Scuola Nazionale Biennale

"Rivelatori ed Elettronica per Fisica delle Alte Energie, Astrofisica, Applicazioni Spaziali e Fisica Medica"

IV Edizione

INFN Laboratori Nazionali di Legnaro

11-15 Aprile 2011

April 12, 2011

Danno da Radiazione Macroscopico in Rivelatori a Semiconduttore

A.Messineo Universita degli Studi di Pisa

Danno da Radiazione Macroscopico in Rivelatori a Semiconduttore Parte I

Rivelatore a semiconduttore (Si)

Rivelatore a semiconduttore (Si)

Caratteristica Corrented-Tensione (Leakage current)

7

- La tecnologia attuale permette di costruire rivelatori al Si su wafer con diametro di 6" con densita di leakage current pari a100-150 nA/cm² registrata a tensione di bias elevata (500V)
- E` questo il livello di qualita su cui si sono costruiti gli apparati che gli esperimenti ai presenti colliders e raggiunto con la tecnologia di crescita dei lingotti con metodo Fz n-type.

$$J_0 = \frac{ni}{2\tau_0} qeW \propto \sqrt{V_{rev}}$$
$$I = I_0 (e^{\left(\frac{q_e V}{K_b T}\right)} - 1)$$

$$I(T_1) \quad (T_1)^2 \quad \dots \quad (-E_g(1 \ 1))$$

 $\frac{I(I_1)}{I(T_2)} = \left(\frac{I_1}{T_2}\right) \cdot \exp\left(\frac{-L_g}{2k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right)$

Stabilita ad alta tensione di Polarizzazione inversa (500-1000V)

Rivelatore di silicio segmentato : il segnale

10

• Segnale generato da una particella carica che attraversa il rivelatore

Danno macrospopico sui rivelatori

INFN Legnaro April 12, 2011

Principio di funzionamento di un rivelatore al Si

Il rivelatore Si, un diodo sofisticato inversamente polarizzato, che fornisce tramite la carica raccolta sulla struttura segmentata un'informazione posizione delle particelle che lo attraversano.

Segnale indotto in un rivelatore a strips

12

Segnale dato non dal conteggio delle cariche ma dalla corrente
Pensiamo ad una carica generata lontana dalla parte strutturate (strips) che si muove verso le strips

Inizialmente la carica induce segnale su molte strips, ma essendo lontana da esse il segnale e basso

Durante il moto di deriva il segnale indotto si concentra su poche strips

In prossimita del piano strutturato la carica e` indotta in poche strips, in questa regione si ha l`effetto maggiore

 La grandezza della corrente indotta (che rappresenta il nostro segnale disponibile) dipende dall`accoppiamento della carica in moto di deriva con ciascun elettrodo

Induzione sugli elettrodi

13

• Rivelatore segmentato (strip/pixel)

 $\lambda_{e,h} {=} \mu_{e,h} \, \tau_{eff \, e,h} \, E \,$ rappresenta la lunghezza di raccolta di carica

In silicio non danneggiato e di buona qualità: $\tau_{eff e} = 10 \text{ ms}$ $\mu_e = 1350 \text{ V/cm s}^2$ per un V_{bias} tale che E~10⁴ V/cm λ ~ 10⁴ cm

Segnale di particella carica

15

- Un a particella carica al minimo della ionizzazione (m.i.p.) rilascia in Si ~390 eV/μm e produce circa 108 coppie (e,h)/μm di spessore attraversato.
- Per un rivelatore di spessore 300 μm signifca che possiamo raccogliere in media 32000 coppie primarie.
- In realta la carica raccolta fluttua
 - secondo una distribuzione di Landau
 - statistica della creazione di coppie
 - variazione della ionizzazione primaria
- pertanto il segnale piu probabile sarà invece pari a 23000 coppie (e,h) corrispondenti a 3.5 fC
- Il segnale rivelabile deve essere misurato in temini della carica raccolta in assenza di segnale di particella, cioe il noise

Si : 300 μ m thick

Segnale minimo

- La distribuzione di Landau ha il picco al valore piu probabile (MPV) della energy loss Q_0 (3.5 fC per 300 μ m di spessore) e si estende fino a 0.5 Q_0 se vogliamo una efficienza del 99% sul segnale stesso.
- Assumiamo che l'energia minima rilasciata dalla tracce cariche sia $f_L Q_0$
- Una traccia carica che attraversa un silicio segmentato deposita carica su piu elettrodi (sharing) quindi la carica minima a cui dobbiamo essere sensibili è Q_{min} ~ f_{sh}f_L Q₀
- Possono presentarsi 2 casi
 - Se lo sharing è trascurabile f_{sh} =1, Q _{min}= 1.75 fC
 - Se invece il sistema opera per una risoluzione in posizione ottimale dovremmo avere un equo-sharing tra elettrodi vicini quindi ad esempio $f_{sh} = 0.5$, $Q_{min} = 0.85$ fC

Soglia per il rumore

- Sicuramente Q min > Soglia = n Q noise (n=4-5) in modo da essere lontani sulla coda della gaussiana della distribuzione di rumore
- Per sopprimere falsi segnali di particella
 - Soglia = n Q $_{noise}$ + dispersione
- per strips
 - $Q_{\text{noise}} \approx 600 + C^* 40 \approx 1100e^-$ n = 4 • Soglia $\approx 4500 e^- (0.7 \text{ fC})$
- Per pixel in versione Hybrid

• Q _{noise} = 260e⁻ ,
$$\delta$$
Thr = 40 e⁻ n = 5

- Soglia ≈ 1,300e-
- La soglia effettiva tiene conto anche di variazioni /correlazioni della elettronica di read-out pertanto si assume una valore tipico di 2500-3000 e- (0.5 fC)

Tolleranza al danno da radiazione: presente

• I collider ad alta anergia (LHC) determinano il limite massimo della radiation tolerance

Alla luminosita istantanea di progetto di LHC **10**³⁴ **cm**⁻² **s**⁻¹ abbiamo 40 milioni di eventi al secondo simili a questo con circa 1000 tracce

Alla fluenza integrata 500 fb⁻¹ (prevista per 10 anni di funzionamento)

Danno da Radiazione Macroscopico in Rivelatori a Semiconduttore Parte II

Danno da radiazione: N.I.E.L.

Sommario degli effetti del danno

23

• Bulk (Crystal) damage due to Non Ionizing Energy Loss (N.I.E.L.)

- displacement damage, built up of crystal defects- affects:
 - I. leakage current
 - II. effective bulk doping concentration
 - III. charge carrier trapping

Abbiamo dimenticato una parte della energia

- Bulk (Crystal) damage due to Non Ionizing Energy Loss (N.I.E.L.)
 - displacement damage, built up of crystal defects- affects:
 - I. leakage current
 - II. effective bulk doping concentration
 - III. charge carrier trapping
 - Surface damage due to Ionizing Energy Loss (I.E.L.)
 - accumulation of charge in the oxide (SiO₂) and Si/SiO₂ interface affects:
 - Inters-trip capacitance
 - Breakdown

Abbiamo trascurato la dipendenza dal tempo

25

- Bulk (Crystal) damage due to Non Ionizing Energy Loss (N.I.E.L.)
 - displacement damage, built up of crystal defects- affects:
 - I. leakage current
 - II. effective bulk doping concentration
 - III. charge carrier trapping
 - Surface damage due to Ionizing Energy Loss (I.E.L.)
 - accumulation of charge in the oxide (SiO $_{\rm 2}$) and Si/SiO $_{\rm 2}$ interface affects:
 - Inters-trip capacitance
 - Breakdown

All these effects are not stable: they evolve as a function of time and temperature.

Impact on detector performance ad detected signal.

Danno da radiazione : Leakage current(I-V)

• Come conseguenza del danno da radiazione si osserva un aumento della corrente

- L`incremento osservato è:
 - proprozionale alla fluenza alla fluenza integrata
 (riferita ad 1 MeV n_{eq}/cm²)
 - indipendente dal materiale di partenza

Rivelatori a micro strips, 300 μ m, <100>, pitch 50-100 μ m.

• La corrente di bulk è proporzionale alla fluenza ed

 $\alpha_{60/80}(T = 20^{\circ}) \approx 4 \times 10^{-17} A / cm$

Estrapoliamo alla fluenza massima prevista 1.6 10¹⁶ 1 MeV n_{ea}/cm²

$$\frac{\Delta I(t,T_a)}{V} = \alpha_{60/80} \bullet \Phi_{eq} \approx 0.64 \, A \, / \, cm^3$$

$$\frac{I(T_1)}{I(T_2)} = \left(\frac{T_1}{T_2}\right)^2 \cdot \exp\left(\frac{-E_g}{2k_B}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right)$$

Strategia : Rivelatori piu sottili Rivelatori raffreddati Esempio : *I*(-10°C) ~1/16 *I*(20°C)

Doping efficace del bulk : funzione di t(s) e T(°C)

32

$\Delta N_{EFF}\left(\Phi_{eq}, T, t\right) = \Delta N_{C}\left(\Phi_{eq}\right) + \Delta N_{A}\left(\Phi_{eq}, T, t\right) + \Delta N_{A}\left(\Phi_{eq}, T, $	$V_{\rm Y}(\Phi_{eq},T)$	[T,t)
$\Delta N_{c}(\Phi_{eq}) = N_{c0}(1 - e^{-c\Phi_{eq}})_{t} + g_{c}\Phi_{eq}$		
$\Delta N_{A}(\Phi_{ea}, t, T) \approx \Phi_{ea} g_{a} e^{-\overline{\tau_{a}(T)}}$		30

$$\Delta N_{Y}(\Phi_{eq}, t, T) = \Phi_{eq} g_{y} (1 - e^{-\frac{t}{\tau_{Y}(T)}})$$

T [°C]	$ au_{a}$	$ au_{Y}$
-10	306 d	516 y
0	53 d	61 y
10	10 d	8 y
20	55 h	475 d
40	4 h	17 d
60	18 min	21 h

Tempi brevi : Annealing benefico Tempi lunghi : Annealing inverso

• La costatnte tempo dipende dalla temperatura

Scenario sperimentale: evoluzione V_{DEP}

33

• Approssimiamo il danno con la parte "stabile"

 $\Delta N_{EFF} \left(\Phi_{eq}, T, t \right) \approx g_c \Phi_{eq}$

• La combinazione di annealing e tempi di irraggiamento dipende fortemente dalla strategia sperimentale adottata

• Caso del tracciatore di ATLAS

p⁺-n-type Fz bulk, inversione di tipo: doppia giunzione

35

For MCz the curve V_{dep} vs fluence has a minimum, but it does not go to 0 as for STF_Z

- Dominant junction close to n+ readout strip for FZ n+-in-p
- For MCZ p+-in-n even more complex fields have been reported:
 - no "type inversion" (SCSI) = dominant field remains at p implant
 - "equal double junctions" with almost symmetrical fields on both sides

n⁺-p-type bulk, "non" inversione di tipo

n⁺ strip implants

p-type silicon after high fluences:

- remain p-type
- acceptor defects increase V_{DEP}

n-on-p silicon, under-depleted:

•Limited loss in CCE

Stabilita dopo irraggiamento

- A seguito del danno da radiazione si registra nel bulk un aumento di
 - Corrente oscura
 - Trappole e difetti strutturali
 - V bias necessario a raccogliere la carica primaria
- Ma un rivelatore dopo irraggiamento e` stabile ?
 - Serve un buon modello: il campo elettrico all`interno del bulk è complicato, potrebbe raggiungere localmente il valore limite per breakdown ~30V/ μ m
 - I difetti introdotti possono essere luoghi in cui il campo elettrico diventa critico
 - il campo elettrico potrebbe diventare localmente critico in zone difettose presenti gia prima del danno
 - Iniezione di corrente dalla zona di taglio
- In ogni caso dobbiamo operare ad alto tensione di polarizzazione inversa cercando di limitare la potenza dissipata

• Conseguente instabilità del sensore

I.E.L.: Danno dell`ossido : effetti sulla superficie

Dipende dalla qualita dell'ossido interstriscia
 Interfaccia Si0₂/Si

Ossido

- Orientazione del cristallo <111> <100>
 - Presenza dei dangling bond, siti in cui Il legame covalente non e` saturato

FIG. 1. Oblique view of ideal undistorted (111) surface of diamond structure material showing one broken bond per surface atom.

• Dipende dalla

- geometria degli impianti (pitch e strip width)
- geometria delle strutture MOS presenti

Il Segnale

46

- Alla fine quello che conta è quanta carica raccolgo
 - Charge Collection Efficiency (CCE)
- Quanto il segnale è superionre al rumore
 - Signal to Noise ration (S/N)

• Il danno prodotto della energia rilasciata nelle componenti I.E.L. e N.I.E.L. modifica (peggiora) la CCE ed S/N

• Concorrono:

- Trapping delle cariche primarie prodotte
- Svuotamento parziale del volume attivo
- inversione di tipo del bulk
- Tempo di raccolta di carica
- Geometria degli elettrodi
- Tipo di lettura
-

- Effetto di saturazione con il V-bias
 - V_{DEP}
 Valore limite di V_{drift}

Deterioramento dovuto al trapping

Trapping ad alta fluenza

51

Valori estrapolati su un ordine su grandezza in fluenza

Deficit di carica atteso

⊕ (10¹⁵) 1MeV n _{eq} /cm²	Trapping time (ns)	Collection length (µm)	Carge Collected (electrons)
0.5	3.9	300	23000
1	1.9	196	15000
1.5	1.3	130	10000
10	0.2	20	1500
20	0.1	10	800

Probabilità di cattura diminuisce con la temperatura, ma anche la mobilità! L'operazione a bassa T non migliora CCE

FZ n-in-p microstrip detectors (n, p, π – irrad)

Danno macrospopico sui rivelatori

Annealing del danno sulla carica raccolta

Detector performance S/N

- La CCE non basta
- Un rivelatore ricostruisce un segnale applicando un taglio di ricostruzione (Threshold) in generale efficace per separare i segnali dal rumore e che non taglia il segnale di particella
- Vediamo qui alcuni contributi al noise provanianti dal radiatio n damage:
 - Shot noise
 - I leakage
 - Noise capacitivo
 - Capacità di carico al canale di lettura

• Alla fine è necessario avere una stima del rapporto S/N

Contributo al noise: formule

- Nella ipotesi di uno stadio di formatura RC-CR
 - Contributo shot noise

$$Q_{noise} \approx \sqrt{AI_{leakage}\tau}$$

• Contributo capacitivo

$$Q_{noise} \approx \sqrt{\frac{B}{\tau}}C$$

• Contribuiscono in quadratura al noise totale

Risoluzione spaziale: esempio micro-strip

- Micro strips spessi 300 μm, <111>, Fz-n
 - Danno su ossido rilevante
 - C_{n,n} cresce
- Strip pitch 61 μ m implant width 14 μ m
 - Accoppiamento tra le strips elevato
- Lettura analogica

- Micro strips spessi 300 μm, <100> Fz-n
- Strip p & n (doppia faccia)
- Irraggiato a 1 10¹⁴ 1 MeV n_{eq}/cm^2
- Lettura binaria, soglia di 1 fC

9.

Ē

Ē.

-Vhias

8

depleted

undepleted (E=0)

chargesharing

ionising

particle

Pixels di CMS : bulk Fz n+-n

270um thick.<100>

pixel 100X150 µm²

p-bulk

(after type inversion)

Risoluzione spaziale : esempio pixel

65

- Charge sharing gioca a favore della risoluzione spaziale tramite la misura del baricentro della carica raccolta 0
 - Puo essere indotto anche dalla deriva dei carrier lungo una direzione definita
 - Angolo di Lorentz in campo B
- A seguito del danno da radiazione: 0
 - necessario applicare una tensione di polarizzazione maggiore
 - i difetti riducono la mobilita delle cariche

Lorentz angle at B=4T

Letture consigliate

- S. M. Sze: Semiconductor Devices, Physics and Technology, Wiley 1985
- R. S. Muller, T. I. Kamins: Device Electronics for Integrated Circuits, John Wiley & Sons 2003
- H. Spieler: Semiconductor Detector Systems, Oxford University Press, 2005
 - Spieler ha anche molti tutorials utilissimi
 <u>http://www-physics.lbl.gov/~spieler/</u>
- Rossi, Fischer, Rohe, Wermes: Pixel Detectors: from Fundamentals to Applications, Springer 2006
- G.Lutz : Semiconductor radiation detectors, Device Physics, Springer 1999