

Additive Manufacturing at LNGS: Facilities, Metals Testing and Future Capabilities

Donato Orlandi

Aerospace Engineer National Institute for Nuclear Physics Gran Sasso National Laboratory Head of Mechanics Service

Mechanics Service Gran Sasso National Laboratory – LNGS

Workshop Department

Design and Additive Manufacturing Department

The Mechanics Service Gran Sasso National Laboratory – LNGS

LNGS MECHANICS SERVICE

Responsible: Donato Orlandi

Workshop Department

Responsible: Angelo Corsi

Main activities

Traditional machining, CNC, quality control

Design and Additive Manufacturing Department

Responsabile: Daniele Cortis

Main activities

Design, multiphysics simulations (FEA / CFD), additive manufacturing with plastic and metal materials, reverse engineering, technology transfer, research and analysis on materials.

The Mechanics Service Gran Sasso National Laboratory – LNGS

Realization of the components is realized by means of classic subtractive technologies (CNC) and by means of machines for additive manufacturing for plastic and metal materials (Additive Manufacturing).

Metal Additive Manufacturing

Similar to all other processes, metal additive manufacturing machines produce objects by adding material one layer at a time.

In this way it is possible to build objects with geometries that are impossible to produce with "traditional" subtractive (CNC) or training (Metal Casting) technologies, without the need for specialized equipment (for example a mold).

Technology available at LNGS:

Laser Powder Bed Fusion (L-PBF): Selective Laser Melting (SLM)

SLM (Selective Laser Melting)

SLM technology uses a laser beam to selectively melt a powder bed in order to produce a layer-by-layer component as schematically represented in the figure.

A layer of metal powder is deposited on a construction platform through the use of a recoater characterized by a ceramic, steel or rubber blade according to the type of metal powder used.

The melting of the powders is carried out with a high-power laser beam guided in the construction plan through appropriate galvanometric mirrors and the entire process takes place in a controlled atmosphere of inert gases such as Ar or N.

SISMA MySint 100 (PM/RM) Version developed specifically for R&D.

Main Features:

Building volume	Ø 100 mm x 90 mm	
Laser source	175 W (single laser)	
Laser spot	30 <i>µ</i> m	
Layer thickness	20-40 μ m (regolabile)	
O2 sensor	100 ppm	

Other:

- Patented Coater tilting offers reduced re-routing times
- Each processing parameter is customizable

Processed materials

Gran Sasso National Laboratory – LNGS

The materials that can be used by the machine are Steel, Titanium alloys, Nickel alloys, Aluminum alloys, Copper alloys, precious metal alloys and Cobalt Chrome alloys.

Materials currently processed at LNGS:

Steel	Aluminium alloys	Copper Alloys	Copper
AISI 316 L	SCALMALLOY®	CuCrZr	Cu > 99.8 %
	AlSi10Mg		Cu OFE
100 3101 990 + 6 m4p ⁸	200 + 0 m40	3161 3004 0 m4p	100 2101 100 2101 100 200 100 200 100 200 100 100 100 100 100 100 100 100 100

Quality analysis Gran Sasso National Laboratory – LNGS

In addition, tools are available for the quality analysis of the components produced and reverse engineering (e.g. 4K high-resolution optical microscope, GOM 3D scanner, high-resolution optical profile meter).

10 **INFN**

Future investments Gran Sasso National Laboratory – LNGS

The service is also constantly evolving and technological renewal of its machine park.

Atomizer of metal powders for L-PBF

Traction machine with climatic chamber (-150 / +600 °C)

PEEK/Carbon Filled PEEK Printer FDM

HAMMER

Gran Sasso National Laboratory – LNGS

HAMMER - Hub for Additive Manufacturing, Materials Engineering and Research The Hub focuses on the design and production of complex components for both nuclear/astroparticular physics research and technology transfer.

HAMMER Gran Sasso National Laboratory – LNGS

HAMMER - Hub for Additive Manufacturing, Materials Engineering and Research

Research Activities & Case Studies [LNGS: PTOLEMY] Design and production of heat exchanger

Design requirements:

- Vacuum component
- Cryogenic conditions
- High thermal conductivity
- Coupling with electric motor
- Highly customized geometry (electronic components)

Material:

• Cu OFE

Research Activities & Case Studies [LNGS: PTOLEMY] Design and production of heat exchanger

Components made:

- Heat exchanger
- Electronics case
- Case cover

Post-operations:

- Sandblasting
- Threaded holes

Research Activities & Case Studies [LNGS: PTOLEMY] Design and production of heat exchanger

16 **INFN**

Design requirements:

- Vacuum component
- Cryogenic conditions
- High precision mechanical coupling

Material:

Cu OFE

Components made:

- N.4 waveguide sections
- N.2 caps with different geometry

Post-operations:

- Sandblasting
- Threaded holes

Research Activities & Case Studies [LNGS: PTOLEMY] Design and production of waveguides

Construction phase

Research Activities & Case Studies [HAMMER: LNGS - ROMA1] Sandwich frame production

Design requirements:

- Vacuum component
- Cryogenic conditions
- High precision mechanical coupling

Material:

Cu OFE

Research Activities & Case Studies [HAMMER: LNGS - ROMA1] Sandwich frame production

Components made:

• N.2 frames (prototypes)

Post-operations:

- Sandblasting
- Threaded holes

Research Activities & Case Studies [LNGS: ADM2021 Conference] Design of Ar – N Condenser

Design requirements:

- Vacuum component
- Cryogenic conditions

Material:

• Cu > 99.8%

Research Activities & Case Studies [HAMMER: LNGS - ROMA1] Collaborative research SIAD-SEAMTHESIS

Objectives:

- Evaluate the effects of inert gas flow
- Evaluate the effects of the type of inert gas (N, Ar, He)

Material:

• Cu > 99.8%

Research Activities & Case Studies [HAMMER: LNGS - ROMA1] Development of new materials

Objectives:

Development of new copper metal matrix materials

Material:

• Cu > 99.8%

Research Activities & Case Studies

[LNGS: Koral Technologies] Collaborative research of lattice structures

Objectives:

 Development of innovative heat exchangers with lattice structures for electronics

Material:

CuCrZr

Research Activities & Case Studies [LNGS: UNIVAQ] Characterization of mechanical property CuCrZr

Objectives:

- Study and characterization of the mechanical, static and dynamic properties (strain-rate), of the CuCrZr copper alloy produced by SLM, with and without heat treatment
- **Materials:**
- CuCrZr

Research Activities & Case Studies [LNGS: UNIVAQ] Study of surface quality

Objectives:

• Study and analysis of the surface quality of parts made of CuCrZr copper alloy by SLM

Material:

• CuCrZr

Research Activities & Case Studies [LNGS: OMA-FaVRIA] Commissioned research

Objectives:

 Design for Additive Manufacturing (optimization) of aeronautical components and their realization

Material:

• Aluminum Alloy (SCALMALLOY®)

Research Activities & Case Studies [LNGS: OMA-FaVRIA] Commissioned research

Components made:

- N.3 hydraulic valves with optimized channels via CFD analysis
- N.3 electromechanical actuators optimized by topological optimization

Complementary activities:

- Static and fatigue characterization tests
- Spectrometric characterization
- Dimensional checks
- Cryogenic tests

Objectives:

- Vacuum component
- High precision mechanical coupling

Material:

• Steel AISI 316L

Research Activities & Case Studies [LNGS: PLANETA] Design and production of crystal holders

Components made:

• N.4 holders

Post-operations:

- Sandblasting
- Threaded holes

Research Activities & Case Studies

Objectives:

Study of the realization of multi-material components using • SLM technology

Material:

Steel AISI 316L / CuCrZr •

Research Activities & Case Studies

Objectives:

- Realization of complex components using SLM technology
- By atomizing Electroformed Copper

[LNGS & LSC] Innovative hybrid process based on EF/Atomization/SLM

Material:

• EF Copper from LSC (see Eric's talk)

Thanks for your attention (and you're welcome at LNGS Mechanics Service)

