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All the predictions plots now include the muon collider, major achievement thanks to the work done by “us”

A lot of contributions submitted to the Snowmass process
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Preparation of a paper to be submitted to Eur. Phys. Journal C by the end of September
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Seattle Snowmass Community meeting: theory vision-2
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High energy leptons allows us to push forwards
on understanding the Higgs
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Seattle Snowmass Community meeting: theory vision-3
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High energy leptons let us push forwards numerous

Patrick Meade BSM directions as well!
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) Seattle Snowmass Community meeting: experiment vision
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JAvoveat Feasibility: Collider Ring design & neutrino flux

« Lattice designs for a 3 and 6 TeV Colliders are in place

Diktys Stratakis Optics and magnet parameters have been specified [ref]

« Addressed the challenges associated with radiation loads on magnets as well
as particle background in the collider detector [ref]

» The decay of muons in the collider ring produces a dense flux of
neutrinos at significant distance from the collider

« Several solutions in place to mitigate the problem: Examples include situating
the collider at ~100 m depth [ref] or move lattice overtime (IMCC approach)

[ref].

« These solutions illustrate that neutrino flux can be manageable, similar to LHC.

o 6 T_eV £% Fermilab

design Neutrino Flux around Muon Colliders
and 7 Ways to Mitigate it




Seattle Snowmass Community meeting: experiment vision-2
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Diktys Stratakis

* Beam background is one of the unique features/challenges of Muon Colliders

* Main Source of Beam Induced Background (BIB) are showers produced by electrons
originating in beam muon decays

« Muons decay with an average lifetime of 2.2 - 107° seconds at rest, at 1/s = 3 TeV they live
for about 3.1 - 10™2 seconds

* The challenge is to separate collision particles from the BIB
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) Seattle Snowmass Community meeting: experiment vision-3
/Z'}Hiﬁf ation Detectors: Key Developments

Diktys Stratakis

1-MeV-neq fluence for one year of operation (200 days)

+ Detector Environment:

v Radiation levels similar to HL-LHC and much smaller
than at the future hadron colliders

+ Beam induced background evolution |
studied: E——
~ The BIB in detector volume is approximately constant ol e S
with COM energy (even without MDI optimization) > B oty i the ECAL

higher energies possible

Vs =1.5 TeV Circular Muon Collider
MARS15 BIB, CLIC_03_v14_mod4

+ Detector technologies have been rapidly
advancing (in large due to HL-LHC needs): >

v Particle Flow detectors with excellent position, energy E“’
and timing resolution E

v Advanced on- and off- detector data processing
v Using reconstruction from pp makes a huge difference

® o(t) =50 ps, 0(6) =2 rad
® 100 ps, 0.1 rad

| 50 ps, 0.1 rad

| 20 ps, 0.1 rad

® 0ps, Orad
1073 T T T T T
* 0.0 0.2 0.4 0.6 0.8 1.0
Collision Product Efficiency
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Event reconstruction feasibility demonstrated already with simple algorithms
Detector occupancy and energy density are manageable

Fast simulation performance validated against full
simulation using some benchmark physics scenario

Muon Collider

Simulation
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/The immediate future is the HL-LHC
7

e During the next decade it is essential to complete the highest priority recommendation of the

last P5 and to fully realize the scientific potential of the HL-LHC collecting at least 3 ab™' of data.

e Continued strong US participation is critical to the success of the HL-LHC physics program, in
particular for the Phase-2 detector upgrades, the HL-LHC data taking operations and physics
analyses based on HL-LHC data sets, including the construction of auxiliary experiments that
extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades

e For the next decade and beyond
o 2025-2030: Prioritize HL-LHC physics program, including auxiliary experiments

o 2030-2035: Continue strona sunbort for HL-LHC bhvsics nroaram

The long-term future is a multi-TeV collider

Seattle Snowmass Community meeting: final vision

The intermediate future is an e*e” Higgs factory

The intermediate future is an e*e Higgs factory, either based on a linear (ILC, C3,
CLIC) or circular collider (FCC-ee, CepC).

The various proposed facilities have a strong core of common physics goals: it is
important to realize at least one somewhere in the world.

A fast start towards construction is important. There is strong US support for initiatives
that could be realized on a time scale relevant for early career physicists.

For the next decade and beyond

o 2025-2030: Establish a targeted e*e” Higgs Factory detector R&D for US participation in a global
collider

2030-2035: Support and advance construction of an e*e” Higgs Factory

e A 10-TeV muon collider (MuC) and 100-TeV proton-proton collider (FCC-hh, SppC) directly probe the After 2035: Begin and support the physics program of an e"e” Higgs Factory
order 10 TeV energy scale with different strengths that are unparalleled in terms of mass reach, precision,

and sensitivity.

e The main limitation is technology readiness. A vigorous R&D program into accelerator and detector

technologies will be crucial.

e For the next decade and beyond
o 2025-2030:

m Develop an initial design for a first stage TeV-scale Muon Collider in the US (pre-CDR)

m Support critical detector R&D towards EF multi-TeV colliders

o 2030-2035: Demonstrate principal risk mitigation and deliver CDR for a first-stage TeV-scale Muon

Collider
o After 2035:

m Demonstrate readiness to construct and deliver TDR for a first-stage TeV-scale Muon Collider

m Ramp up funding support for detector R&D for EF multi-TeV colliders
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