

FOOT: status of the detectors

- Start Counter / TofWall
- Beam Monitor
- Emulsions
- Vertex
- MSD
- Inner Tracker
- Magnet
- Calorimeter
- Trigger
- DAQ
- Upgrades

Piergiorgio Cerello – INFN Torino

Start Counter + TOF Wall

Time resolution

ΔE calibration

GSI 2021 data 400 MeV/u ¹⁶O on 5mm carbon

Start Counter + TofWall

Physics: He + C @ HIT – Jul 2022

Beam Monitor

Raw hit detection efficency

~90% @ GSI2021 - ¹⁶O ~80% @ HIT2022 - ⁴He (to be checked)

Space-charge effect detected in GSI2021

- inefficiencies at high beam intensity
- rough analytical estimate conducted
- under control at HIT2022
- possibility to measure the BM inefficiency vs beam rate at CNAO with ¹²C

Bologna, August, 31st, 2022

BM - VTX residuals ~ 300 μm (GSI2021)

Emulsion spectrometer

INFN

Emulsion spectrometer

Vertex

GSI 2021 Track residuals (mostly ¹⁶O)

Working almost correctly
 Randomly a trigger is lost

 → resync required
 (corrected/addressed in firmware now)
 Good internal alignment

- Good internal alignment
- Max 1 kHz DAQ rate ... or pile-up!

MSDs

3 x-y planes used extensively since Jun 2021
(3 more xy planes available)
50 μm microstrip, 150 μm readout pitch

Inner Tracker

All modules available 1 ladder assembled with 2 test modules 4 to be assembled (now starting)

DAQ test with N>2 ASIC boards soon DAQ integration test before CNAO data taking

GOAL: assembly by the end of 2022

5#

First ladder assembled (Jul 2022)

Tracker's Mechanics

Design completed Tender assigned

Magnet

3 firms invited to the bid 1 responded (Sigma Phi)

Choice of NbSm magnetic elements

M1: 96 elements on 2 disks, 2 rings B max: 1.4 T \rightarrow strong magnetic forces

Magnet

During assembly many magnetic elements broke. Front flanges do not look safe!

The firm built also M2 finding the same problems.

Construction failed, new project

The firm decided to restart the design from scratch using Nd-Fe-B magnetic elements (harder) and avoiding the longitudinal segmentation of magnets.

We are closely following the process (weekly updates), With the help of Lucia Sabbatini (LNF magnet expert -Thanks, Lucia!)

Magnet: new project

Nd-Fe-B Fewer (-> Longer) magnetic elements – difficult to build Aluminum cages -> increased depth (100 -> 112 mm)

Project being finalized Expected delivery: April 2023 Extra costs cannot be excluded

Calorimeter construction

All components fully delivered except SiPMs

- 63 crystals (7 modules) assembled for HIT data taking (July 2022)
- 200 SiPM to be delivered in 2 weeks
- Final batch at the beginning of October
- Full system assembled by the end of 2022
- Spare components (~ 10%: boards, SiPMs) needed

Calorimeter response

S22007 - July 17th S08358 - July 24th

p, ⁴He, ¹²C, ¹⁶O beams About 80 (!) energies

E (MeV/u)

Calorimeter response

S22007 - July 17th S08358 - July 24th

p, ⁴He, ¹²C, ¹⁶O beams About 80 (!) energies

$ADC(E) = ax^2 / (1 + bx + cx^2)$

	р	Не	С	0
а	0.109	0.044	0.013	0.011
b	9.42e-02	3.71e-02	1.46e-02	1.29e-02
С	12.3e-05	5.83e-05	1.06e-05	0.88e-05

 $|\mathsf{E}_{\mathrm{fit}} - \mathsf{E}_{\mathrm{ADC}}| < 1\%$

Calorimeter resolution

S22007 - July 17th S08358 - July 24th

p, ⁴He, ¹²C, ¹⁶O beams About 80 (!) energies

E (MeV/u)

Calorimeter calibration

Physics: He + C

Trigger

Fragmentation events are at a level of few % \rightarrow Better to implement a trigger logic to select them!

Trigger

Physics: He + C @ HIT – Jul 2022

Bologna, August, 31st, 2022

DAQ

Detector integration in DAQ has been tested extensively

- > 40 Mevents acquired at GSI in 2021 in different trigger configurations
- ~ 98 Mevents acquired at HIT in 2022 in different trigger configurations
- SC+BM+TW+Calo. DAQ rate up to 2.1 kHz. Very long tests (>12h) without any problem.
- MSD (6 xy planes).
 DAQ rate up to 2.4 kHz; long test (>4h) with no problems.
- VTX: 4 planes, 1 board. DAQ rate up to 1.2 kHz; safe rate at 0.75 kHz
 - Observed problems (lost triggers) under scrutiny;
 - changes in the firmware to address this problem
 - Rate limited by the rolling shutter mode of M28 (185 us x 3)
- IT: same architecture of VTX.

Fragment identification (TofWall + CALO)

Physics: He + C

E (ADC)

Emulsion spectrometer

Upgrade: Nano Imaging Tracker emulsion for direct fragmentation measurements

NIT emulsions able to see track length shorter than 100 µm; better spatial resolution

Direct fragmentation of target

cross section measurements become feasible

4% interactions in the detector, of which: - 81% in emulsion gel (C, O, H, N, Ag, Br) - 19% in plastic base (C₈H₈)_n

Production possible at LNGS!!!

Start Counter upgrade

MARGARITA 2.0 (Battistero)

In order to maximize the light collection and improve the readout efficiency we intend to build a MARGARITA 2.0 with an optimized shape.

8 Boards (1 per face)

4-6 SiPMs per Board

32-48 SiPMs in total

EJ-232 (Commercial)

MARGARITA 1.0

- 8 Boards (2 per face)
- 6 SiPMs x 8 Boards
- 48 SiPMs in total
- EJ-232 Fast Plastic Scintillator, 250µm

June 2022 test beam with electrons (mip) at BTF with 5 mm samples and PMTs: •2N => 110 ± 10 ps

0

•EJ-232 => 160 ± 10 ps

Neutron detection

BC501 and BGO being tested NOW

N-TOF Neutron beam Neutral particles: anticoincidence event

Charged particles: coincidence event

GSI July 2021 ¹⁶O, 200 MeV/u, (C₂H₄)_n, 0.5 cm ¹⁶O, 400 MeV/u, (C₂H₄)_n, 1 cm

dEd0

 $d^2\sigma$

