Apparati di irraggiamento per SEE indotti da neutroni a ISIS e misure del campo neutronico

(Irradiation facilities for neutron induced SEE tests at ISIS and measurements of the neutron field)

> Enrico Perelli Cippo Dipartimento di Fisica *Giuseppe Occhialini* Università degli Studi di Milano-Bicocca

OUTLINE

- The **ChipIr** beam line at ISIS-TS2
- Detectors for epithermal neutron beams and monitors for ChipIr
- Tests and results
- Conclusion

Neutron Radiation from primary cosmic rays

A Fast Neutron Beamline: CHIPIR (ISIS-TS2)

	LANSCE	4.1x10 ⁵ n/cm²/s	800 Mev	
	TRIUMF	3.4x10 ⁶ n/cm²/s	500 MeV	
	ISIS TS1	6.6x10 ⁴ n/cm²/s	800 MeV	
	ISIS TS2 Pencil	4 x10 ⁷ n/cm ² /s	800 MeV	
	Flood	3 x10 ⁵ n/cm²/s	800 MeV	
Flood Beam	Pencil	Beam		
 Optimised fast neutrons spectrum (up to 800 MeV) Match atmospheric neutron spectrum Larger beam diameter (system testing) 				
- Purpose built facilities matched to users needs				

ChipIR

• Chip Irradiation: small Chips, to Full racks and electronic systems

•Using higher integrated Flux

than previously used on ISIS (above 10 MeV)

Layout

Blockhouse

The *chef* 's secret: how to make a perfect fast neutron beam.....

ISIS accelerator proton bunch

Duty cycle = 50 / 4 Hz

....while engineers are working.....

VESUVIO

ROTAX

Undermoderated neutron flux with epithermal neutrons with flux ~ $E^{-0.9}$

Adequate for testing of detectors and techniques for ChipIr

Neutron spectrum assessment techniques for Chiplr

Bonner spectrometer

Thin Film Breackdown Counters

The Bonner Specrometer

INFN-LNF

A. Esposito – R. Bedogni

10 Bonner spheres of different diameters

$\textbf{GEOMETRY} \rightarrow \textbf{ENERGY}$

Response of the Bonner sphere calculated through **MCNPX** simulations with VESUVIO-like conditions Experimentally validated in the low-energy part (Cf sources, GSI, etc.)

The Bonner Sphere

From the measured activity on the sensor after a period of irradiation the neutron flux at the selected energy range is found

Extending measurements above 20 MeV

Modified Bonner Spheres by including metal inserts (Cu, Pb) to allow for n(x,n) reactions to occur

The Bonner Sphere

The INFN-LNF spectrometer can be used with different detectors.

For measurements at ISIS:

Dy activation foils (25 µm x 12.7 mm diam.)

Beta emitter

High thermal cross-section (2500 b)

Short half-life (2.334 h)

Gamma-ray insensitive

Response Functions of Bonner spheres

Energy distribution of the VESUVIO neutron fluence rate normalized to 180 μA proton current

Bonner Cylinders to maximize efficiency in a neutron *beam*

Measurements on Rotax (ISIS)

Simulation of the response functions and data analysis ongoing

Thin Film Breakdown Counters (TFBC)

A. Smirnov and A. Prokofiev

The neutron converter for TFBC

Thresholds for fission: 1 MeV (²³⁸U)

30 MeV (²⁰⁹Bi)

(n,f) cross-sections known up to about 200 MeV

Converter foils: 1.7 cm diam. Areal density: 2 mg/cm²

The TOF spectrum results from the convolution of the neutron flux and the fission cross-sections of converter foils

Neutron ToF spectra

TFBC have a limited *hope of life* (a few hours) in high neutron flux.....

BS and TFBC are good for the general characterisation of the beam but cannot be used as localised beam monitors:

-BS are too big

-TFBC are damaged by fission fragments

The proposed monitors:

Single Crystal Diamonds for localised flux monitoring

SCD by Chemical Vapor Deposition

Carbon neutron cross sections

Diamond Detectors

Active medium main characteristics:

A = 12 amu $\rho = 3.5 \text{ g cm}^{-3}$ $t = \text{up to 500 } \mu\text{m}$ $S = 10-30 \text{ mm}^2$ $E_{\text{e-h}} = 12 \text{ eV}$ $Y=10^5 (\text{e-h})_{\text{pairs}}/\text{MeV}$

Diamond detector	Thickness	Producer
SDD-24	24 µm	Dip. di Ing. Meccanica Università degli Studi di Roma Tor Vergata
SDD-150	150 µm	Dip. di Ing. Meccanica Università degli Studi di Roma Tor Vergata
SDD-500	500 µm	Diamond Detectors Ltd.

BIAS: about 1 V/µm

Fast preamp (shaping time 2 ns)

BI-PARAMETRIC measurements (TOF and in tensity)

3- α source characterisation of diamond detectors

Bi-parametric measurements

Experimental set up

Experimental set up

TOF SPECTRA FROM DIAMOND

TOF SPECTRA FROM DIAMOND

CONCLUSIONS

The ChipIr beamline is under construction at ISIS-TS2

Explorative tests at ISIS TS-1 opened the way to the ChipIr beam characterization and monitoring

Fast neutron detectors are in development

For beam characterization:

- Bonner Spheres (and Cylinders)
- Thin Film Breakdown Counters

For localized beam monitoring:

• Single Crystal Diamond detectors.

Modifying the diamond response

