

DI PAVIA

turo nazionne ul riena musicara Sezione di Pavia

Picosec Activities Status

INFN & Università Pavia

Manpower & financial situation 2022

Ricercatori											
Nome		Età	Contratto	Qualifica	Aff.	%					
1	Aimè Chiara		Associato	Dottorando	CSNI	30					
2	Calzaferri Simone		Associato	Dottorando	CSNI	30					
3	Chiesa Mauro		Associato	Ricercatore A Tempo Determinato Tipo A	CSN IV	10					
4	Fiorina Davide		Associato	Dottorando	CSNI	20					
5	Piccinini Fulvio		Dipendente	Dirigente di Ricerca	CSN IV	5					
6	Riccardi Cristina		Associato	Prof. Associato	CSNI	30					
7	Salvini Paola		Dipendente	Ricercatore	CSNI	25					
8	Valle Nicolo'		Associato	Assegnista	CSN III	20					
9	Vitulo Paolo		Associato	Prof. Associato	CSNI	30					
		9	FTE: 2.00								

Tecnologi									
Nome	Età	Contratto	Qualifica	Aff.	%				
1 Vai Ilaria		Associato	Ricercatore A Tempo Determinato Tipo A	CSN I	30				

Funds: 12k€ 10x10 picosec prototype

Picosec principle of operation

- Cherenkov light emitted during the MIP passage is converted into electrons on the photocathode
- Mean free path of electrons is way smaller than MIPs
- Time resolution independent from the MIP first interaction statistics

- Readout via MicroMegas
- 2-step amplification, also the drift gap is used in multiplication mode → higher gains and control on ion-backflow
- Fast electron peaks carry the info about the timing
- Readout via a linear amplifier to preserve the timing information

Pavia team activity in 2022 so far was focused mainly on two items:

- 1. Gaining expertise on Picosec working with the RD51 collaboration
- 2. Procurement of the Pavia Picosec prototypes

1 - Gaining expertise on Picosec working with the RD51 collaboration RD51 testbeams setup

Slots for Picosecs

Micro Channel Plate PMT (MCP) for time reference (σ₁≈5ps)

→ 1 MCP from Pavia group (8ps, but not used at 100% HV value)

We participated in 3 RD51 testbeams with the following measurement plans:

1. April

 Measure the time response of MCP for the next testbeams

2. May

- Test new photocathode (B4C) thin mesh/gap – resistive MM
- Test new custom preamplifier
- 10x10 uniformity SAMPIC digitizer readout (64ch)

3. July

- Test new photocathode (B4C different thickness, DLC without Chromium)
- SAMPIC digitizer 256ch full 10x10 readout
- Picosec for the electromagnetic calorimeter

Thin Gap

- B4C and DLC photocathodes
- Custom preamplifier
- SAMPIC digitizer

Thinner gap (200um→140um) provides:

- Early start of the avalanche and better time resolution
- Smaller energy deposit by Heavily Interacting Particles
- However, it can be more unstable in high fields

- Thin Gap
- B4C and DLC photocathodes
- Custom preamplifier
- SAMPIC digitizer

Resisitive photocathodes (instead of CsI) provide:

- Resistance to ion-backflow damage
- Resistance to discharges
- No damage from humidity (as Csl)
- Possibility to operate in higher-fields
- However: lower time resolution

- Thin Gap
- B4C and DLC photocathodes
- Custom preamplifier
- SAMPIC digitizer

Custom preamplifier (Saclay+GDD <u>idea</u>) instead of Cividec:

- Scalable to 10x10 easily
- Optimized for picosec signal

- Thin Gap
- B4C and DLC photocathodes
- Custom preamplifier
- SAMPIC digitizer*

- Power consumption: 10mW/channel
- 3dB bandwidth > 1 GHz
- Discriminator noise ~ 2 mV RMS
- Counting rate > 2 Mevts/s (full chip, full waveform), up to 10 Mevts/s with Region Of Interest (ROI)

Preliminary

Full 10x10 read in last testbeam (100 channels) data analysis still ongoing...

^{*}https://ieeexplore.ieee.org/document/7431231

2 - Procurement of the Pavia Picosec prototypes

• 10x10 detector already ordered (Rui lab) production ongoing → expected September

- Meanwhile, we assembled a single-channel detector with:
 - MM from RD51
 - Radiator paid
 - Mechanics from spare material

- Radiators tested @ CERN dedicated lab (see transmissivity plot)
- Chromium photocathode (calibration configuration)

Plan for single-channel tests

New radiators

- MgF2 is the most UV trasparent material but:
 - High cost, Fragile
 - Non perfectly stable during material deposition (imperfection on half of the samples)
- Investigate:
 - CaF2, BaF2, sapphire
 - Quartz → the most promising for large areas, low cost and robustness (lower transparency)

New photocathodes

- CsI has the best performance in terms of time resolution, resistive photocathodes are more promising for the long term and robustness
 - B4C and DLC
 - (Graphene and nanodiamonds trials by RD51)

New Gases

- Baseline Ne/C2H6/CF4 80/10/10 Flammable, High GWP, High cost!
 - Removal of CF4
 - Substitution of C2H6 (ethane) with C4H10 (isobutane) or even better CO2
 - Look for a Neon substitute (very difficult...)

Every of these comes with a price to pay in terms of time resolution and/or stability

To-Do list

Participate in the October test beam (190ct-310ct) with single-channel:

- MgF2 and Quartz radiator comparison (different WP)
- CsI, DLC and B4C, Chromium photocathodes comparison (different WP)
- Cividec and RF amplifier comparison (different WP)
- Timing resolution at different sampling rates (only with scope 1-40 Gs/s)
- Help to develop DAQ for SAMPIC (RD51 10x10)
- Only premixed bottles during testbeam → no test on gas

From November in Pavia, single-channel gas tests:

Test w/o CF4, change of quencher

10x10 detector tests in the GDD lab start:

- Time uniformity response test with ultrafast laser
- Csl and DLC test on large areas
- Preparation for next testbeam

Sezione di Pavia

BACKUP

Muon Collider

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;
- 7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- ♦ 22 X_0 + 1 $λ_1$.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- → 30x30 mm² cell size.

tracking system

Vertex Detector:

- double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
- 25x25 µm² pixel Si sensors.

Inner Tracker:

- 3 barrel layers and 7+7 endcap disks;
- 50 μm x 1 mm macropixel Si sensors.

Outer Tracker:

- 3 barrel layers and 4+4 endcap disks:
- 50 μm x 10 mm microstrip Si sensors.

shielding nozzles

Tungsten cones + borated polyethylene cladding.

- The baseline is the CLIC design BUT new detectors have been proposed for each subsystem!
- For muon endcap, we want to propose Picosec for muon tracking and triggering
- -250
- The enhanced time resolution used in the standalone reconstruction of muons will improve the Tracker performance
- Shielding from Beam Induced background (from decaying muons) limits the coverage in eta (<8° η<2.7 available)

superconducting solenoid (3.57T)

- Background interaction with detector was simulated in Geant4
- Convoluted with the response of different gaseous detector technologies (hit when a charged particle is found in the drift gap)
- Simulated Picosec: 3mm MgF2 radiator, 10nm CsI photocathode, 200um drift gap
- Picosec can operate in high rate environment and give timing information with higher precision wrt other technologies

Challenges i.e. Pavia Group R&D

Detector Operation:

- 1. Gas has to be safer and, why not, cheaper: CF4 has to go or alternatives have to be found, hydrocarbon can stay maybe but in low concentration and only if they don't cause aging
- 2. Radiator cost and fragility: MgF2 alternatives?
- 3. Photocathode needs to survive in the high rate environment without degradation

Spatial resolution:

- Baseline for application: 1 Picosec timing layer + tracking layers (GEM or equivalent)
- The required spatial resolution is under study

Scalability (1 endcap layer ≈ 130m2):

Large area detectors

