

RIVELATORE A EMULSIONI NUCLEARI: STATO DELL'ARTE E PROSPETTIVE

A. Alexandrov, V. Boccia, A. Di Crescenzo, G. De Lellis, G. Galati, A. Iuliano, A. Lauria, <u>M. C. Montesi</u>, A. Pastore, V. Tioukov

Università di Napoli "Federico II", INFN Napoli, Università di Bari, INFN Bari

FOOT: referee meeting Bologna, 31th August 2022

The emulsion spectrometer structure

STATO DELL'ANALISI (DAL 2021)

- Articolo sulla misura della carica, in S2, con ¹⁶O a 200 MeV/n su target in C₂H₄ (https://doi.org/10.1515/phys-2021-0032, Open Physics, 2021);
- 2) Completata l'analisi sulla misura della carica, in S2, con ¹⁶O a 200 MeV/n su target in C e a 400 MeV/n su C e C₂H₄;
- 3) Completata la ricostruzione dei vertici, in S1, a 200 MeV/n su C e C_2H_4 ;
- 4) Ricostruzione in corso dei vertici, in S1, a 400 MeV/n su C e C_2H_4 ;
- 5) Completata la misura della sezione d'urto integrata a 200 MeV/n su target in C e C_2H_4 .

1) Articolo sulla misura della carica, in S2, con 16 O a 200 MeV/n su target in C₂H₄ (https://doi.org/10.1515/phys-2021-0032, Open Physics, 2021)

z	Fragments classification						
	СВ	PCA	Total	%	Syst. Err. (%)	Stat. Err. (%)	
1	21,199	1	21,199	70	5	0.7	
2	1,438	3,506	4,943	16	2	1.4	
3	1	2,915	2,915	10	2	1.9	
≥4	1	1,108	1,108	4	1	3.0	
Total	22,637	7,529	30,166				

2) Completata sulla misura della carica, in S2, con ¹⁶O a 200 MeV/n su target in C e a 400 MeV/n su C e C_2H_4

¹⁶O @ 200 MeV/n su C

Z	Cut-Based	PCA	Total	%	Stat. Err (%)
1	23754	1	23754	69	0.6
2	715	5861	6576	19	1.2
3	1	3093	3093	9	1.8
> 3	1	1029	1029	3	3.0
Total	24469	9983	34452		

2) Completata sulla misura della carica, in S2, con ¹⁶O a 200 MeV/n su target in C e a 400 MeV/n su C e C₂H₄ 16O @ 400 MeV/n su C

Z	Cut-Based	РСА	Total	%	Stat.Err (%)	Syst.Err (%)
1	14607	988	15605	44.0	0.4	4
2	/	4949	4949	14.5	0.2	0.1
3	/	470	470	1.2	0.06	/
4	/	241	241	0.6	0.04	/
5	/	359	357	1.0	0.05	/
>5	/	13247	13247	38.0	0.3	/

2) Completata sulla misura della carica, in S2, con ¹⁶O a 200 MeV/n su target in C e a 400 MeV/n su C e C₂H₄ $16O @ 400 MeV/n su C_2H_4$

Z	Cut-Based	РСА	Total	%	Stat.Err (%)	Syst.Err (%)
1	18436	730	19166	60.2	0.4	5
2	/	4507	4507	14.2	0.2	0.1
3	/	312	312	1.0	0.06	/
4	/	145	145	0.5	0.04	/
5	/	251	251	0.8	0.05	/
>5	/	7462	7462	23.4	0.3	/

3) Completata la ricostruzione dei vertici, in S1, a 200 MeV/n su C e C_2H_4

¹⁶ O @ 200 MeV/n		GSI1 C target	GSI2 C2H4 target	
Beam particles		19375	20625	
МС	True vertices	4895	5744	
	Reco vertices	4112	4904	
DATA	Data vertices	4086	5136	

Cuts for vertices selection:

- • $n \ge 3$, n = number of tracks (parent + daughters)
- •At least 2 daughters with at least 3 segments

3) Completata la ricostruzione dei vertici, in S1, a 200 MeV/n su C e C_2H_4

¹⁶O @ 200 MeV/n

4) Ricostruzione in corso dei vertici, in S1, a 400 MeV/n su C e C_2H_4

μm

CD

Bad quality for some emulsion films (30%)

μm

Completata la misura della sezione d'urto integrata a 200 MeV/n su target in C e C₂H₄ 5) $\sigma \, ({\rm E}_{_{\rm Oxy}})$ Carbon <u>×1</u>0⁻²⁴ $\sigma ~(\text{E}_{_{Oxy}})~(\text{cm}^{2})$ 852 +/- 17 mB @ 288 MeV 0.8 $\sigma (\mathsf{E}_{\mathsf{Oxv}}) \mathsf{H}$ 0.6 <u>×1</u>0⁻²⁴ $d\sigma/dE_{Oxy}$ (cm²) 6.0 0.4 1 Layer = 1mm C 0.2 0.4 160 180 Mean E_{Oxy} 200 (Mev/n) 60 80 100 120 140 0.3 $\sigma (E_{Oxv}) C_2 H_4$ <u>×10</u>⁻²⁴ $\sigma (E_{oxy}) (cm^2)$ 0.2 0.1 2.5 0 100 120 160 180 200 Mean E_{Oxy} (Mev/n) 140 1.5 1260 +/- 13 mB @ 441 MeV Layer = $2mm C_2H_4$ 0.5 080 100 120 140 160 180 200 Mean E_{Oxy} (Mev/n) https://crosssection-db.herokuapp.com/

11

ON GOING

- 1) Ottimizzazione della connessione tra la sezione di vertexing e la sezione del riconoscimento di carica;
- 2) Sezione d'urto a 400 MeV/n su C e C_2H_4

PUBBLICAZIONI PIANIFICATE

- 1) Articolo in preparazione "FOOT for the Moon, Mars and beyond: current status and first cross section measurements for space radioprotection", da pubblicare su Frontiers nello special issue: "Astroparticle Experiments to Improve the Biological Risk Assessment of Exposure to Ionizing Radiation in the Exploratory Space Missions";
- 2) Riconoscimento della carica con ¹⁶O a 200 e 400 MeV/n su target in C e C₂H₄; (JNST; dicembre 2022)
- 3) Misura della sezione d'urto integrale e differenziale per angolo e carica con ¹⁶O a 200 MeV su target in C e C₂H₄ (Maggio 2023)

LAVORO FUTURO

- 1) Misura dell'impulso e separazione isotopica 200 e 400 MeV/n su target in C e C_2H_4 ;
- 2) Misura in cinematica diretta con NIT (Nuclear Imaging Tracker)
- 3) Data taking al CNAO con fascio C-12 @ 200 e 400 MeV

Le NIT (Nano Imaging Tracker^(1,2)) consentono di fare misure di frammentazione in cinematica diretta grazie allo loro elevata risoluzione spaziale. SENSITIVE GELATINE LAYER PLASTIC BASE I grani, di dimensioni nanomentriche (diametro tipico 40 nm), consentono di ricostruire il percorso dei . . . frammenti con una lunghezza di traccia di 100 nm. La struttura del rivelatore è la stessa delle Emulsion Protection coat with gelatin Cloud Chamber (ECC), che utilizza come materiale **]**~ 70μm NIT sensitive layer ~ 50µm Plastic base passivo la base plastica delle emulsioni. 70µm NIT sensitive layer Protection coat with gelatin

 (1) Asada, T. et al. The development of a super-fine-grained nuclear emulsion. Prog. Theor. Exp. Phys. 6, (2017)
 (2) Alexandrov, A. et al. Super-resolution high-speed optical microscopy for fully automated readout of metallic nanoparticles. Sci. Reports 10, 18773 (2020)

14

CINEMATICA DIRETTA: SIMULAZIONI MC PRELIMINARI

- 400000 protoni @ 200 MeV
- 100 NIT: 70μm · 2 strati di gel sensibile, 50μm base plastica, (10×12)cm² area
- Soglia: 10 keV
- ~4% dei protoni del fascio interagisce nel rivelatore:
 81% nel gel (C, O, H, N, Ag, Br...);
 19% nella base plastica(C₈H₈)_n
- ~ 69% delle interazioni sui nuclei ≠ Ag, Br

Carica dei nuclei che interagiscono con i protoni

- Le energie tipiche dei frammenti sono qualche MeV e il loro range è di almeno 300-500 nm
- Circa il 21% dei frammenti esce dal rivelatore: si può pensare a una seconda sezione di rivelatore che utilizzi il Pb (1 mm) come materiale passivo e le emulsioni standard come parte sensibile.

Difficoltà nel ricevere emulsioni dalla Russia

▶Per l'esposizione al CNAO (C-12 @ 200 e 400 MeV) useremo le emulsioni prodotte da Nagoya

Produrremo (circa 1.2 m²) di NIT al Gran Sasso per misure di cinematica diretta

Dark room facility ai laboratori sotterranei del Gran Sasso

BACK UP

VR0_w

Figure 4.35: (a) $VR3_{av}$ vs $VR2_{av}$ distribution for all tracks in GSI3 satisfying the 'Frag Cut' and having $VR1_{av} > 0$ and $k_{2,3} > 1$. (b) Close-up of the same distribution excluding the main peak.