Instrumental asymmetries and $B \rightarrow K \tau \tau$ analysis at Belle II

Debjit Ghosh

PhD school XXVII cycle - first year report Supervisor: Diego Tonelli

September 5, 2022

Flavour physics at Belle II

Standard Model: $\mathcal{O}(1000)$ predictions from eV to TeV with only 20 parameters, but still incomplete (dark matter, matter-antimatter asymmetry...).

Weak interactions of quarks ("flavour physics"): powerful tool for indirect searches to test SM and its extensions. Search for discrepancies in low-energy processes.

- SuperKEKB: 7-on-4 e⁺e⁻ collider at 10.58 GeV;
- Aim at 700 $B\overline{B}$ pairs/second in low-background environment;
- 400 fb^{-1} (400 × 10⁶ $B\bar{B}$ pairs) of data collected;
- World record peak luminosity: $4.1 \times 10^{34} cm^{-2} s^{-1}$.
- Unique reach on final states with multiple neutrinos.

Instrumental asymmetries

Measurement of CP asymmetries are a fundamental goal of Belle II physics.

For correct measurement, detector asymmetries must be removed.

$$\mathscr{A}_{raw} = \mathscr{A}_{CP} + \mathscr{A}_{det} + \mathscr{A}_{FB} \dots$$

 $\mathscr{A}_{det}(\pi)$ determined from $D^+ \to K^0_S \pi^+$ decays.

Can obtain $\mathscr{A}_{det}(K)$ using $\mathscr{A}_{det}(K\pi)$ from $D^0 \to K^-\pi^+$ (Michele's talk)

$$\mathscr{A}_{det}(K) \simeq \mathscr{A}_{det}(K\pi) - \mathscr{A}_{det}(\pi)$$

Measured in early data with $\mathcal{O}(1 - 3\%)$ precision (S.Raiz *et al*.**BELLE2-NOTE-TE-2020-024**).

Improve over this work by using larger dataset (190 fb^{-1}), a refined selection and by subtracting the \mathscr{A}_{FB} asymmetry (previously unaccounted). We reach sub-percent precision.

Candidates per 0.0044 GeV/c²

 $\mathscr{A}_{det}(\pi)$ from D control channels $\mathscr{A}_{\text{raw}} = \frac{N_D - N_{\bar{D}}}{N_D + N_{\bar{D}}} = \mathscr{A}_{CP} + \mathscr{A}_{det} + \mathscr{A}_{FB}$ **CP-violating asymmetry** Observed asymmetry Forward-backward Instrumental asymmetry asymmetry \mathscr{A}_{CP} known for $D^+ \to K^0_S \pi^+ : \mathscr{A}_{CP}(K^0_S \pi^+) = -0.41 \pm 0.09 \%$; $\mathscr{A}_{det}(K^0_S) = 0$ \mathscr{A}_{FB} is antisymmetric as a function of angle of D momentum in the CMS ($cos(\theta^*)$). \mathscr{A}_{FB} can be cancel by average measurements of \mathscr{A}_{raw} in opposite bins of $cos(\theta^*)$.

$\mathcal{A}_{det}(\pi)$ dependencies

Study $\mathscr{A}_{det}(\pi)$ dependencies as a function of:

- *p*: interaction probabilities with matter depend on momentum;
- $cos(\theta)$: different material budget traversed by the particle;
- CDC hits: tracking and dE/dx resolution depends on number of hits, and these differ on average for track opposite curvature.

Also investigated other possible dependencies (p_{err} , ω_{err}) but we identify these 3 are the most relevant at the current level of precision.

Sample dependence

We have developed a method (reweighting method) to take into account these dependencies and to calculate \mathscr{A}_{det} for different decays.

Strategy: provide \mathscr{A}_{det} using the control samples, assigning a systematic uncertainty due to how well we reproduce \mathscr{A}_{det} with our control channels (in MC).

Provided the \mathscr{A}_{det} values for $B^+ \to \pi^+ \pi^0 (B^+ \to K^+ \pi^0)$ with a total uncertainty of 1% for the \mathscr{A}_{CP} measure shown at ICHEP 2022.

$B \rightarrow K \tau \tau$ analysis using hadronic tagging

- Flavour changing neutral current is highly suppressed in SM, $\mathcal{O}(10^{-7})$.
- In SM, these decays are forbidden at tree level and only occurs via loop diagram.
- 3^{rd} generation(τ) strongly couples to new physics models.
- *BABAR* collaboration put an upper limit, $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90% C.L.
- Belle did a preliminary study of $B^+ \to K^+ \tau^+ \tau^-$ and set the upper limit to $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 3.17 \times 10^{-4}$ at 90% C.L.
- Start working on $B^+ \to K^+ \tau^+ \tau^-$ to do a combined Belle + Belle II analysis (targeting next summer to complete).
- A similar study I will perform later on $B^0 \to K_S^0 \tau^+ \tau^-$: nobody has measured its branching fraction yet.

Hadronic tagging

- Main challenge: τ reconstruction as it decays into undetected neutrinos eg. $\tau \to \mu \bar{\nu_{\mu}} \nu_{\tau}$
- Multiple τ reconstructions are unfeasible at LHC
- Feature of Belle II experiment:
 - Efficient detection of final state particles
 - Good hermetic: 4π acceptance
 - Precisely measured initial kinematics of the beam.
- Tagging: reconstruct one arbitrary *B* meson (B_{tag}) and put decay constraint on the signal *B* meson
- Signal side can be reconstructed from beam and B_{tag} kinematics
- Hadronic tagging only uses hadronic decay channels for B_{tag} reconstruction.
- High in purity, but low in efficiency at the order of $0.1\,\%$
- Highly statistically limited

Analysis flow

Reconstruction: process simulated data needed in the analysis applying pre-selection of $B^+ \to K^+ \tau^+ \tau^-$

done!

Optimise selection: identify selection that maximises signalover background using simulation

Nov 22 - Feb 23

reconstruction efficiency(ϵ) = 1.25×10^{-3}

Background studies: continuum suppression and potential background sources

Sept 22 - Oct 22

Signal extraction or upper limit

Mar 23 - Apr 23

Systematics: assess the relevant contribution to systematic uncertainties

May 23 - Jun 23

if time allows similar study with $B^0 \to K^0_S \tau^+ \tau^-$

Summary

Measured \mathscr{A}_{det} for π using $D^+ \to K_S^0 \pi^+$.

First \mathscr{A}_{det} dependence study. Found a large dependence as a function of p, $cos(\theta)$ and CDC hits of tracks.

Developed a strategy to compute \mathscr{A}_{det} from control channel for any physics decay (i.e. $B^+ \to h^+ \pi^0$ (ICHEP 2022)).

Presented the instrumental asymmetries study in Belle II's working physics subgroup.

Belle II internal note: M.Dorigo, D.Ghosh and M.Mantovano, "Measurement of instrumental asymmetries of K and π ", 2022, BELLE2-NOTE-TE-2022-XX.

Started $B^+ \to K^+ \tau^+ \tau^-$ analysis using hadronic tagging to measure its branching fraction. Nobody has measured $\mathscr{B}(B^0 \to K_S^0 \tau^+ \tau^-)$.

Backup

Motivation

In particle physics, CP violation is the breaking of the combined charge-parity symmetry. Measurements of CP asymmetries (\mathscr{A}_{CP}) are a fundamental goal of Belle II physics program.

CP asymmetries are usually determined from signal-yield asymmetries, which comprise also other contributions:

$$\mathscr{A}_{raw} = \frac{N^+ - N^-}{N^+ + N^-} = \mathscr{A}_{CP} + \mathscr{A}_{det} + \dots$$

Instrumental asymmetries (\mathscr{A}_{det}) come from different sources:

- different reconstruction efficiency for +/- tracks;
- different interaction probabilities of particle/ antiparticle with matters (i.e. K^+/K^-);

• etc..

Cannot trust simulation to obtain them \rightarrow measure \mathscr{A}_{det} in data.