ XCZU11EG)
- ARM (Quad Cortex, 1.5 GHz)
- DPP modes: PSD/PHA/QDC/CFD
- Raw Waveform mode with zero suppression capabilities (ZLE/DAW)
- Open FPGA (template projects and kits for custom developments)

Digitizers 2.0: architecture

Digitizers 2.0: FPGA Block Diagram

DPP PHA: Block Diagram

DPP PHA: Pile-up Rejection and Dead Time

The waveform digitizer operates continuously => No dead time in A/D conversion. Dead time due to algorithms (pulse processing), not to electronics

Energy Filter:

- T5-T4 < Trapez(Rise+Flat) => pile-up => Get time stamps (ICR_{FF}), no energies (OCR)
 DeadTime_{TRAPEZ} (%) = 100 * (ICR_{FF} OCR) / ICR_{FF}
- T3-T2 < Trapez(Rise+Flat+Fall) => no pile-up (get T and E), but no fresh baseline for E3 => worse resolution.
 It is possible to extend the PUR window and allow BLR to recover for every pulse ("Peak Hold-off")

Fast Timing Filter:

 T7-T6 < Double Pulse Resolution (Typ. 300-500 ns) => summed pulses => get single T, E (=E6+E7) Sum peaks in the energy spectrum. Dead time (paralyzable) corrected on statistical base: ICR_{FF} = ICR * exp (- ICR * T_{DPR}) where T_{DPR} is the double pulse resolution (i.e. resolving time)

DPP PSD/QDC: Block Diagram

DPP PSD/QDC: signals

Digital CFD + TDC

digital CFD: same principle as analog

 $CFD_{N+1} = f * S_N - S_{N-D}$ f=Fraction, D=delay

Linear interpolation A-B: good curve fitting if LeadingEdge > 3-5 T_{SAMPLE}

Faster signals produce artifacts and bad timing resolution

ZC calibration algorithm corrects interpolation errors for signals as fast as $\frac{1}{2} T_{SAMPLE}$

~10 ps RMS for 1 ns rising edge @ 500 MS/s

COARSE TSTAMP = T_{CLK} * Clock Counter FINE TSTAMP = $-T_{CLK}$ * B/(B-A)

Digital CFD: results

Test	Rise Time	Amplitude	ZC corr	Start-Sto	o Resolution	160.00	→ Rise 1 ns → Rise 2.5 ns → Rise 5 ns → Rise 10 ns → Rise 20 ns → LaBr3 Self Timing → BaF2 Self Timing @ 511 keV → BaF2 to BaF2 TOF @ 511 keV	g @ 511 keV
				RMS	FWHM	100.00	▲	
Pulse Generator	1 ns	450 mV	\checkmark	9.5 ps	22 ps	140.00		
Pulse Generator	5 ns	450 mV	\checkmark	10.1 ps	24 ps	(sd) 100.00		
Pulse Generator	20 ns	450 mV	\checkmark	1.9 ps	4.5 ps	p Sigma		
BaF_2 to BaF_2	1.3 ns	130 mV	\checkmark	120 ps	280 ps	Start-Sto		
BaF_2 to BaF_2	1.3 ns	130 mV	×	538 ps	1.3 ns	40.00		
BaF ₂ to LaBr ₃	1.3/15 ns	130/200 mV	\checkmark	186 ps	437 ps	20.00	9.54	E
Nal to Nal	20 ns	100 mV	\checkmark	1.02 ns	2.40 ns	0.00	o 10.00 100.00 Amplitude (mV)	1000.00

Single Detector Resolution								
Detector Type	Size	PMT	T _{RES} (FWHM)	Notes				
BaF ₂	1"	H3378-51	200 ps					
LaBr ₃	2"	R6231	~ 400 ps	extrapolated from BaF ₂ to LaBr ₃ Timing				
Nal (Tl)	2"	ETL 9266	1.7 ns					

Compass: root based DAQ

- Multi-board, multi-channel, multi-parametric: Energy, Time, PSD
- **Root** data format: T-tree, 1-D and 2-D histograms
- Coincidences (HW or SW), veto/gate, cuts and event selection
- Acquisition mode: live (from boards) or off-line (from data files)

- x724/x781 PHA
- x725/x730 PHA
- x725/x730 PSD
- x751 PSD
- x720 PSD/CI

COMPASS

Compass: block diagram

Case History (experiments)

- XMASS (Kamioka): 85 V1751 (ZLE)
- ELI-NP (Romania): 36 V1725 (PHA) + 2 V1730 (PSD)
- Dance (LANL): 12 V1730 (PSD, PHA)
- Xenon (LNGS): 25 V1724 (Custom FW)
- Deap (Snolab): 32 V1720 + 5 V1740 (Raw Waveforms)
- Mini Clean (Snolab): 8 V1720 (Raw Waveforms)
- DHRUVA (BARC): 4 V1724 (PHA) + 1 V1720 (CI) + 1 V1730 (PSD)
- Exill (ILL): 10 V1724 (PHA) + V1751
- Dark Side (LNGS): V1720 (Raw Waveforms)

and more ...

Thank You!

BACKUP

General Architecture

Synchronization: goals

ADC sampling clock

- all channels/boards must have the same ADC sampling clock
- On-board programmable PLL: lock with almost any external frequency (typ. 62.5 MHz)
- front panel clock IN-OUT: Fan-Out or Daisy-Chain distribution
- 1st board in the chain can act as clock master (no external reference required)
- Clock skew due to propagation delay can be tolerated (calibration in SW) or compensated in PLL

Time Stamp

- all channels/boards must have the same zero for the time stamp
- T=0 @ Start of Run: propagated in daisy chain via front panel I/Os
- Option to use the 1st trigger as a Start of Run

Data

- Each channel/board asserts the Busy signal when its memory buffer is full
- OR of busy signals from all channels/boards must be used to inhibit acquisition (VETO)
- Options on LVDS I/Os to propagate Busy and Veto across boards

Synchronization and Trigger Logic

ZLE/DAW firmware for x725/x730

CAEN Tools for Discovery

ZLE

- Raw Waveform acquisition with zero suppression: extraction of chunks from a fixed size window
- **Common trigger** (simultaneous acquisition on all channels)
- Channel self-triggers (digital discriminators) can generate the common trigger (masked OR)
- Baseline subtraction
- Max 16/32 μs acquisition window for x730/x725 respectively
- Separate thresholds for trigger and ZS: typically high threshold for triggering (well above noise, to prevent false triggering), lower threshold for zero suppression (to acquire small pulses at the noise level)
- Event Building in HW (1 trigger => N channels)

DAW

- Raw Waveform acquisition with independent self-triggering channels
- Acquisition window dynamically adapted to the pulse width
- Baseline subtraction
- "Unlimited" acquisition window
- Event Building in SW by time stamp sorting

STD firmware

ZLE firmware

DAW firmware

DPP firmware

