

SiC membrane devices for harsh environment applications

@Ruder Boskovic Institute, Zagreb (Croatia)

Experiment proposal

- SiC industrially wide band-gap semiconductor
- Pixelated sensors on free-standing ultra-thin membranes
- Goal: response of the SiC sensors on free-standing membranes on a wide range of T and beam intensities
- Advantage of the capability of the facility to expose small areas with the beam \rightarrow local effects

materials

MDPI

Article

Electronic Properties of a Synthetic Single-Crystal Diamond Exposed to High Temperature and High Radiation

Andreo Crnjac^{1,*0}, Natko Skukan^{1,†0}, Georgios Provatas¹, Mauricio Rodriguez-Ramos¹⁰, Michal Pomorski ² and Milko Jakšić ¹

- Division of Experimental Physics, Ruder Bošković Institute, 10000 Zagreb, Croatia; Natko.Skukan@irb.hr (N.S.); Georgios.Provatas@irb.hr (G.P.); Mauricio.Rodriguez@irb.hr (M.R.-R.); Milko.Jaksic@irb.hr (M.J.)
- 2 CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F91191, France; michal.pomorski@cea.fr
- Correspondence: acrnjac@irb.hr; Tel.: +385-1-4561012
- † Presently on long term leave to the International Atomic Energy Agency.

Received: 29 April 2020; Accepted: 26 May 2020; Published: 29 May 2020

Ruder Boskovic accelerator facility

 6.0 MV EN Tandem Van de Graaff accelerator (higher energies, worse stability)
1.0 MV Tandetron accelerator (lower energies, better stability)

- 9 beam lines (2 accept from both accelerators)
- Each chamber is designed for a different purpose to cover a wide range of possible applications and techniques

Ruder Boskovic accelerator facility

 6.0 MV EN Tandem Van de Graaff accelerator (higher energies, worse stability)
1.0 MV Tandetron accelerator (lower energies, better stability)

- 9 beam lines (2 accept from both accelerators)
- Each chamber is designed for a different purpose to cover a wide range of possible applications and techniques

Ion microprobe

22/11/22

Ion microprobe chamber

- Quadrupole lenses → focus ion beam to um size
- Spherical chamber, modular design
- Different applications
- Data acquisition and ion microbeam scanning controlled by the SPECTOR hardware/software package

22/11/22

Silicon Carbide sensors

Measurements

1. IBIC @1MeV

- 2. Local damage **@3.5MeV** in different areas with different fluxes in/out
- 3. IBIC @1MeV in damaged areas
- 4. IBIC @1MeV in damaged areas increasing T
- Local damage @3.5MeV @HT (~500°C) with different fluxes in/out
- , 6. IBIC @1MeV in damaged areas @RT/@HT
- 7. First test with 200nm sample: IBIC

SRIM simulation

1MeV p: All energy released in 20um SiC membrane

3.5MeV p: completely transmitted through the SiC membrane \rightarrow homogeneous demage along the trajectory.

20um sample

Damage inducement @RT

3,5 MeV p in SiC (3,12 g/cm³) $\rightarrow \sim 10\%$ of E released in 20um. Bragg peak inside the 370um substrate (SRIM simulations)

 3,5 MeV p: demage in 3 area outside and inside the membranes

Fluences:

A	В	С	D
$\sim 10^{13} 1/cm^2$	$\sim 3 \cdot 10^{12} 1/cm^2$	$\sim 6 \cdot 10^{11} 1/cm^2$	$\sim 5 \cdot 10^{13} 1/cm^2$

CCE over damaged areas

1 MeV p: CCE vs BIAS over damaged areas

- CCE increases with increasing bias
- CCE is higher for regions inside the membrane
- More damaged regions have worse CCE

Beam monitoring for electron FLASH beams

Thin silicon sensors

22/11/22

Silicon detectors and Readout

Silicon devices in Turin: used so far for single particle counting \rightarrow With **TERA08** signal can be integrated

> Silicon sensor (strip area 2.2 mm^2 , active thickness 45 μm , total thickness 615 μm)

> Readout with **TERA08** (chip based on *recycling integrator* principle)

DAQ Period (μs)	Q _c (fC)	Max conversion freq per chn	Max conversion (total)	Max current (for 64 CHNs)
1e4 (0.01 s)	200 fC	20 MHz	1280 MHz	± 256 μA

Experimental setup

22/11/22

First tests with electrons beams

Conventional beams at LINAC Elekta SL18

Linearity and reproducibility

Example of data acquisition

22/11/22

First tests with electrons beams

- Conventional beams at LINAC Elekta SL18
 - Beam shape and relation with distance

Example of data acquisition

1400

والمريان الاستراطية المراجع بالمعادية المعادية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والم

22/11/22

First tests with protons beams

- CNAO, National Center of Oncology Adrotherapy
- Different fluxes: 10⁹, 10⁸, 5x10⁸ protons/spill
- Different energies: 60, 115, 170 MeV

For 60-230 MeV and the present sensor + readout configuration we expect to be able to measure up to $10^{12} - 10^{13}$ p/s.

First tests with protons beams

- Exploration test at **Ruvo di Puglia facility:** prototype of a linear proton accelerator
- 10¹³ protons/s and FWHM~mm, Energies: 102MeV, 84MeV, (58MeV), Pulse duration ~4us ($4x10^7$ protons)

Flash?

- 84MeV proton beam
- Q_{/pulse} on the silicon strip vs Q_{/pulse} on the Faraday cup (+GAF)
- 1.6x10⁻¹¹C → 0.1387 Gy/pulse \rightarrow 10Gy/s avg DR
- But distance from beam erogation = 1.3m

Next steps: TERA09

- Frontend chip based on 64 charge recycling CHNs
- Extended current range with respect to TERA08
- Preliminary design and test phase (Thanks to Valerio Pagliarino)

WORK IN PROGRESS

Next steps: New detector production

- New production ongoing
- (Thanks to Valentina Sola, INFN colleague).
- 4 different substrate thicknesses: 15, 20, 30, and 45 μm
- Very small active areas : from 2mm² up to 0.03mm²

Diamond detector

- Electrodes will be deposited at different depths (create different thicknesses on the same sensor)
- Diamond by Rinati and Marinelli is a dosimeter: very small by definition
- We work on beam monitors: we would like to cover a few cm² (ok for irradiating cells)

Future beam tests

Conferences

22/11/22

Elisabetta Medina - elisabetta.medina@unito.it

21

References

[1] Vignati, Anna, et al. "Beam monitors for tomorrow: the challenges of electron and photon FLASH RT." *Frontiers in Physics* (2020): 375.

[2] Cirio, Roberto, et al. "A simple method to increase the current range of the TERA chip in charged particle therapy applications." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 798 (2015): 107-110.

[3] Ashraf, Muhammad Ramish, et al. "Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and Cherenkov emission." *Frontiers in Physics* 8 (2020): 328.

[4] Schüller, Andreas, et al. "The European Joint Research Project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates." *Physica Medica* 80 (2020): 134-150.

[5] Lempart, Michael, et al. "Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation." *Radiotherapy and Oncology* 139 (2019): 40-45.