$B^0 \rightarrow \pi^0 \pi^0$ analysis

Sebastiano

Overview

BF and A_{CP} of $B^0 \rightarrow \pi^0 \pi^0$ decays: fundamental measurements at Belle II.

Results (@189.9fb⁻¹) by Francis shown at ICHEP2022.

Now: prepare new analysis for pre-LS1 dataset.

Plan:

- revisit photonMVA looking at variables with good data/MC agreement
- revisit CSBDT adding BTag variables to suppress even more $e^+e^- \rightarrow q\bar{q}$
- Introduce specific BDT trained against continuum ho's

Photon MVA

Photon MVA

Distinguish between real photons and "false" photons: beam backgrounds, other particles, energy releases from other particles (split-offs)....

Combine highly-discriminant clusterand photon-variables in a MVA.

False photons have usually low energies, while $B^0 \rightarrow \pi^0 \pi^0$ photons high-energy.

After the default selection on photons and π^{0} 's, the residual bkg is mainly composed by true combinatorial π^{0} 's.

Photon MVA: inputs validation

Ideally we need a sample of true photons and a sample of false photons (difficult to obtain).

Use inclusive sample of photons from $D^* \to D^0(K\pi\pi^0)\pi$ decays: apply same π^0 selections of my analysis \to same π^0 kinematic distributions.

Sample is signal dominated \rightarrow ~all true photons (as in $B^0 \rightarrow \pi^0 \pi^0$).

Compare input distributions using MC14rd (1 ab⁻¹)/Proc12+AllBuckets(189 fb⁻¹) and MC15ri (200 fb⁻¹)/Proc13c1(8 fb⁻¹).

MC14 vs Proc12+AllBuckets

Release-05

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.022

0.02

0.018

0.016

0.014

0.012

0.008

0.006

0.004

0.002

0

0

0.5

0.01

n

1

MC15 vs Proc13

Release-06

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.25

0.2

0.15

0.1

0.05

0

-2

-1.5

0

Ok

No

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0.25

0.2

0.15

0.1

0.05

0

0

0.03

0.025

0.02

0.015

0.01

0.005

0.3

0.25

0.2

0.15

0.1

0.05

Photon MVA results using release-06

Inputs (after pruning)
pt
clusterE1E9
clusterErrorPhi
clusterHighestE
clusterSecondMoment
clusterZernikeMVA
minC2TDist
clusterLAT
clusterNHits
clusterTheta
beamBackgroundSuppression

Photon MVA validation

Apply photonMVA to $B^+ \rightarrow K^+ \pi^0$ proc13 sample (chunk1+chunk2 — 62fb⁻¹).

Background: 742.64 ± 40.1 Signal: 260.35 ± 33.6

No photonMVA

Background: 679.23 ± 38.6 (-8,5%) Signal: 258.76 ± 32.6 (-0.6%)

PhotonMVA>0.2

PhotonMVA works well.

Still to do: check performance of Francis photonMVA, optimise selection.

24

Photon MVA validation

Apply photonMVA to $D^* \rightarrow D^0(K\pi\pi^0)\pi$ proc13 sample (chunk1 – 8.6fb⁻¹).

Background: 59902 ± 74 Signal: 33944 ± 69 Significance: 110.804 Background: 56066 ± 490 (-6.4%) Signal: 33422 ± 528 (-1.5%) Significance: 111.724

Background: 57410 ± 70 (-4.1%) Signal: 33519 ± 61 (-1.3%) Significance: 111.158

PhotonMVA works well (and better wrt Francis).

PhotonMVA selection optimisation

CSBDT

CSBDT summary

Create continuum-suppression BDT using event-shape variables and B_{Tag} variables, avoiding large correlations (<10% — was 5% for Francis) and/or sculpting.

Must check if the use of $B_{\rm Tag}$ variables sculpts or introduces large correlations in the flavour tagger variables.

Note: 6.7% of the signal events doesn't have a B_{Tag} vertex \rightarrow remove these events (bkg: -9.4%).

New possible inputs:

CSBDT: inputs validation

Signal: use $B \to D(K\pi\pi^0)\pi$ sidebandsubtracted data (proc13) and sidebandsubtracted $B \to D(K\pi\pi^0)\pi$ MC15

Do not use $B \rightarrow D(K\pi\pi^0)\pi$ for bkg because of the different compositions

Background: use $B^0 \to \pi^0 \pi^0$ sideband data (proc13) and $B^0 \to \pi^0 \pi^0$ sideband MC15

Need to check if bkg composition is the same in sideband and signal region

Inputs validation — Signal only

Use $B \rightarrow D(K\pi\pi^0)\pi$ sideband-subtracted data (proc13) and sideband-subtracted $B \rightarrow D(K\pi\pi^0)\pi$ MC15.

Sample has poor statistics, but do not observe any large discrepancy.

Inputs validation — Background only

Use $B^0 \rightarrow \pi^0 \pi^0$ sideband data (proc13) and $B^0 \rightarrow \pi^0 \pi^0$ sideband MC15

Observe variables with some discrepancies.

Inputs validation — Background only

Observe variables with some discrepancies.

Better to use directly sideband data to train the CSBDT?

Check — Continuum in off-res data and MC sideband

Use $B^0 \rightarrow \pi^0 \pi^0$ continuum in off-res data and in MC15 sideband.

Observe discrepancies not present in sideband data/MC comparison.

Data/MC discrepancies or different kinematic distributions?

Must check if continuum in sideband and signal region have same distributions.

Candidates / 0.025

Candidates / 0.05

60 40

20

-0.8

-0.4

-0.6

-0.2

0

0.2

0.4

0.6

cosHelicityAngleMomentum

0.8

Note: input validation using off-res data shows anyway many data/MC discrepancies → best is to use off-res data for CSBDT training.

CSMVA inputs

Train on MC sample after applying all π^0 selections.

Upgraded CSMVA

Add variables related to ROE tracks (PID, energy, transverse momentum).

Draw fit variables in slices of CSBDT (background+signal).

39

Draw fit variables in slices of CSBDT (signalMC only).

Some sculpting in qr

Check qr after CS selection (similar to what I'll apply in the end).

Check qr after CS selection (similar to what I'll apply in the end).

Check qr after CS selection (>0.7).

qr variables on SignalMC

<i>r</i> - Interval	$arepsilon_i$	$\Delta arepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$arepsilon_{eff,i}\pm\deltaarepsilon_{eff,i}$	$\Delta arepsilon_{eff,i} \pm \delta \Delta arepsilon_{eff,i}$
0.000 - 0.100	16.9	0.17	47.51 ± 0.24	2.47 ± 0.47	0.0420 ± 0.0080	-0.0829 ± 0.0193
0.100 - 0.250	16.6	0.12	41.01 ± 0.24	0.85 ± 0.47	0.5356 ± 0.0283	-0.0981 ± 0.0571
0.250 - 0.500	21.1	0.75	29.90 ± 0.20	0.64 ± 0.39	3.4112 ± 0.0675	-0.0948 ± 0.1350
0.500 - 0.625	11.7	-0.26	20.87 ± 0.23	1.87 ± 0.46	3.9781 ± 0.0667	-0.5973 ± 0.1346
0.625 - 0.750	11.5	-0.03	15.09 ± 0.21	0.81 ± 0.41	5.5976 ± 0.0728	-0.2756 ± 0.1460
0.750 - 0.875	8.7	0.06	8.27 ± 0.18	0.56 ± 0.37	6.0356 ± 0.0653	-0.1225 ± 0.1307
0.875 - 1.000	13.5	-0.81	1.74 ± 0.07	0.21 ± 0.14	12.5839 ± 0.0721	-0.8637 ± 0.1445
Total			$\varepsilon_{eff} = \sum$	$\sum_i \varepsilon_i \cdot \langle 1 - 2w_i \rangle^2$	$=32.18\pm0.16~\Deltaarepsilon$	$e_{ff} = -2.13 \pm 0.32$

<i>r</i> -Interval	ε_i	$\Delta \varepsilon_i$	$w_i\pm\delta w_i$	$\Delta w_i \pm \delta \Delta w_i$	$\varepsilon_{eff,i} \pm \delta \varepsilon_{eff,i}$	$\Delta \varepsilon_{eff,i} \pm \delta \Delta \varepsilon_{eff,i}$
0.000 - 0.100	17.7	0.27	47.27 ± 0.26	2.58 ± 0.51	0.0526 ± 0.0099	-0.0986 ± 0.0217
0.100 - 0.250	16.8	0.26	41.09 ± 0.26	1.07 ± 0.52	0.5322 ± 0.0311	-0.1189 ± 0.0623
0.250 - 0.500	21.1	0.60	30.37 ± 0.22	0.24 ± 0.43	3.2461 ± 0.0728	0.0138 ± 0.1457
0.500 - 0.625	11.5	0.06	21.40 ± 0.26	1.66 ± 0.52	3.7607 ± 0.0723	-0.4175 ± 0.1445
0.625 - 0.750	11.2	-0.13	15.23 ± 0.23	0.97 ± 0.46	5.4192 ± 0.0794	-0.3649 ± 0.1588
0.750 - 0.875	8.6	-0.22	8.46 ± 0.20	0.46 ± 0.41	5.9675 ± 0.0721	-0.2828 ± 0.1442
0.875 - 1.000	13.1	-0.85	1.62 ± 0.08	0.47 ± 0.15	12.2983 ± 0.0783	-1.0309 ± 0.1565
Total			$\varepsilon_{eff} = \sum$	$\sum_i arepsilon_i \cdot \langle 1-2w_i angle^2$	$= 31.28 \pm 0.17$ $\Delta \varepsilon_{c}$	$e_{ff} = -2.30 \pm 0.34$

qr variables on SignalMC

qr variables on SignalMC15

Check after CS selection (>0.7).

	Default CS	Default CS + Δr and ΔZ	Default CS + Δr, ΔZ, and ROE tracks	Sato-san parameters
Total effective efficiency (q=+-1)	33.48 ± 0.20%	33.16 ± 0.19%	34.81 ± 0.19%	33.73 ± 0.03%
Total effective efficiency asymmetry	-2.84 ± 0.40%	-2.58 ± 0.39%	-2.50 ± 0.39%	-0.09 ± 0.06%
B^o effective efficiency	32.10 ± 0.24%	31.90 ± 0.24%	33.59 ± 0.24%	33,69 ± ? %
B ^o bar effective efficiency	34.93 ± 0.31%	34.48 ± 0.30%	36.09 ± 0.30%	33,78 ± ? %

Train on off-res data and signal MC after applying all π^0 , ΔE , and M_{bc} selections.

But what off-resonance data can I use?

In previous result I was using only the signal-like region

Mbc But what off-resonance data can I use? 5.25 5.24 In previous result I was using only

Compare CS input distributions in signallike and sideband regions (in off-resonance data):

the signal-like region

Off-resonance data:

All variables that have discrepancies are not CS inputs anymore (after pruning), except cosHelAngleMomentum.

Train on off-res data and signalMC after applying all π^0 selections. Use all off-resonance data (including sidebands). Exclude cosHelicityAngle.

CSMVAs comparison

ROC curves are the same, but distributions are quite different

Sideband in off-res data is fine.

But then what about the on-resonance sideband data?

Sideband data vs off-res data

Sideband distributions seem good in off-res.

Compare CS inputs distributions in signallike region (in off-resonance data) and sideband regions (in on-resonance data):

Observe large discrepancies also in Δr and ΔZ .

Which are the correct Δr and ΔZ distributions?

Sideband data and off-resonance data have different r and ΔZ distributions.

I need to understand which one reproduces correctly the signal region:

Red is correct \rightarrow use sideband data (and exclude cosHelAngle from the inputs)

Green is correct \rightarrow use off-res data (and exclude cosHelAngle from the inputs)

Stiil thinking how to do this.

Which are the correct Δr and ΔZ distributions?

Sideband data and off-resonance data have different r and ΔZ distributions.

Metti tutti e tre insieme dai

Which are the correct Δr and ΔZ distributions?

Sideband data and off-resonance data have different r and ΔZ distributions.

Candidates / 0.005 ps

Which are the correct Δr and ΔZ distributions?

Sideband data and off-resonance data have different r and ΔZ distributions.

Which are the correct Δr and ΔZ distributions?

Now we have the expected distributions!

Off-Resonance data correction

58

On-resonance and off-resonance data have different beam energies. Take this into account for $M_{\rm bc}$ and ΔE using

$$C_{\text{offres}}^{\text{total}} = \left(\frac{E_{\text{CMS}}^{\text{offres}}}{E_{\text{CMS}}^{\gamma(4S)}}\right)^2 \approx 0.98$$
$$M_{\text{bc}}^{\text{corr}} = \sqrt{\left(\frac{E_{\text{CMS}}^{\gamma(4S)}}{2}\right)^2 - \left(p_{\text{CMS}}^{B_{\text{tag}}} \cdot C_{\text{offres}}^E\right)^2}$$
$$\Delta E^{\text{corr}} = \frac{E_{\text{CMS}}^{\gamma(4S)}}{2} - E_{\text{CMS}}^{B_{\text{tag}}} \cdot C_{\text{offres}}^E$$

Did we expect this?

After the correction I expected the $M_{\rm bc}$ endpoint to be 5.29. Need to think about this.

ho MVA

ho MVA

Beyond the CS: identify the principal bkg components.

	Events that have at least a π^0 from
ρ(770)+	47.1%
Z ^o (direct from e+e-)	75.0%

Large number of continuum π^{0} 's come from a $\rho \rightarrow$ develop a specific BDT (in addition to the default CS BDT).

Combine each track in the event with each π^0 .

Use kinematic and angular variables to distinguish between $\rho{\rm 's}$ and other particles.

Max hoMVA distribution

Each candidate has for example 20 ρ sub-candidates. Take the one with largest rhoMVA (the one more similar to a ρ).

Variable gives separation, and discrepancy is acceptable

Total candidates	Candidates with at least one rho	Candidates where the rho has been correctly identified
788473	285585	158393
	61	

Use $\rho {\rm MVA}$ as input of the CSBDT

Inclusion of ρ MVA gives no improvement

Other possibility: ho MVA after the CSBDT

Apply first the selection on the CSBDT (>0.8), -0.2< Δ E<0.1 and Mbc>5.27, then various selections on ρ MVA and calculate significance $S/\sqrt{S+B}$.

Summary

Prepare $B^0 \rightarrow \pi^0 \pi^0$ analysis for pre-LS1 dataset.

Revisited photonMVA: use new variables with good data/MC agreement. Already validated on data.

Revisited CSBDT: add B_{Tag} variables to suppress even more continuum. Variables are ready, but need to repeat training using off-res data (is it enough?). Check how the use of B_{Tag} variables impacts the flavour tagger.

Introduced ρ BDT: improvement is negligible, maybe not useful to add it in the analysis.

Backup

ClusterTiming (rel-06)

Inputs validation — Signal only

Inputs validation — Signal only

Inputs validation — Signal only

Check — Background only using $B \rightarrow D(K\pi\pi^0)\pi$ sideband

