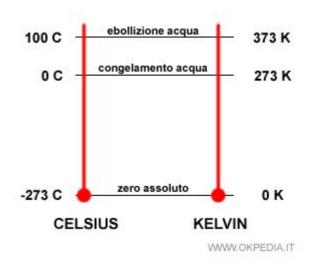

PID-LNGS Programma INFN per Docenti

Introduzione alla Criogenia e ai Sistemi di Refrigerazione



17.10.2022 Andrei Puiu

Scale di temperatura

- Scala K: misura della temperatura assoluta
- Funzione dell'energia cinetica delle molecole
- Utile per confronti e calcoli in criogenia

Cos'è la criogenia

- . Scienza che studia il freddo
- Le temperature di riferimento sono quelle inferiori a 120 K
- È la T che separa le temperature di ebollizione dei gas permanenti (azoto, ossigeno, neon, elio, idrogeno) dagli idrocarburi (freon)

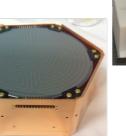
Perché le basse temperature

Come ausilio a tecniche di misura

- Magneti per RM
- Rivelatori più performanti a basse T (diodi Germanio)

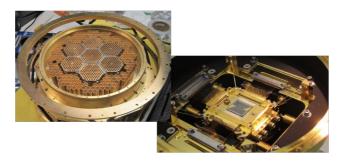
Rivelatori per radiazione

- Gas liquefatti come mezzo di rivelazione scintillanti (gas nobili)
- Rivelatori termici di fononi

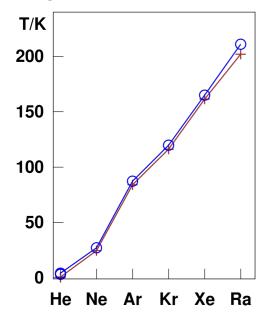


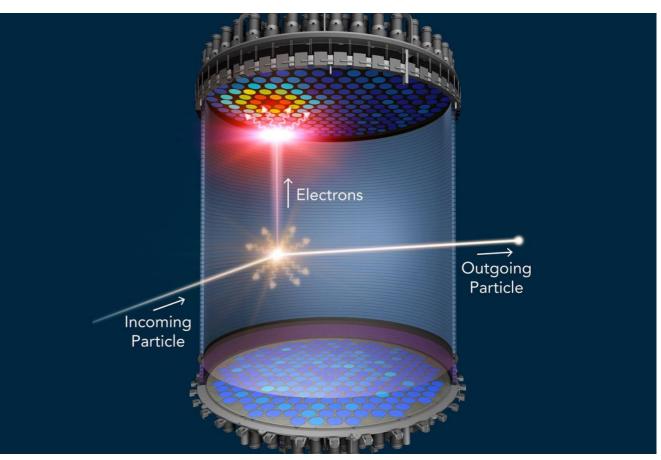
Che fisica fare?

Rivelatori che funzionano a T<1 K sono ampiamente usati per la fisica degli eventi rari


- Ricerca di Materia Oscusa
- Doppio Decadimento Beta senza Neutirni
- Cosmic Microwave Background
- Misura diretta della Massa del Neutrino
- Scattering Coerente di Neutrini
- X-Ray AstroPhysics



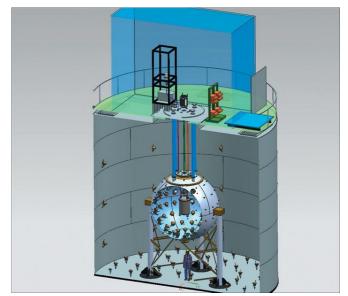




Gas nobili liquefatti

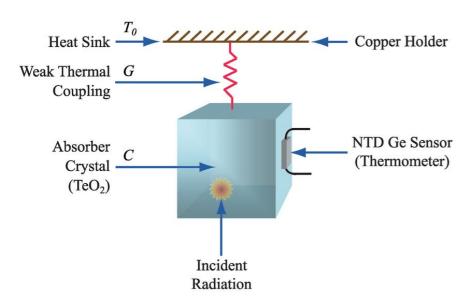
Rivelatori su scala di 10 Ton

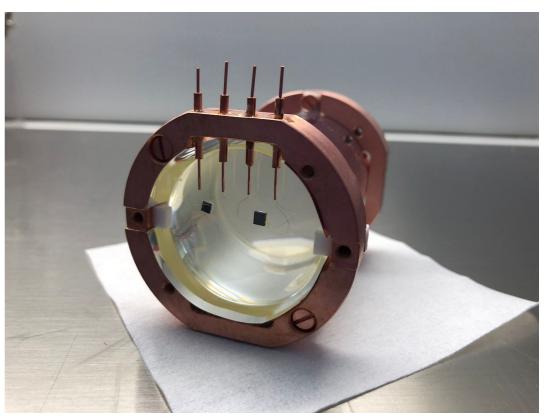
- temperatura costante ricircolo e purificazione del gas liquefatto sistemi criogenici molto grandi e complessi


Ai laboratori

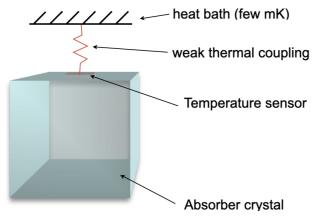
• Xenon 1T, Xenon nT

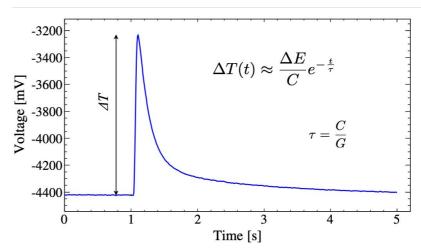
DarkSide


• GERDA, Legend



Il rivelatore di fononi




Tenere rivelatori al mK permette di misurare i fononi prodotti dopo un rilascio di energia

- statistica dei portatori molto più alta dei convenzionali rivelatori
- possibilità di usare diversi cristalli
- tecniche di misura della temperatura raffinate

Calorimetri criogenici

Calorimetro - rivelatore termico

- misura l'aumento di temperatura in seguito a un rilascio di energia
- DeltaT proporzionale all'energia (spettroscopia)
- segnali tanto più altri quanto minore è la capacità termica del rivelatore

Requisiti

- materiali a bassa capacità termica
- conduttanze termiche regolate per sviluppo temporale del segnale

Esperimenti al mK ai laboratori

- CRESST
- CUORE
- CUPID
- COSINUS

Sfida sperimentale

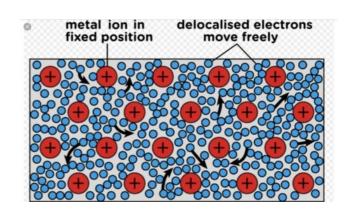
- Raggiungere la temperatura di funzionamento dei rivelatori ~mK
- Mantenere la temperatura

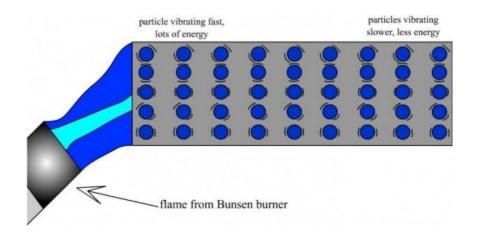
Che dal punto di vista termico significa:

- Trasportare calore dai materiali che devono essere raffreddati
- Misurare la temperatura

Trasferimento di calore

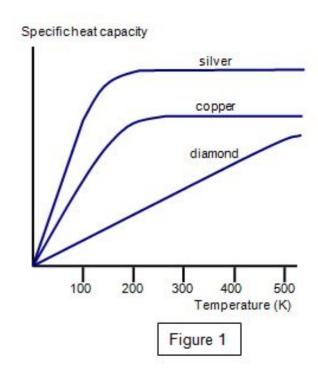
- Quanto rapidamente varia la temperatura di un oggetto caldo in contatto con un più freddo ?
- Capacità termica C(T), funzione della temperatura
- Conduttanze termiche G(T), funzione della temperatura

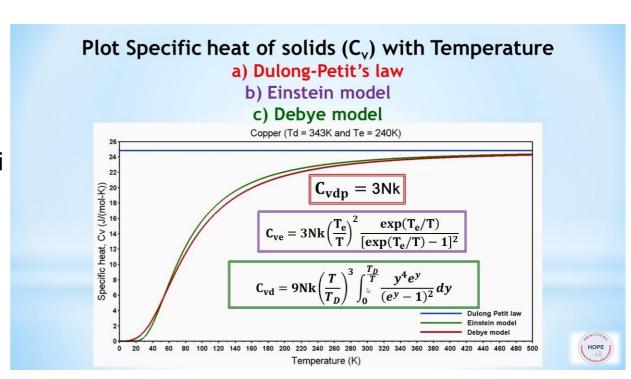

Metalli / Isolanti


Metalli:

- Elettroni liberi di muoversi nel reticolo cristallino
- Contribuiscono alla conducibilità elettrica e termica

Isolanti:


- Elettroni vincolati nel reticolo
- La conduzione del calore avviene tramite vibrazioni del reticolo cristallino (fononi)


Capacità termica dei metalli

- I metalli hanno elettroni liberi a qualsiasi temperatura
- Gli e- sono liberi di muoversi e contribuiscono sia alla conduzione termica che alla capacità termica

Capacità termica isolanti

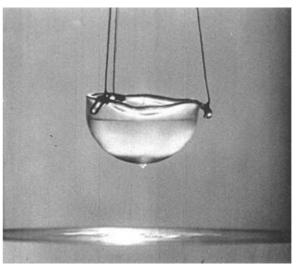
- A T ambiente la legge di Dulong Petit funziona per quasi tutti gli isolanti
- Quando la temperatura si abbassa si riducono I gradi di libertà in cui immagazinare energia
- Diversi modelli per calcolare la capacità termica C(T³)

Sistemi criogenici

Isolamento termico:

- si procede per stadi
- ciascuno stadio deve essere isolato termicamente dallo stadio più caldo per ottimizzare il potere refrigerante

ridurre il traferimento di calore:


- convezione: vuoti di isolamento p~1e-4 mbar
- irragiamento: schermi multistrato a temperature diverse di materiale a bassa emissività (in vuoto)
- conduzione: accoppiamenti meccanici con materiali a bassa conduttanza termica

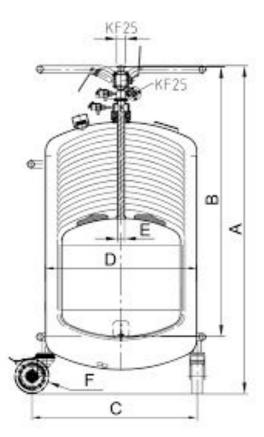
I Liquidi Criogenici

Liquido	punto di ebollizione (K)	(°C)
Helium-3	3.19	-269.96
Helium-4	4.214	-268.936
Hydrogen	20.27	-252.88
Neon	27.09	-246.06
Nitrogen	77.09	-196.06
Air	78.8	-194.35
Fluorine	85.24	-187.91
Argon	87.24	-185.91
Oxygen	90.18	-182.97

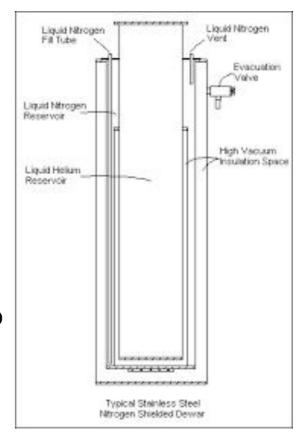
111.7

Methane

-161.45


L'Elio liquido

- Molti sistemi di refrigerazione necessitano di uno stadio a 4.2 K costante
- Spesso si utilizza un bagno di Elio liquido a pressione atmosferica in cui il sistema sperimentale è immerso
- Lo svantaggio è la necessità di continuare a riempire il bagno che evapora
- Il vantaggio è che non produce vibrazioni



Dewar per liquidi criogenici

Per mantenere l'elio liquido (4 K) servono contenitori ben isolati per ridurre il tasso di evaporazione

- il vapore emesso dall'elio liquido si propaga verso lo sfiato
- schermi concentrici sono accoppiati a stadi a temperatura diversa per ridurre l'irraggiamento
- in alternativa si usa uno schermo immerso in azoto liquido a 77 K che assorbe la radiazione delle superfici più calde

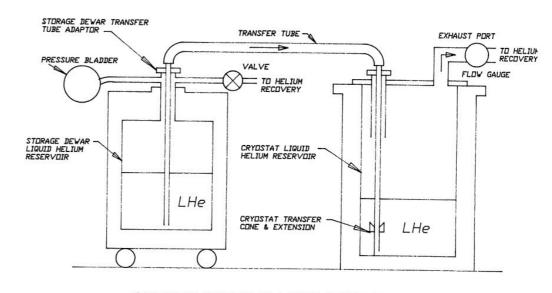
Come si raffredda - 1

- l'Entalpia è una grandezza fondamentale in criogenia: H=U+pV
- funzione di stato data dalla somma dell'energia interna del sistema e della sua configurazione geometrica (pressione e volume occupati)
- è particolarmnente utile per stimare la quantità di energia che bisogna rimuovere da un sistema per raffreddarlo
- si può stimare la quantità di azoto liquido che serve per raffreddare 1 kg di alluminio da 300 K a 77 K sfruttando solo il calore latente di evaporazione:

$$H_{300K}^{Al} = 170.4 \ J/g$$
 $H_{300K}^{N_2 gas} = 462.1 \ J/g$ $AH_{77K}^{Al} = 8.4 \ J/g$ $H_{77K}^{N_2 gas} = 228.7 \ J/g$ $H_{77K}^{N_2 gas} = 228.7 \ J/g$ $H_{77K}^{N_2 gas} = 162 \ J/g$ $H_{77K}^{N_2 liq} = 29.4 \ J/g$ 1.01 Litri sfruttando solo il calore latente a 77 K

1.01 Litri sfruttando solo il calore latente a 77 K0.41 Litri sfruttando la variazione di entalpia da 77 K a 300K

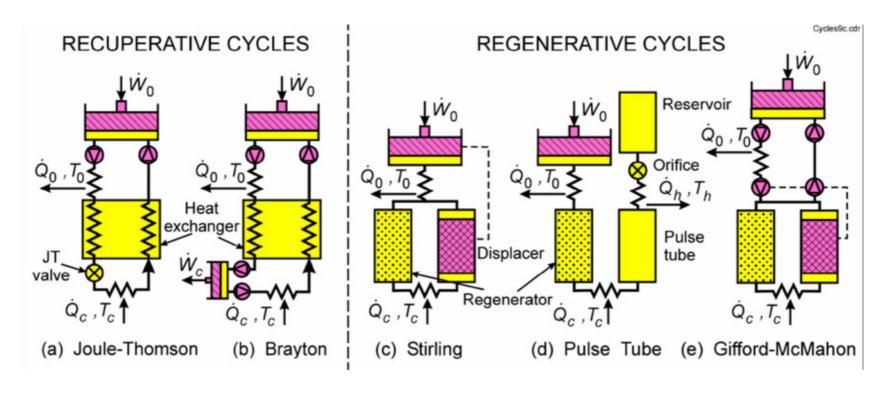
Come si raffredda 2


Cryogen		N ₂	⁴He	⁴He
From		300 K	77 K	300 K
То		77 K	4.2. K	4.2 K
Using only L _{vap}	Aluminum	1.01	3.20	66.6
	Copper	0.64	2.16	31.1
	Stainless Steel	0.53	1.43	33.3
Using ΔH+L _{vap}	Aluminum	0.41	0.22	1.61
	Copper	0.29	0.15	0.79
	Stainless Steel	0.33	0.11	0.79

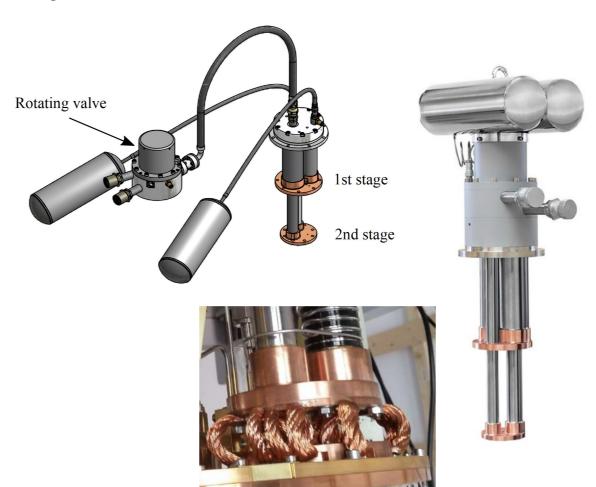
Per sfruttare al massimo il potere refrigerante dei liquidi criogenici bisogna trasferire lentamente in modo da lasciar termalizzare il gas evaporato e raffreddare in stadi successivi. 300 K a 77 K con Azoto liquido. 77 K a 4 K con Elio liquido

Impiego efficiente dei liquidi

Massimizzare l'efficienza di raffraddamento trasferendo liquidi permette di usare quantità minori


Il trasferimento deve procedere a flussi moderati in modo da non perdere energia raffreddando parti non necessarie

SCHEMATIC DIAGRAM OF LIQUID HELIUM TRANSFER.


Stadi a 4.2 K senza liquidi

Esistono diversi metodi per raggiungere temperature pari o inferiori a 4.2 K con refrigeratori meccanici che non richiedono liquidi a esaurimento

Sotto 4 K - senza liquidi: Pulse Tube

- sfrutta l'espansione isoentalpica da una regione ad alta pressione di onde di pressione
- si può usare come refrigeratore indipendente
- integrabile in sistemi più complessi per raffreddare stadi più esterni

Da 4 K al mK: il refrigeratore a diluizione

1951: proposta di by H. London

1962: H. London, G. R. Clarke, and E.

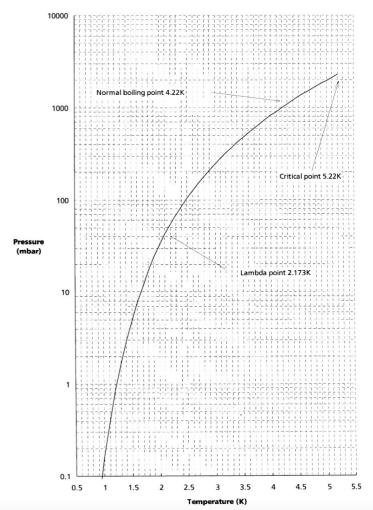
Mendoza, Phys. Rev. 128, 1992

1964: Prima Unità a Diluizione (Leiden)

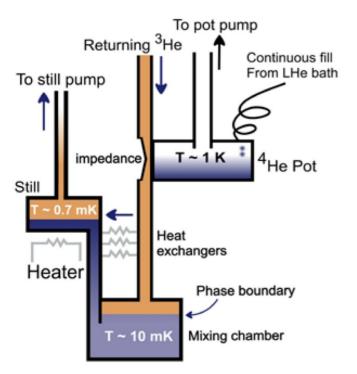
1967: Prima Unità a Diluizione prodotta

commercialmente da Oxford Instruments

Dagli anni '70 il refrigeratore a diluizione è diventato un sistema standard per raggiungere temperature sotto 1 K

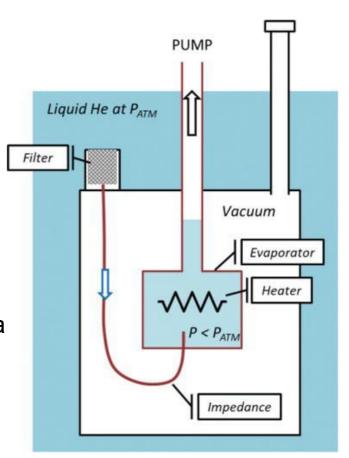


Sotto 4 K - con liquidi


La pressione di vapore dell'Elio liquido è funzione della temperatura:

- se si abbassa la pressione in un contenitore "chiuso" si riesce ad abbassare la temperatura del liquido che sta evaporando.
- collegando una pompa da vuoto a un contenitore dove l'Elio liquido evapora si riesce a raffreddare fino a 1 K senza circolare miscele speciali
- potere refrigerante alto

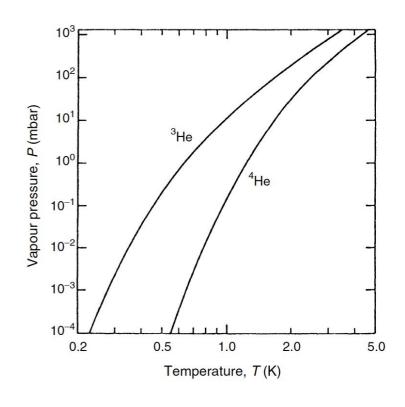
Vapour pressure of helium 4


1 K pot

- un volume in cui viene inserito Elio liquido continuamente da un bagno di elio
- una linea di pompaggio collega il volume della pot da una pompa che tiene la pressione al valore desiderato

una 1 K pot può essere usata sia per raffreddare:

- direttamente apparati sperimentali
- flussi di Elio per raffreddare altri stadi


Pressione di vapore dell'Elio

- la variazione di calore latente del gas evaporato abbassa la temperatura
- la pressione scende esponenzialmente con la temperatura -> il limite è dato dalla quantità di molecole presenti in fase gassosa
- Clausius–Clapeyron descrive la variazione di p in funzione di T alla separazione delle fasi

$$\frac{dp}{dT} = \frac{L}{T(V_B - V_A)}$$

a calore latente L costante e basse pressioni (bassa densità)

$$(\frac{dp}{dT})_{vap} \simeq \frac{L p}{R T^2}$$
 $p_{vap} \propto e^{-\frac{L}{RT}}$

• con ⁴He si raggiunge 1.2 K, con ³He, 0.250 K

Superfluidità di 4He

Un superfluido è uno stato della materia in cui un fluido ha viscosità nulla.

La sostanza appare come un liquido normale, ma l'assenza di viscosità comporta che il flusso attraverso sottili capillari è apparentemente indipendente dalla differenza di pressione come per i fluidi viscosi in regime laminare

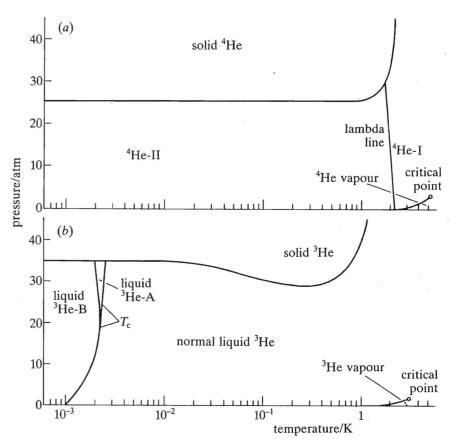
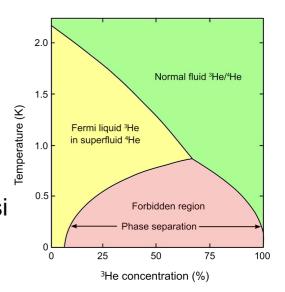
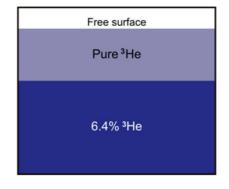


Diagramma delle fasi di ³He e ⁴He

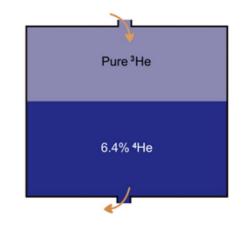
 Ogni atomo di ⁴He è un bosone, in quanto ha spin eguale a 0. Gli atomi di ³He è un fermione e ha spin ½


 La diversa natura conferisce ai due gas comportamenti diversi a basse temperature in funzione della pressione: ³He non ha transizioni superfluide (almeno non fino a temperature molto più basse)

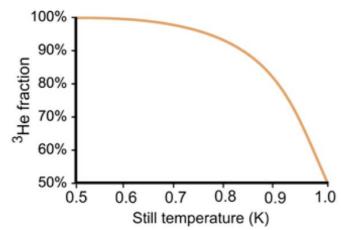

• Le miscele di ³He/⁴He vengono sfruttate per raggiungere temperature sotto i 300 mK

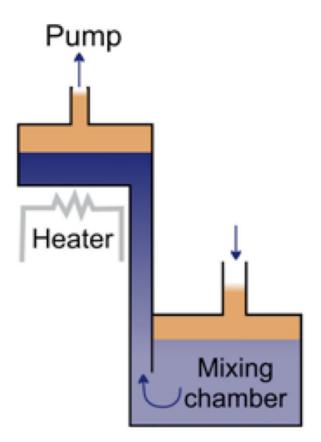
Miscela ³He/⁴He

- La temperatura di transizione a superfluido di una miscela ³He/⁴He dipende dalla concentrazione di ³He
- Quando una miscela viene raffreddata al di sotto del punto lambda transisce a superfluido.
- Raffreddando ulteriormente la miscela, si separa in due fasi con la fase ricca di ³He che si colloca sopra la fase ricca di ⁴He più pesante
- La fase ricca di 4He (detta *fase diluita*) contiene il 6,4% di ³He fino a 0 K.
- La solubilità finita di ³He in ⁴He è il principio che si sfrutta per la refrigerazione di diluizione

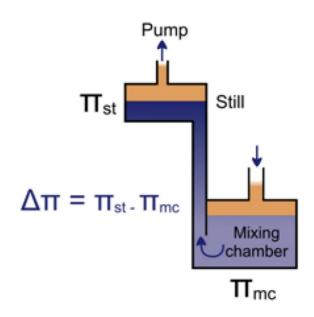


Mixing chamber


- La solubilità finita di ³He in ⁴He è data dalla diversa nautra (e statistica): ³Ho è un fermione, ⁴He è un bosone.
- Gli atomi ³He che stanno nella fase concentrata possono "decadere" in sta a un'energia inferiore nella fase diluita.
- Quando si raggiunge una concentrazione x = 0,064 non è più energeticamente conveniente dissolversi e le due fasi raggiungono un equilibrio.
- Se rimuoviamo gli atomi di ³He dalla fase diluita, gli atomi di ³He dalla fase concentrata attraverseranno la linea di separazione tra le fasi per occupare gli stati energetici vuoti nella fase diluita a cui mancano atomi di ³He.
- Il potere refrigerante è quindi dato dalla differenza di entalpia ΔH tra ³He in fase diluita e ³He puro moltiplicato per il flusso di ³He tra le due fasi:


$$L_{H_3}=\Delta H$$
 $C=rac{dQ}{dT}$ Specific heat of 3 He: C \simeq 22 T J/mol K $Q=\int_{T_{MC}}^{T_{HEX}}C~dT=11(T_{MC}^2-T_{HEX}^2)$ Power injected by the returning 3 He $\dot{Q}\simeq\dot{n}_3~(95~T_{MC}^2-11~T_{HEX}^2)$

Lo Still

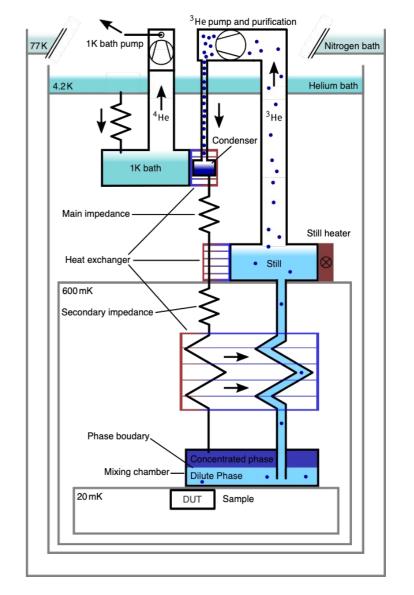

- La mixing chamber si collega a un distillatore ("still"), che distilla il ³He dal ⁴He per differenza di pressione del vapore
- Si preferisce scaldare lo still con potenza esterna per mantenere costante il flusso di evaporazione del ³He.
- In pratica si ha una frazione di ³He circa ~90% nel gas in circolo, risultando in una temperatura dello still di 0.7 - 0.8 K.

Pressione osmotica

- Quando pompiamo il vapore ³He dalla fase diluita all'interno dello still, la concentrazione di ³He nella fase diluita
- La differenza di concentrazione di ³He tra lo still e la mixing chamber determina un gradiente di pressione osmotica lungo il tubo di collegamento
- Questa pressione osmotica spinge ³He dalla mixing chamber verso lo still
- La pressione osmotica massima è di quasi 20 mbar.
- Che equivale alla pressione idrostatica di 1 metro di elio liquido
- Ciò significa che la differenza verticale tra Still e Mixing
 Chamber dovrebbe essere inferiore a 1 metro

Unità a diluizione

- Ridurre al minimo l'effetto della resistenza termica tra elio liquido e metalli (resistenza di Kapitza). Ciò consente scambiatori di calore efficienti e quindi una temperatura di base più bassa
- Ridurre al minimo l'effetto del riscaldamento viscoso. Ciò consente un'elevata velocità di circolazione ³He e quindi una maggiore potenza di raffreddamento
- Limitare il flusso del film superfluido nello still.
 Ciò garantisce che venga fatto circolare circa il 90% di ³He puro
- Ridurre al minimo la quantità di ³He necessaria per il funzionamento (costi)
- Rimanere a tenuta stagna per molti anni


Criostato a diluizione

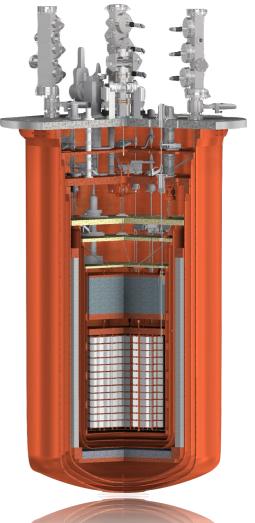
La parte cruciale del refrigeratore è l'unità a diluizione:

- mixing chamber
- still
- linea di iniezione del 3He

Oltre ai sistemi di pompaggio e ricircolo dell'elio servono:

- 1K pot
- bagno esterno di elio liquido
- bagno esterno di azoto liquido

Criostati per rivelatori di eventi rari


- In base alla temperatura a cui sono progettati per funzionare i rivelatori, esistono criostati a diluizione con geometrie diverse
- Le schermature sono parte cruciale degli esperimenti di eventi rari
- Le dimensioni e la posizione delle schermature deve essere studiata in modo da ottimizzare i tempi di raffreddamento

Refrigeratore a diluizione dell'esperimento CUORE

Un sistema criogenico con un volume sperimentale di ~1 m³ in cui opera un'enorme matrice di rivelatori a 10 mK a bassa radioattività e basse vibrazioni

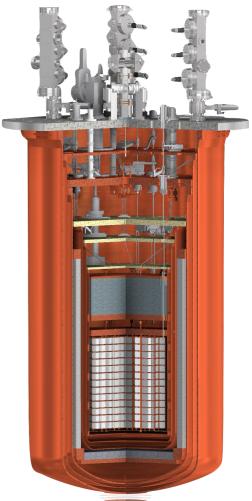
La massa totale della parte raffreddata sotto 40 K è 15 tonnellate

Refrigeratore a diluizione dell'esperimento CUORE

Criostato senza elio liqiido

- Tubi a impulsi, espansione JT invece di 1K Pot
- Temperatura di base <10 mK
- Unità di diluizione costruita appositamente ad alta potenza di raffreddamento
- Criostato verticale (più massa da raffreddare, design più semplice)

Dimensioni: esterno Ø 1687 × h 3100, volume sperimentale Ø 900 × h 1370


- Ampia schermatura in piombo freddo che circonda il rivelatore
- Supporto per carichi pesanti
- rilevatore ~ 1 tonnellata
- schermatura al piombo ~ 10 tonnellate

Selezione rigorosa dei materiali

- principalmente rame pulito radioattivamente
- altri materiali selezionati solo in piccole quantità (SS, TiAlSn, Kevlar...)

Contributo delle vibrazioni meccaniche basse sul rivelatore

- sospensione del rivelatore indipendente
- Il progetto è stato un processo iterativo in cui ogni scelta doveva essere validata dal punto di vista del bilancio termico e della radioattività

Metro cubo più freddo dell'Universo

