

Conveners: Lucia Giuliano (Sapienza University of Rome – INFN Roma), Anna Vignati (INFN), Pablo Cirrone (NFN), Maria Giuseppina Bisogni (INFN)

.. Single or multiple pulses for the same total dose?

One shot: high charge per pulse to obtain high dose

Multiple shot: possibility to have less charge in one pulse

Pencil beam or wide range?

FLASH effect has been seen essentially:

In small volumes of normal tissues (a few cc) on WIDE RANGE @LOW ENERGY

We design machine for WIDE RANGE @ HIGH ENERGY

Large field: high charge per pulse to obtain high dose

Pencil beam: less charge in one pulse to irradiate less volume with same dose

Different approaches are under discussion: **PENCIL BEAM**

- Premise to use normal conductive photoinjector based accelerators (CLEAR-CERN)
 - The DEFT linac (CERN-CHUV) want expand beam to target cross section >10 cm
- Premise to use super conductive photoinjector based accelerators (ELBE)
- Premise to use LASER based accelerators
- Work recently started within WP4 (SBAI)

No evidence of FLASH effect with pencil beams @LOW energy Can FRIDA prove it?

CLEAR for FLASH Radiotherapy Research

- Normal conductive structure
- Pencil beam (3,23 mm or 6,88 mm)

Symbol	Description	Value		
Е	Beam energy	60 - 220 MeV		
t_p	Pulse width	0.1 - 10 ps		
PRF	Pulse repetition frequency	0.8333 - 10 Hz		
Q_P	Pulse charge	0.001 - 3.0 nC		
	Max. pulse charge	30 nC		
	bunch per pulse	1-150		
D_p	Dose in a single pulse	0.2 - 12 Gy in Ø3.5 mm		
$ \frac{D_p}{D_p} $	Instantaneous Dose-rate	10^{10} Gy/s		
$\overrightarrow{\vec{D}}$	Mean dose rate	>100 Gy/s		

Temporal structure of the pulse for different

VHEE LINACs

Beam parameters VHEE@Sapienza	Range		
Energy	60 – 130 MeV		
Bunch Length	12 ps (rms)		
Bunch Charge	35 pC (for 400 nC total charge)		
Number of bunches per pulse	11424		
Repetition rate	100 Hz		
Bunch spacing	0.175 ns		

	am parameters EAR@CERN	Range	
En	ergy	60 – 220 MeV	
Bu	nch Length	0.1-10 ps (rms)	
Bu	nch Charge	5 pC – 3nC (max 30 nC)	
Nu	mber of bunches per pulse	1 to 150	
Re	petition rate	0.8 - 10 Hz	
Bu	nch spacing	1.5 GHz (from the laser)	

Sources for high dose rate electron irradiation @ELBE center

• Photoinjector : electrons are generated by a laser on the photocathode

• Superconductive structure

• Pencil beam (1.5 mm – 3 mm)

Symbol	Description	Value	
Е	Beam energy	20 MeV	
t_p	Pulse width	5 ps	
PŔF	Pulse repetition frequency	2.5 - 1000 Hz	
Q_{P}	Pulse charge	77 pC	
	bunches per pulse	1441	
D_p	Dose in a single pulse	26 Gy in Ø3 mm	
$rac{D_p}{\dot{D}_p}$	Instantaneous Dose-rate	10 ⁹ Gy/s	
$\overline{\dot{D}}$	Mean dose rate	2.6 x 10 ⁵ Gy/s	

Temporal structure of the pulse for different VHEE LINACs

Normal conductive

VHEE@SAPIENZA

- One pulse of 11424 bunches
- Mean dose rate: >100 Gy/s
- Pulse dose rate: $\sim 10^6$ Gy/s
- Dose per pulse (2 μs) **200** Gy Ø **50** mm

Superconductive

VHEE@ELBE

- One pulse of 1441 bunches
- Mean dose rate: $2.6 \times 10^5 \, \mathrm{Gy/s} \, \varnothing \, 3 \, \mathrm{mm}$
- Pulse dose rate: 10⁹ Gy/s
- Dose per pulse (111 μ s) **26** Gy Ø **3** mm

Laser plasma technology

kHz, mJ laser-plasma @LOA

Symbol	Description	Value
Е	Beam energy	0.5 - 1 MeV
t_p	Pulse width	few ps
PRF	Pulse repetition frequency	1 KHz
Q_P	Pulse charge	1 - 10 pC
D_p	Dose in a single pulse	1 mGy in Ø1 cm ²
$\frac{D_p}{\dot{D_p}}$	Instantaneous Dose-rate	$> 10^7 \text{Gy/s}$
$\overline{\dot{D}}$	Mean dose rate	1 Gy/s

M. Cavallone, et al. Appl. Phys. B, 127 (4), 2021.

1 Hz, J laser plasma @CNR-Pisa

L.Labate, et al. Scientifc Reports 10:17307, 2020.

Mean dose rate

1 Gy/min

What we know

We design accelerator by knowing the **CHARGES**

We use accelerator to deliver **DOSE**

10 nC \sim 1 Gy in \bigcirc 3 cm with applicators

L. Giuliano measurements @Curie Institut (7 MeV)

 $2nC \sim 1 Gy in \bigcirc 1 cm$

A. Schiavi et al. using by FRED code (100 MeV)

CLEAR - CERN investigation (200 MeV)

Daniela Poppinga et al 2021 Biomed. Phys. Eng. Express 7 015012

Beam monitoring with Faraday Cup at Institut Curie

- The peak current is always the same
 (> 100 mA): Linear proportionality of
 the dose and the pulse width
- Linear proportionality of the nC with the dose per pulse

$$C = \frac{1}{R} \sum_{0}^{t} V \Delta t$$

10 nC \sim 1 Gy in \bigcirc 3 cm with applicators (**7 MeV**)

Pulse duration [μs]	Gy/nC
0,3	10,12
0,6	8,74
0,8	9,56
1	9,33
1,2	8,57
2	8,85
2,5	9,05
3	9,02
3,5	8,90
4	9,22

CLEAR investigations

Gy/nC ~2 in **⊘**1 cm (**200 MeV**)

				Film measurement	Film measurement	Chamber	
	Beam	No of	Dose per	front of probe holder	back of probe holder	measurement	Error Dose Error
Beam size	configuration	pulses	pulse	[Gy/nC]	[Gy/nC]	[Gy/nC]	[Gy]
3.5 mm	LOW	36	0.20	4.08	4.15	3.98	0.21
		37	0.20	4.10	4.07	3.85	0.21
		37	0.21	4.21	4.06	3.81	0.21
		39	0.19	3.80	4.26	3.94	0.21
		39	0.20	4.12	4.37	3.96	0.21
		41	0.17	4.18	4.00	3.76	0.19
		45	0.16	4.30	3.98	3.69	0.18
	MEDIUM	4	2.31	4.32	4.34	2.29	0.24
		4	2.17	4.42	4.30	2.37	0.23
	HIGH	2	4.76	4.25	4.41	1.80	0.25
		2	4.46	3.40	3.52	1.48	0.25
		2	4.99	4.54	4.17	1.71	0.25
		2	4.98	4.56	4.03	1.68	0.25
	VERY HIGH	1	7.82	4.53	4.50	1.62	0.33
		1	9.08	4.44	4.59	1.53	0.36
		1	9.17	4.60	4.61	1.54	0.36
		1	6.70	4.47	4.18	1.38	0.25
		1	10.15	4.57	4.34	1.42	0.38
7 mm	LOW	80	0.13	2.29	2.15	1.83	0.12
		85	0.12	2.25	2.12	1.81	0.13
	HIGH	2	5.03	2.11	1.89	0.85	0.16
		2	5.09	2.11	1.89	0.83	0.16
	VERY HIGH	1	9.60	2.23	2.02	0.66	0.18
		1	11.65	2.24	2.07	0.67	0.22

Daniela Poppinga et al 2021 Biomed. Phys. Eng. Express 7 015012

Beam monitoring

We need accurate determination of dose with precisions at 1 % . Is toroid the solution?

Curie experience with *Persol* toroids

