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Overview

BF and ACP of  decays: fundamental 
measurements at Belle II. 

Results (@189.9fb-1) by Francis shown at ICHEP2022.

B0 → π0π0
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Now: prepare new analysis for pre-LS1 dataset.

ICHEP2022 by Francis

ICHEP2022 by Francis

Plan: 

- revisit photonMVA looking at variables with good 
data/MC agreement 

- revisit CSBDT adding BTag variables to suppress 
even more  

- Introduce specific BDT trained against continuum ’s

e+e− → qq̄

ρ



Photon MVA
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Photon MVA
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Distinguish between real photons and “false” photons: beam backgrounds, 
other particles, energy releases from other particles (split-offs)…. 

Combine highly-discriminant cluster-  
and photon-variables in a MVA.

False photons have usually low 
energies, while  
photons high-energy. 

After the default selection on 
photons and ’s, the residual 
bkg is mainly composed by true 
combinatorial ’s.

B0 → π0π0

π0

π0 60% 14%

26%

Charged/neutral particles
Beam background
Splitoffs or non MC-matches

5%

95%

All true photons
At least one false photon

1%

99%

Background
Signal



Photon MVA: inputs validation
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Ideally we need a sample of true photons and a sample of false photons 
(difficult to obtain). 

Use inclusive sample of photons from  decays: apply same 
 selections of my analysis  same  kinematic distributions. 

Sample is signal dominated  ~all true photons (as in ). 

Compare input distributions using MC14rd (1 ab-1)/Proc12+AllBuckets(189 fb-1) 
and MC15ri (200 fb-1)/Proc13c1(8 fb-1).

D* → D0(Kππ0)π
π0 → π0

→ B0 → π0π0



MC14 vs Proc12+AllBuckets 
 

Release-05 
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Photon MVA: inputs validation (rel-05)
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Photon MVA: inputs validation (rel-05)
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Photon MVA: inputs validation (rel-05)
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MC15 vs Proc13 
 

Release-06

14



Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)
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Photon MVA: inputs validation (rel-06)

21

Ok

No

Ok

OkOk

Ok

MC 
Data



Photon MVA: inputs validation (rel-06)
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Photon MVA results using release-06
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Inputs (after pruning)
pt 

clusterE1E9 
clusterErrorPhi 
clusterHighestE 

clusterSecondMoment 
clusterZernikeMVA 

minC2TDist 
clusterLAT 

clusterNHits 
clusterTheta 

beamBackgroundSuppression

Train on MC sample after applying all 
 selections.π0

NB: AUC of Francis 
photonMVA was 0.95



Photon MVA validation
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Apply photonMVA to  proc13 sample (chunk1+chunk2 — 62fb-1).B+ → K+π0

Background: 742.64 ± 40.1 
Signal: 260.35 ± 33.6

No photonMVA PhotonMVA>0.2

Background: 679.23 ± 38.6 (-8,5%) 
Signal: 258.76 ± 32.6 (-0.6%)

DataData

PhotonMVA works well.  
Still to do: check performance of Francis photonMVA, optimise selection.



Photon MVA validation
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Apply photonMVA to  proc13 sample (chunk1 — 8.6fb-1).D* → D0(Kππ0)π

Background: 59902 ± 74 
Signal: 33944 ± 69 
Significance: 110.804

No photonMVA My PhotonMVA>0.05 (optimised)

Background: 56066 ± 490 (-6.4%) 
Signal: 33422 ± 528 (-1.5%) 
Significance: 111.724

DataData

PhotonMVA works well (and better wrt Francis). 

Data

Francis PhotonMVA>0.05

Background: 57410 ± 70 (-4.1%) 
Signal: 33519 ± 61 (-1.3%) 
Significance: 111.158



PhotonMVA selection optimisation
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S/ S + B



CSBDT
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CSBDT summary
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Create continuum-suppression BDT using  
event-shape variables and  variables, 
avoiding large correlations (<10% — was 5% for 
Francis) and/or sculpting. 

Must check if the use of  variables sculpts or 
introduces large correlations in the flavour 
tagger variables. 

Note: 6.7% of the signal events doesn’t have a 
 vertex  remove these events (bkg: -9.4%).

BTag

BTag

BTag →

x

y

B0
Sig

π0

γ
γ γ

γ

π0

B0
Tag

x

y

π0

π0

, ΔZ Δr

Cone around π0

x

y

π0

π0

Angle btw  
and track

π0

New possible inputs:



CSBDT: inputs validation
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Signal: use   sideband-
subtracted data (proc13) and sideband-
subtracted  MC15

B → D(Kππ0)π

B → D(Kππ0)π

Signal 
sample

B → D(Kππ0)π

Do not use  for bkg 
because of the different compositions

B → D(Kππ0)π

Background: use  sideband data 
(proc13) and  sideband MC15

B0 → π0π0

B0 → π0π0

B0 → π0π0

Signal x200
Sideband 

(bkg sample)

 bkg x200BB̄

Need to check if bkg composition is 
the same in sideband and signal region



Inputs validation — Signal only

30

Sample has poor statistics, but do 
not observe any large discrepancy.

Use   sideband-subtracted data (proc13) and sideband-subtracted 
 MC15.

B → D(Kππ0)π
B → D(Kππ0)π



Inputs validation — Background only
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Observe variables with some discrepancies.

Use  sideband data (proc13) and  sideband MC15B0 → π0π0 B0 → π0π0



Inputs validation — Background only
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Observe variables with some discrepancies.

Use  sideband data (proc13) and  sideband MC15B0 → π0π0 B0 → π0π0

Better to use directly sideband data to train the CSBDT?



33

Observe discrepancies not 
present in sideband data/MC 
comparison. 

Data/MC discrepancies or 
different kinematic distributions?

Check — Continuum in off-res data and 
MC sideband

Must check if continuum in sideband and signal region 
have same distributions.

Use  continuum in off-res 
data and in MC15 sideband.

B0 → π0π0

MC sidebandOff-res data

Vs



34

Check —Continuum in MC sideband and in 
MC signal region

Few important discrepancies: maybe off-resonance 
data is more reliable wrt sideband data?

Use MC15  continuum in 
sideband and in signal region.

B0 → π0π0

MC signal regionMC sideband

Vs
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Check — Continuum in off-res data and in 
MC signal region

Discrepancies disappeared: off-resonance data is 
more reliable wrt sideband data. 

Note: input validation using off-res data shows anyway 
many data/MC discrepancies  best is to use off-res 

data for CSBDT training.
→

Use  continuum in off-res 
data and in MC15 signal region.

B0 → π0π0

MC signal regionOff-res data

Vs



CSMVA inputs
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Inputs (after pruning)

7 Kakuno-Super-Fox-Wolfram moments

cosTBTO 

1 CleoCone

cosTheta* 

R2 

thrustOm 

∆Z (BTag) 

∆r (BTag)

thrustAxisCosTheta

angle between π0’s

cosHelicityAngle

KSFWVariableset

KSFWVariablesmm2

Train on MC sample after applying all  selections.π0

Better performance wrt old BDT 
(AUC=0.95). 

Will repeat this using off-res data 
for the bkg training.



Upgraded CSMVA
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Add variables related to ROE tracks (PID, energy, transverse momentum).

ROE tracks (PID, energy)
RhoMVA

Default



CSBDT dependences with fit variables
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Draw fit variables in slices of CSBDT (background+signal).

CSBDT<0.2 
CSBDT>0.2 && CSBDT<0.4 
CSBDT>0.4 && CSBDT<0.6 
CSBDT>0.6 && CSBDT<0.8 
CSBDT>0.8

No sculpting  good.→



CSBDT dependences with fit variables

39

Draw fit variables in slices of CSBDT (signalMC only).

CSBDT<0.2 
CSBDT>0.2 && CSBDT<0.4 
CSBDT>0.4 && CSBDT<0.6 
CSBDT>0.6 && CSBDT<0.8 
CSBDT>0.8

Some sculpting in qr



CSBDT dependences with fit variables
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Check qr after CS selection (similar to what I’ll apply in the end).

CSBDT>0.5 && CSBDT<0.6 
CSBDT>0.6 && CSBDT<0.7 
CSBDT>0.7 && CSBDT<0.8 
CSBDT>0.8 && CSBDT<0.9 
CSBDT>0.9

Some sculpting in qr



CSBDT dependences with fit variables
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Check qr after CS selection (similar to what I’ll apply in the end).

CSBDT>0.5 && CSBDT<0.6 
CSBDT>0.6 && CSBDT<0.7 
CSBDT>0.7 && CSBDT<0.8 
CSBDT>0.8 && CSBDT<0.9 
CSBDT>0.9

Some sculpting in qr



qr
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Check qr after CS selection (>0.7).

qrMC=-1 
qrMC=+1



qr variables on SignalMC
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B0 → π0π0

B0 → D̄0( → K+π−π0)π0



qr variables on SignalMC
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B0 → D̄0( → K+π−π0)π0B0 → π0π0



qr variables on SignalMC15

Default CS
Default CS + ∆r and 

∆Z
Default CS + ∆r, ∆Z, 

and ROE tracks
Sato-san 

parameters

Total effective 
efficiency (q=+-1) 33.48 ± 0.20 % 33.16 ± 0.19 % 34.81 ± 0.19 % 33.73 ± 0.03 %

Total effective 
efficiency 

asymmetry
-2.84 ± 0.40 % -2.58 ± 0.39 % -2.50 ± 0.39 % −0.09 ± 0.06 %

B0 effective 
efficiency 32.10 ± 0.24 % 31.90 ± 0.24 % 33.59 ± 0.24 % 33,69 ± ? %

B0bar effective 
efficiency 34.93 ± 0.31 % 34.48 ± 0.30 % 36.09 ± 0.30 % 33,78 ± ? %

Check after CS selection (>0.7).



CSMVA using off-res data for the bkg
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Inputs (after pruning)

7 Kakuno-Super-Fox-Wolfram moments

cosTBTO 

1 CleoCone

cosTheta* 

R2 

thrustOm 

∆Z (BTag) 

∆r (BTag)

thrustAxisCosTheta

angle between π0’s

cosHelicityAngle

KSFWVariableset

KSFWVariablesmm2

Train on off-res data and signalMC after applying all , , and  selections.π0 ΔE Mbc

Very small off-res sample (9fb-1) 
 poor BDT (total off-res sample 

will be 18fb-1)
→

Train bkg sample (from offres): 1000 events 
Train sig sample (from MC): 180000 events 
Test bkg sample (from offres): 500 events 
Test sig sample (from MC): 90000 events



CSMVA using off-res data for the bkg
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But what off-resonance data can I use? 

In previous result I was using only  
the signal-like region

Signal-like 
region

Off-resonance data:



CSMVA using off-res data for the bkg
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Signal-like 
region

Sideband SidebandSideb
and

Sideb
and Sideband

Off-resonance data:

Compare CS input distributions in signal-
like and sideband regions (in off-resonance 
data):

All variables that have discrepancies are not CS inputs anymore 
(after pruning), except cosHelAngleMomentum.

But what off-resonance data can I use? 

In previous result I was using only  
the signal-like region



CSMVA using off-res data for the bkg
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Inputs (after pruning)

7 Kakuno-Super-Fox-Wolfram moments

cosTBTO 

1 CleoCone

cosTheta* 

R2 

thrustOm 

∆Z (BTag) 

∆r (BTag)

thrustAxisCosTheta

angle between π0’s

cosHelicityAngle

KSFWVariableset

KSFWVariablesmm2

Train on off-res data and signalMC after applying all  selections.  
Use all off-resonance data (including sidebands). Exclude cosHelicityAngle.

π0

Better result wrt previous one

Train bkg sample (from offres): 8000 events 
Train sig sample (from MC): 180000 events 
Test bkg sample (from offres): 4000 events 
Test sig sample (from MC): 90000 events



CSMVAs comparison
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ROC curves are the same, but distributions are quite different

All MC Off-res data + signalMC



Sideband in off-res data is fine. 

But then what about the  
on-resonance sideband data?



Sideband data vs off-res data
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Signal region

Sideband SidebandSideb
and

Sideb
and Sideband

Compare CS inputs distributions in signal-
like region (in off-resonance data) and 
sideband regions (in on-resonance data):

Observe large discrepancies also in ∆r and ∆Z. 

Sideband distributions seem good in 
off-res.

Data:



Which are the correct ∆r and ∆Z 
distributions?

Off-resonance data 
On-resonance data 
(sideband)

Red is correct  use sideband data (and exclude cosHelAngle from the inputs) 
 
Green is correct  use off-res data (and exclude cosHelAngle from the inputs)

→

→

Off-resonance data 
On-resonance data 
(sideband)

Stiil thinking how to do this.

Sideband data and off-resonance data have different r and ∆Z distributions.

I need to understand which one reproduces correctly the signal region:

53



Which are the correct ∆r and ∆Z 
distributions?

Off-resonance data 
MC in signal region

Off-resonance data 
MC in signal region

Sideband data and off-resonance data have different r and ∆Z distributions.

54

Metti tutti e tre insieme dai



Which are the correct ∆r and ∆Z 
distributions?

Sideband data and off-resonance data have different r and ∆Z distributions.
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Which are the correct ∆r and ∆Z 
distributions?

Sideband data and off-resonance data have different r and ∆Z distributions.

56



Which are the correct ∆r and ∆Z 
distributions?
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∆r [cm]

SimulationSimulation

Wrt (0,0,0) 
Wrt IP

Wrt (0,0,0) 
Wrt IP

∆Z [cm]

Now we have the expected distributions!



Off-Resonance data correction
On-resonance and off-resonance data have different beam energies. 
Take this into account for  and  usingMbc ΔE

58

OffResonance data:

Without correction 
With correction

Did we expect this?  

After the correction I expected the 
 endpoint to be 5.29. Need to 

think about this.
Mbc



 MVAρ



 MVAρ

Large number of continuum ’s come from a   
develop a specific BDT (in addition to the default CS BDT). 

Combine each track in the event with each . 

Use kinematic and angular variables to distinguish 
between ’s and other particles.

π0 ρ →

π0

ρ

60

Beyond the CS: identify the principal bkg components.

Events that have at least a 𝜋0 from …

𝜌(770)+ 47.1 %

Z0 (direct from e+e-) 75.0%

1 candidate

Track
Track

TrackPi0
Pi0

-> 6 rho sub-candidates

Example:



Max MVA distributionρ

61

Each candidate has for example 20  sub-candidates. Take the one with largest 
rhoMVA (the one more similar to a ).

ρ
ρ

Variable gives separation, and discrepancy is acceptable

Signal 
Background

Validation: use  sideband 
(inclusive sample of true and false ).

B0 → π0π0

ρ

Total candidates Candidates with at least one rho Candidates where the rho has been 
correctly identified

788473 285585 158393



Use MVA as input of the CSBDTρ
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Inclusion of MVA gives no improvementρ

With RhoMVA
Without RhoMVA



Other possibility: MVA after the CSBDTρ
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No gain in significance after selection on MVA.ρ

Apply first the selection on the CSBDT (>0.8), -0.2<∆E<0.1 and Mbc>5.27, then various 
selections on MVA and calculate significance .ρ S/ S + B

200 fb-1

No cut



Summary

Prepare  analysis for pre-LS1 dataset. 

Revisited photonMVA: use new variables with good data/MC agreement. 
                                        Already validated on data. 

Revisited CSBDT: add  variables to suppress even more continuum. 
                               Variables are ready, but need to repeat training using  
                               off-res data (is it enough?). Check how the use of  
                               variables impacts the flavour tagger.         

Introduced BDT: improvement is negligible, maybe not useful to add it in 
                               the analysis. 

B0 → π0π0

BTag

BTag

ρ



Backup



ClusterTiming (rel-06)



Inputs validation — Background only
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Inputs validation — Background only
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Inputs validation — Background only
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Inputs validation — Background only
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Inputs validation — Signal only
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Inputs validation — Signal only
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Need more statistics, but no 
large discrepancy observed

Inputs validation — Signal only



Check — Background only using 
 sidebandB → D(Kππ0)π

74

Need more statistics — but observe 
smaller discrepancies in ∆r and ∆Z 

wrt . Why?B0 → π0π0

Negligible 
contribution 

from ττ


