INTENSE – ESR Meeting

••

•

•

•.

•.)

L_{MAGING}

 A_{ND}

RARE

0

0

0

0

MARIA ARTERO PONS September 2022

SUPERVISOR: PROF. DANIELE GIBIN

1 e

0

 $\forall \tau$

0

0

0

0.

•.

•.

U

•.

•.

•.

Ve

 ν_{τ}

•.

••

0

•.

••

A little bit about myself...

- I joined the ICARUS Neutrino Group based in Padova
 on January 2021
- Up to now my work has been mainly dedicated to the calibration of the ICARUS detector during its commissioning phase at FNAL

- ICARUS is a LArTPC and the far detector of the Short Baseline neutrino program
- Aims to definitive clarify the sterile neutrino puzzle

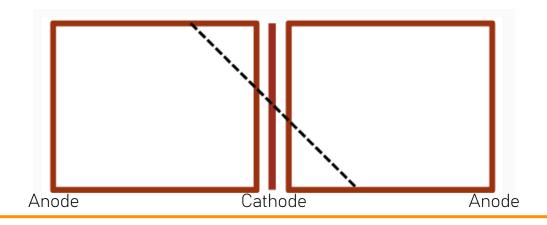
Courses

- Multimessenger Astroparticle Physics by A. De Angelis
 "Neutrinos as Multimessenger particles" March 2021
- Neutrino Physics by R. Brugnera, M. Lattanzi and S. Dusini "Where are we with sterile neutrinos?" June 2021
- Statistical Data Analysis by T. Dorigo, D. Bastieri and L. Stanco "Statistical status on sterile neutrinos" July 2021
- Standard Model & Flavour Physics by G. Simi and M. Tosi "Test of lepton universality in beauty-quark decays" September 2021
- EU funding: opportunities for Research and Innovation and proposal writing by M. Schisani June 2022

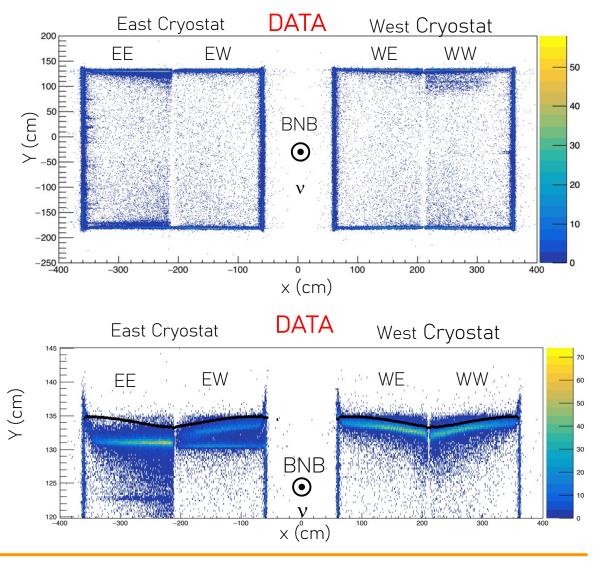
Workshops

- XIX International Workshop on Neutrino Telescopes held online during 18-26th February 2021, organized by INFN Padova
- <u>Calibration Workshop</u>: Ntuples Tutorial held remotely on 27th Sept-1st Oct 2021, organized by SBN Collaboration
- International Workshop on Cosmic-Ray Muography held in Ghent, Belgium during 24-26th November 2021, organized by Ghent University as part of the European Project INTENSE-Rise
- Workshop "Summer Students at Fermilab and other US Laboratories", held in Pisa during 18–21st July 2022, as part of the INTENSE training

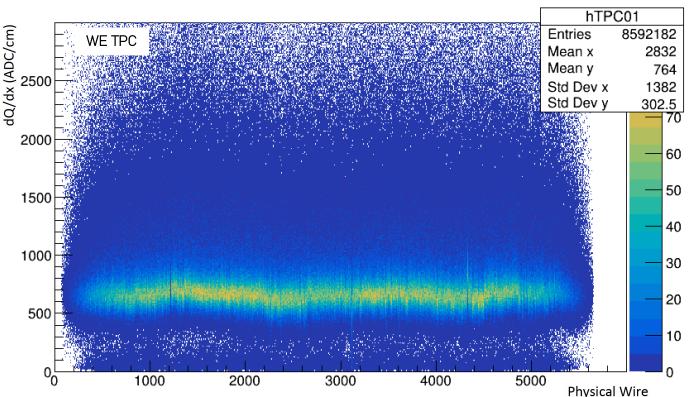
Actively involved in the ICARUS Analysis working groups where I periodically report the status of my progress



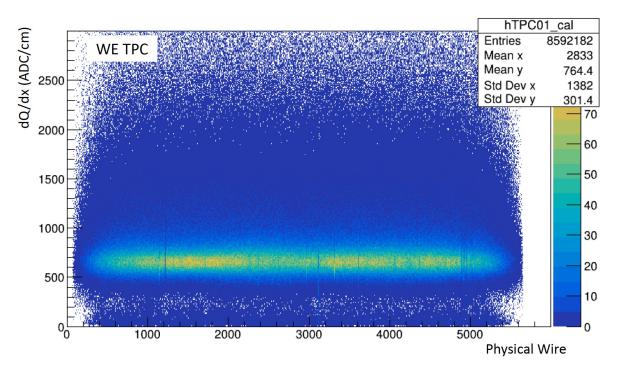
- <u>Neutrino Summer Lecture Series</u> held online during June/July 2021 and organized by Fermilab
- <u>Fermilab 2021 Summer Student School</u> at INFN Laboratori Nazionali di Frascati, online attendance during 2-4th August 2021
- <u>FNAL C++ Software School</u> held remotely during August/September 2021
- INFN School Of Underground Physics: Theory & Experiment, at LNGS, Gran Sasso during 20-24th June 2022
- <u>Tri-Institute Summer School on Elementary Particles</u>, at TRIUMF, Vancouver during 4-15th July 2022
- Research stay at Fermilab, at Batavia, USA from 18-31th July 2022
- <u>108° Congresso Nazionale</u> SIF in Milano during 12-16th September, giving a talk: "Short-Baseline neutrino oscillation searches with the ICARUS detector"


Study on containment conditions

- Our main goal is to optimize the detector response in order to perform a high-quality analysis for neutrino events
- We are interested in $\nu_{\mu}CC$ contained events, which guarantees us that all calorimetric variables can be fully reconstructed
- Containment conditions are very effective in rejecting backgrounds events associated to charged cosmic rays
- Necessity to quantify the capability to correctly identify contained events
- We studied a sample of straight cosmic muons crossing the cathode, for which the absolute position inside the detector is determined with few mm precision

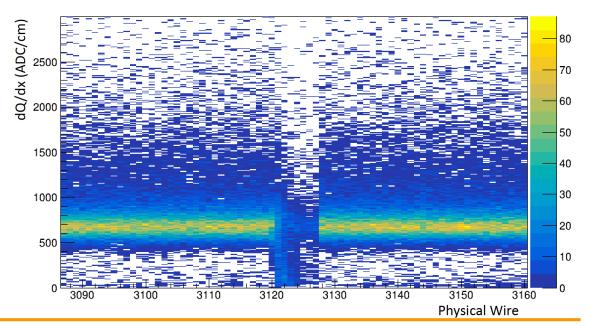

Study on containment conditions

- Despite removing all tracks tagged as stopping particles, we found many of them starting or ending in the middle of the detector
- 5–10% of the points are reconstructed more than 5cm away from the borders, depending on the TPC
- We realised that due to Space Charge Effects (SCE) and possible reconstruction effects we were wrongly modeling the borders of the detector
- Small anomaly was observed in one of the TPC which could be explained with a known problem in the polarization field
- Anomalous track reconstruction does not have a strightforward explanation, hence a dedicated study is ongoing to adress and mitigate the reconstruction failures



Equalization of the TPC wire response

- Measurement of deposited energy along the track is mandatory for particle identification
- The basic idea is to equalize the distribution of the deposited charge along the track (dQ/dx) for each wire to a common value ⇒ equivalent responses of front-end electronics
- To account for signal attenuation due to the electronegative impurities we need to correct dQ/dx as a function of the electron lifetime



Equalization of the TPC wire response

- The dispersion of the MPV distribution for all the wires drastically reduces from $\sim 4\%$ before calibration to < 1% after the calibration
- We were also able to use the method to spot malfunctioning channels, that will be considered for further analysis

- The distribution of collected wire signals produced by cosmic muons was fitted with a Landau convoluted with a Gaussian
- The fitted most probable value of the distribution was used to compute the calibration factor

Cathode planarity studies

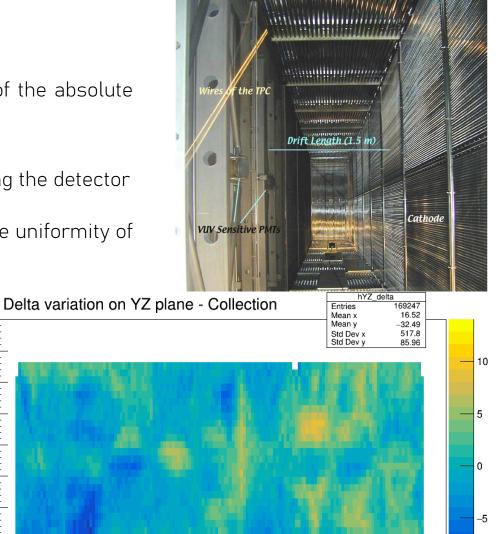
- For an accurate neutrino analysis we need precise determination of the absolute position of the track along the drift coordinate
- Measurement of the absolute time t_0 at which the particle is crossing the detector
- Local deviations from planarity in the central cathode could affect the uniformity of the electric field causing poorly reconstructed drift time

200

150

100

50


0

-50

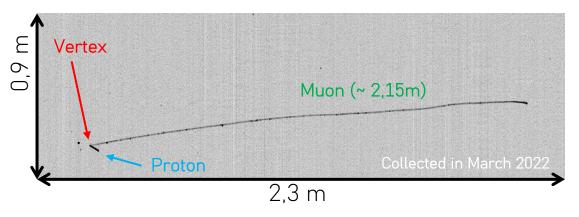
-100

-150

- We tested the cathode planarity by exploiting cathode crossing cosmic muons
- Observed variations corresponding to an absolute cathode displacement of up to $\sim 2\ cm$
- We found some geometrical considerations of the detector which were not yet implemented in MC

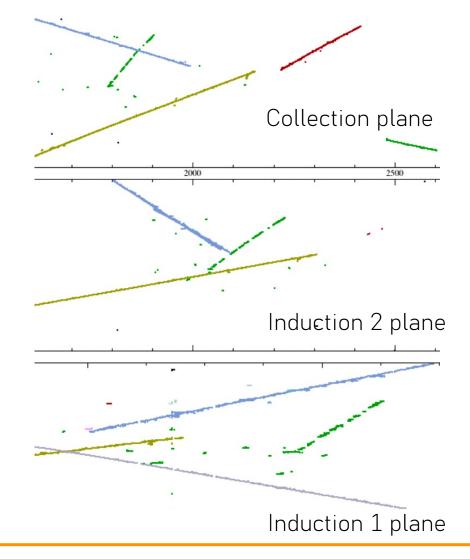
200

600

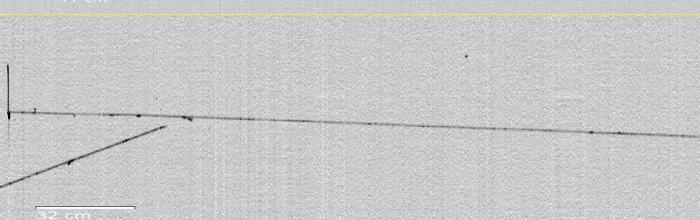

800

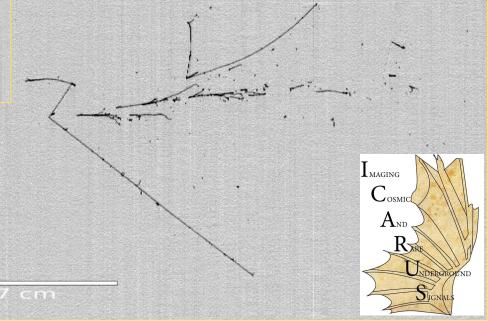
Z axis (cm)

1000

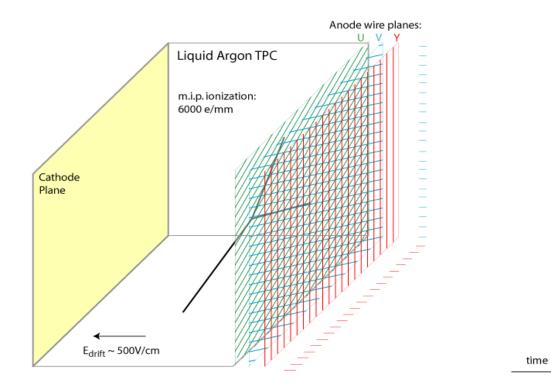

Reconstruction of neutrino events

- Thanks to a scanning effort we have a significant sample of visually scanned neutrino events
- We are testing the performance of the pattern recognition algorithm
- The goal is to spot possible flaws inside the reconstruction chain
- Focus on bad reconstruction muon tracks in $\nu_{\mu} \ {\it CC}$ events from the BNB beam
- Study of split tracks looking for discrepancies between the scanned and reconstructed track length


Reconstruction of neutrino events


- Thanks to a scanning effort we have a significant sample of visually scanned neutrino events
- We are testing the performance of the pattern recognition algorithm
- The goal is to spot possible flaws inside the reconstruction chain
- Focus on bad reconstruction muon tracks in $u_{\mu} \, {\it CC}$ events from the BNB beam
- Study of split tracks looking for discrepancies between the scanned and reconstructed track length

I am planning to carry out a more exhaustive study of neutrino reconstruction events
 I would like to include proton studies to perform a preliminary oscillation study


THANK YOU !

BACKUP SLIDES

LAr TPC Working Principle

 When a neutrino interacts with liquid argon it produces charged particles that deposit their energy, creating ionization electrons and scintillation light

• The scintillation light propagates inside the detector until it is collected by the PMTs behind the wires. We use this light to recognize when an interaction has occurred

• The ionization electrons are collected in the wire planes, thanks to the electric field. We combine the collected signals to obtain a complete 3D reconstruction of the event