LHCb computing activities and requests for 2023/24

Lucio Anderlini INFN Firenze

2022-09-06 Università "La Sapienza", Roma

Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

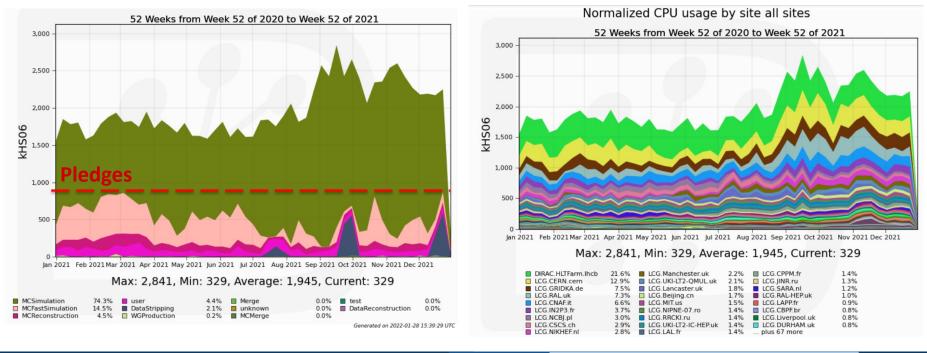
Outline

- Usage of resources in 2021/22
- The upgrade computing model and other developments
- Plans for 2023 and beyond

Usage of resources in 2021/22

Requests and pledges for 2021

The LHCb requests for 2021, scrutinized by the cRSG, were reported in LHCb-PUB-2020-001


Resource usage for 2021 is detailed in the public document LHCb-PUB-2022-011

Pledges from different sites were taken from <u>WLCG-CRIC</u>

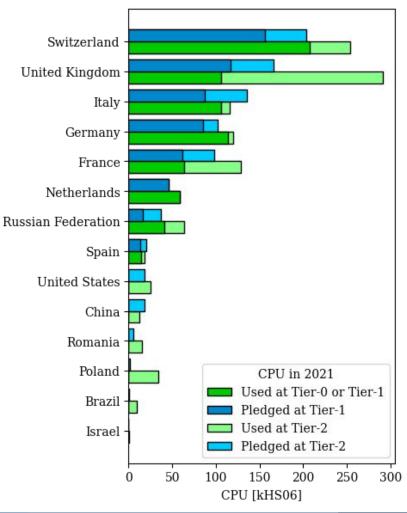
2021	(CPU (kHS	06)		Disk (PB	3)	Tape (PB)		
	Req.	Pledged	Pled./Req.	Req.	Pledged	Pled./Req.	Req.	Pledged	Pled./Req.
Tier 0	175	175	100.0%	18.8	18.8	100.0%	44.0	44.0	100.0%
Tier 1	574	470	81.9%	37.6	33.9	90.1%	76.0	64.7	85.1%
Tier 2	321	289	90.0%	7.2	6.0	83.0%	n/a	n/a	-
Total WLCG	1070	934	87.3%	63.7	58.7	92.2%	120.0	108.7	90.6%
HLT EFF		50							
Total	1070	984	92.0%	63.7	58.7	92.2%	120.0	108.7	90.6%

Usage of CPU resources

In 2021 we had limited reprocessing needs, most CPU (> 93%) devoted to Simulation jobs. Significant contribution (21.6%) from HLT EFF (*not available for simulation next year*).

Sept. 2022

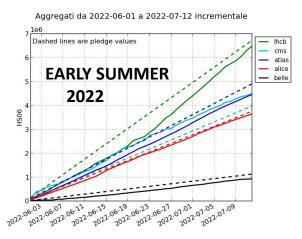
WLCG accounting (WAU)

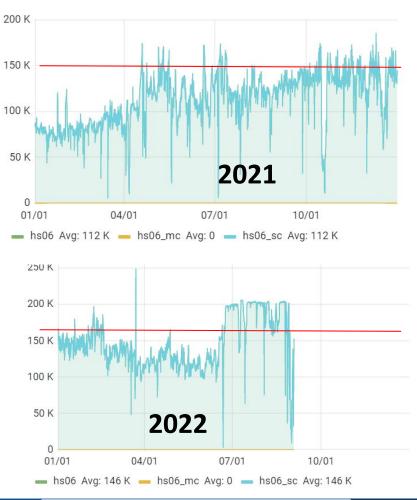

Average power used:

at Tier-0 and Tier-1 sites, **122%** of the pledges; at Tier-2, **160%** of the pledges.

In terms of operations, Simulation jobs can run independently on **Tier-0**, **Tier-1** and **Tier-2** sites.

In addition, in Italy, Tier-2 CPU is mostly allocated at CNAF, and is identical to Tier-1 resources.

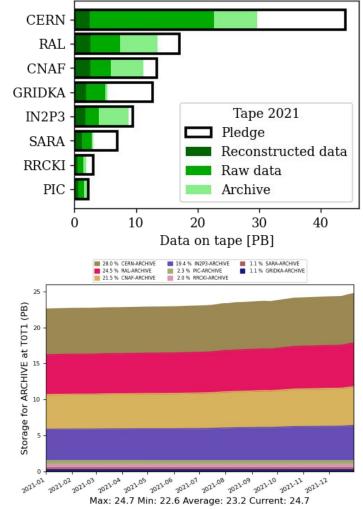

In total, LHCb used **1145 kHS06** from WLCG resources plus **380 kHS06** from non-WLCG sites (mainly HLT EFF).



lhcb - HS06

CPU usage at CNAF

LHCb running slightly under pledge in 2021 and first half of 2022, before getting CINECA CPU up and running, with which we are recovering quickly.

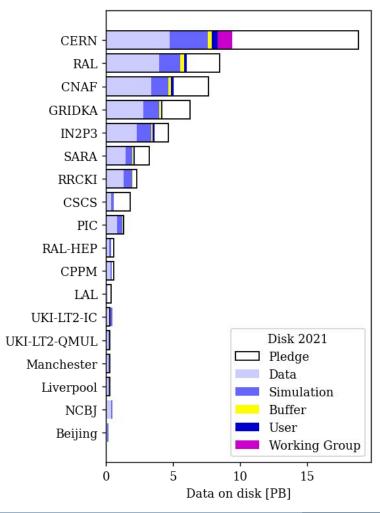


Tape usage as of December 2021

Minor increase in tape storage during 2021, mostly due to steady archiving of less-popular datasets.

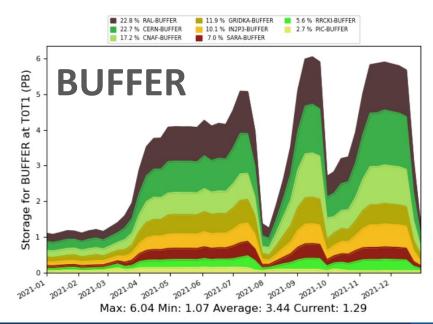
Delays in the LHC schedule resulted into a tape occupancy 37% lower than the original 120 PB requested.

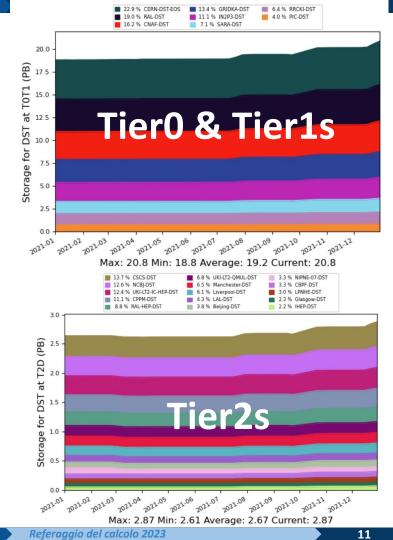
Increase in pledge should be followed by an increase of stored data, that will hopefully start flushing soon.


Tape usage LHCB $\,\,{\scriptstyle \lor}\,\,$

Disk usage

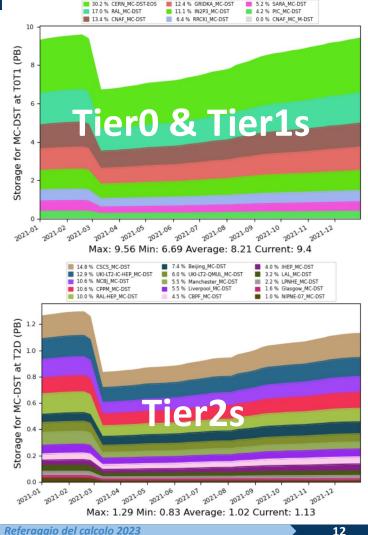
- Analysis-level datasets [Data]
- Simulated datasets [Simulation]
- Analysis-level nTuples [User]
- Buffer space for temporary files [Buffer]


EOS is also used to store large datasets for interactive analysis of relevance for a whole Physics Analysis Working Group.


In the end of 2021 calendar year, LHCb was using **39.2 PB** of disk space, 28% lower than the available disk space of **54.6 PB**.

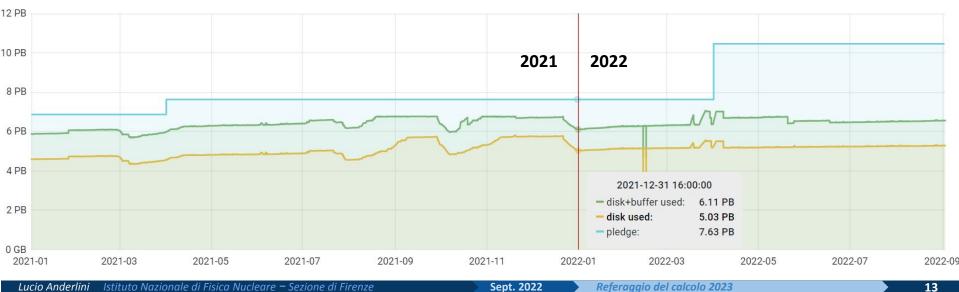
Disk usage: Real data

Mild increase of the disk usage due to incremental restripping campaigns.



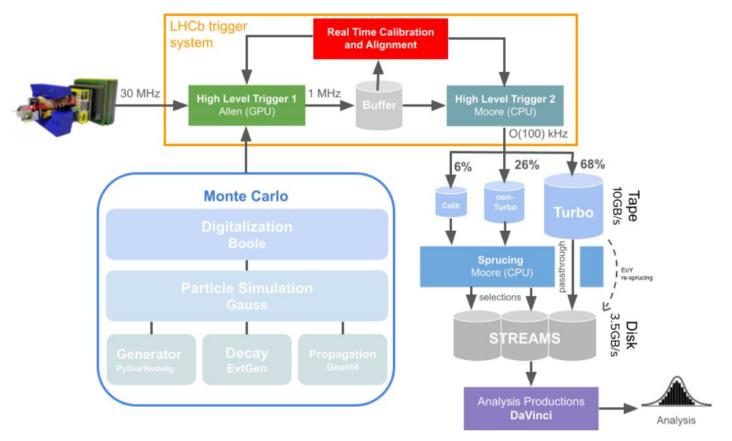
Simulated datasets

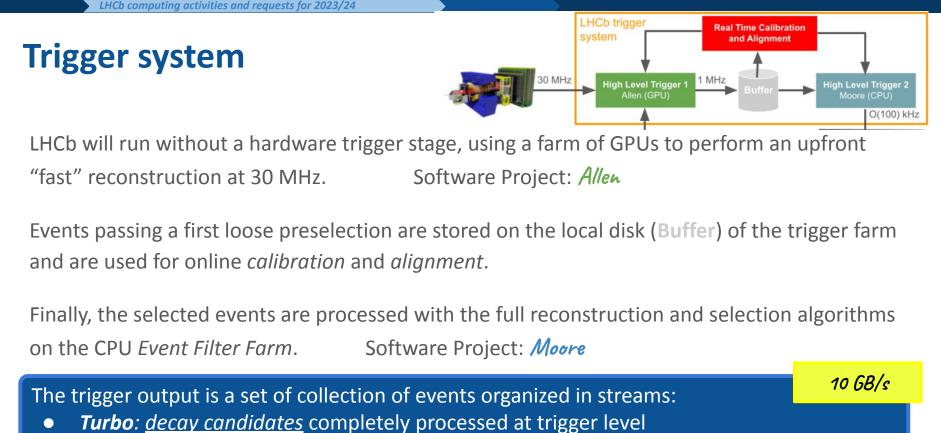
Volume of simulated datasets increases steadily as new events are simulated.


Major cleanup campaign performed in March 2021 perfectly balanced the newly generated events (3 PB).

A small fraction of the deleted datasets was retrieved from tape later in a semi-automatic way.

Disk usage at CNAF


As for tape, we expect a disk usage to rapidly increase with new data flushing in.



Disk usage LHCB ~

The upgrade computing model and other developments

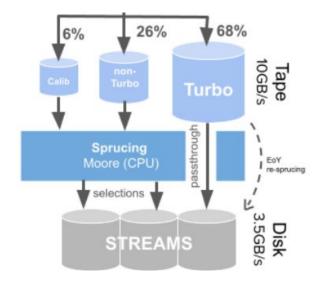
Upgrade computing model

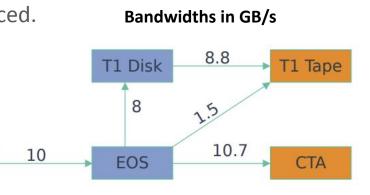
- **Non-Turbo**: (parts of) events that require <u>additional combinatorics</u> before analysis, *e.g.* inclusive lines
- Calib: full events targeting <u>detector studies</u> and calibration of the simulation

Lucio Anderlini Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Sept. 2022

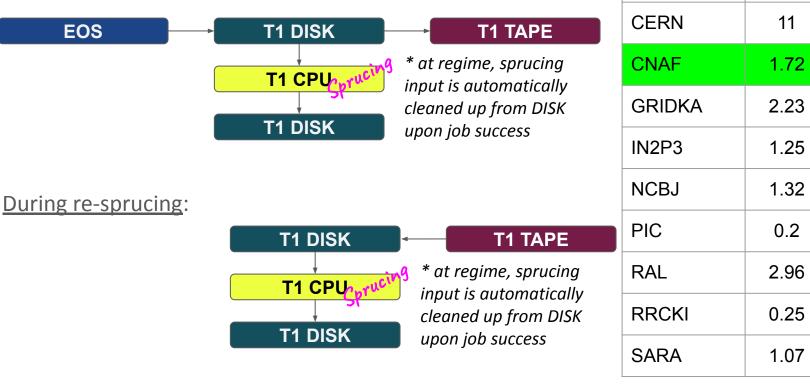
CNAF, Ferrara, Firenze


Offline data processing


Non-Turbo and Calib streams are processed (Sprucing) Software project: Moore

Sprucing runs at Tier-0 and at Tier-1s, during data taking. While sprucing input is **archived on tape** in two copies: Tier-0 + one Tier-1 to allow for legacy reprocessing.

Sprucing output (3.5 GB/s) is kept on disk where produced.


This results in **severe constraints** on both the amount of **available tape resources** and the bandwidth for **WRITE-ON-TAPE** operations.

Offline data processing at Tier-1s

During data-taking:

WRITE

GB/s

READ

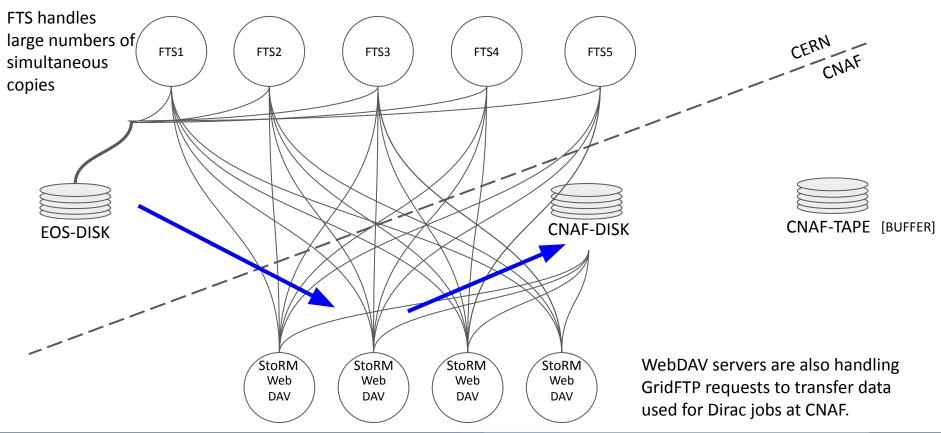
GB/s

1.35

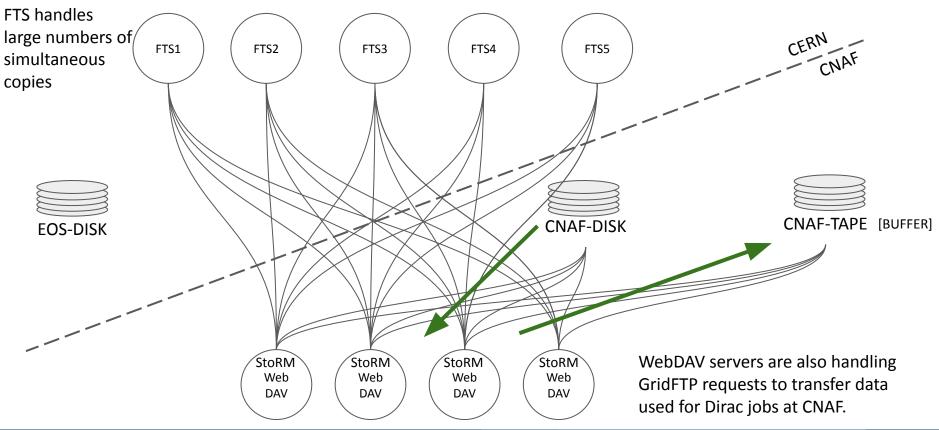
1.36

0.98

0.91


0.17

1.93


0.21

0.74

Setup at CNAF: Data flow EOS to CNAF-DISK

Setup at CNAF: Data flow EOS to CNAF-DISK

Validation runs (tape challenges)

A first validation run was performed in **Dec. '21** copying manually (without WebDAV) data to disk and tape. **CNAF well above requirements** (up to 5.16 GB/s).

Second tape challenge, involving the full setup, in March '22.
Read bandwidth immediately reached without issues.
Write bandwidth was basically acceptable, but with a huge error-rate (75% copies failed)

Third dedicated run, involving the full setup with max. verbosity, in **June'22**. Confirmed the bottleneck is in the WebDAV endpoints that gets contacted multiple times per copy to handle the authentication and authorization process.

LHCb bandwidth expectations							
	WRITE GB/s	READ GB/s					
CNAF	1.72	1.35					

Readiness of CNAF

WebDAV endpoints are our bottleneck at CNAF.

Ongoing effort to move data access from the Condor jobs to POSIX to lighten WebDAV.

Dedicating nodes to WebDAV, only, and assigning all other protocols to a **single node** results into a significant improvement.

Connections with **FTS** and **WebDAV** developers seeking for **improvements software-side**. Several packages were updated during the summer.

Improvements of the hardware are also being considered.

A further test would be beneficial, we are trying to fit it in the LHCb & CNAF schedules.

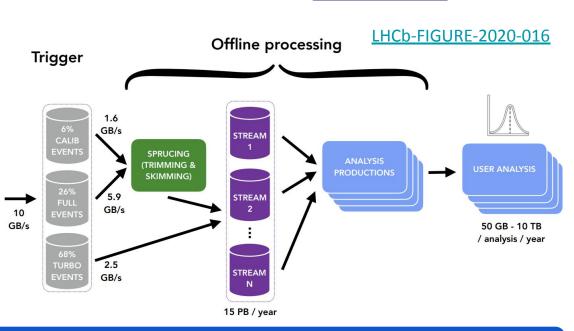
Readiness of other sites

Both read and write tests adequate for 2022 data taking.

At regime, limitations at RAL, NCBJ and CNAF may become relevant.

The LHCb Computing Project is following up with these sites to monitor the evolution of the infrastructure.

Site	expected Speed (GB/s)	Target achieved
CERN	11	Yes
CNAF	1.72	~Yes
GRIDKA	2.23	Yes
IN2P3	1.25	Yes
NCBJ	1.32	No
PIC	0.2	Yes
RAL	2.96	~No
RRCKI	0.25	Yes
SARA	1.07	Yes


Site	Expected Speed (GB/s)	Success
CNAF	1.35	Yes
GRIDKA	1.36	Yes
IN2P3	0.98	Yes
NCBJ	0.91	No
PIC	0.17	Yes
RAL	1.93	No
RRCKI	0.21	Yes
SARA	0.74	Yes

Modernization of the analysis software

Analysis software package (DaVinci) rewritten from scratch.

Focus on centralized nTuple production, improving:

- CI/CD-based job validation
- reusability of the output
- data & analysis preservation
- job monitoring

Standardizing the **output data format to nTuples** and extending the application of **functors**, the new DaVinci will be <u>easier to maintain</u>, more <u>open to contributions</u> and <u>manageable</u> as other Computing Operation tasks.

Disk 3.5GB/s

Analysis

STREAMS

Analysis Productions DaVinci

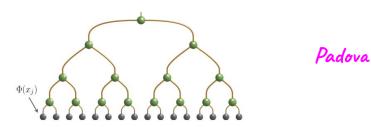
Getting ready for new technologies

GPUs

Padova, Firenze, Ferrara

Ongoing effort to access Marconi100 GPUs with DIRAC. Two ways explored:

- Custom DIRAC Computing Element
- Dedicated CNAF Computing Element submitting the jobs to CNAF (thanks to CNAF, CMS and ATLAS colleagues for setting this up)

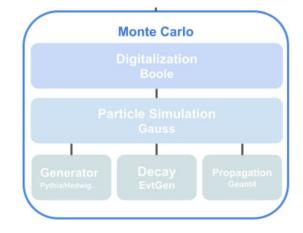

Workflow management systems based on **kubernetes** and **snakemake** on INFN Cloud are also being explored to employ GPU nodes for a subset of tasks, only.

Quantum technologies

Quantum-computing algorithms can play a role even before having access to a real quantum computer.

For example, a *b*-jet charge identification classifier based on quantum machine learning was submitted in February.

https://arxiv.org/abs/2202.13943


Urbino

Firenze, Pisa, Ferrara

Faster Simulations

CPU pledges for producing simulated samples won't be sufficient to cope with the MC requests expected for Run3: **need for speed-up the simulation production**.

Developments split in two pillars (more details here):

- Upgrade of the <u>simulation framework</u>
- Drop sub-detectors from simulation (e.g. track-only simulation)
- Avoid simulating parts of the event (ReDecay)
- **Parameterize** some <u>energy deposits</u> instead of relying on Geant4 (e.g. hit library, CaloGAN)

[UltraFastSim] Avoid using Geant4 in simulation

Parameterize the **reconstructed quantities** given the MCTrue values. Provide both:

- a <u>pipeline of parameterizations</u> describing the whole event (the new Lamarr framework)
- tools for completing or cross-checking Fast Simulation options

Requests for 2023

LHC running scenario and LHCb plans

Further **delay of the LHC due to the pandemic situation** resulted into a reassessment of the needs for computing resources in 2022.

In particular, *storage resources for 2022 were overestimated* as the expected integrated luminosity at the end of 2022 is **5.7 times lower than previous expectations**. CPU (and to some extent, disk) resources will also reduce as the need for Run3-simulated samples, driving the requests, is postponed.

For **2023**, given the LHC schedule, we expect:

• 12 fb⁻¹ of proton-proton collision data

• requests for ion-ion collisions have been shifted from 2022 to 2023, but their amount is unchanged

CPU requests

Sprucing CPU demand assuming consistent with Run2-stripping

Parametric simulation expected to contribute negligibly in 2023

CPU Work in WLCG year (kHS06.years)	2022 LHCB-PUB- 2021-002	2023 LHCB-PUB- 2021-008	2023 THIS DOCUMENT
First pass sprucing	80	80	80
End-of-year sprucing	80	80	80
Simulation	870	1800	1010
Core and distributed computing infrastructure	10	10	10
User Analysis and working group productions	220	330	240
Total Work (kHS06.years)	1260	2300	1410
LHCb-TDR-018	1580	2750	

Core and distributed computing infrastructure used mainly for for CI/CD.

User analysis and WG productions expected to scale as $\frac{\text{CPU}(Run3)}{\text{CPU}(Run2)} = \frac{1}{2} \frac{\mathcal{L}(Run3)}{\mathcal{L}(Run2)}$

thanks to the important effort in code optimization and centralized WG productions.

Overall, a 24% increment over the 2022 pledges is requested.

CPU requests

We assume HLT farm will be partly available during the winter shutdowns and similar contributions from opportunistic resources as in the past.

The corresponding computing power is subtracted from the requests to WLCG.

Distribution through different Tiers remains the same as described in <u>LHCb-PUB-2013-002</u>.

CPU Power (kHS06)	2022	2023
Tier 0	189	215
Tier 1	622	705
Tier 2	345	395
Total WLCG	1156	1315
HLT farm	50	50
Opportunistic	50	50
Total non-WLCG	100	100
Grand total	1256	1415

Disk requests

Run1-2 data will not evolve. Same for simulation.

Most resources to keep analysis-level datasets (FULL + TURBO) readily available for nTupling (WG productions).

Disk stora	age usage forecast (PB)	LHCb	22 -PUB- -002		023 1021-008		23 cument
	Run1+Run2 pp data	10.2	Carlos da	10.2		10.2	
	Run1+Run2 PbPb + SMOG	10.2		10.2		10.2	
	Run3: FULL	13.7	65.9	27.4	114.6	16.2	78.8
Real data	Run3: TURBO	30.3		60.6		35.7	
	Run3: TURCAL	3.7		7.4		4.4	
	Run3: Minimum bias	2.4		0.0		0.0	
	Run3: PbPb + SMOG2	5.6		8.9		11.2	
Simulated	Run1+Run2 Sim. Data	8.7		8.7	14.0	8.7	11.5
data	Run3 simulated data	2.2	11.0	6.2	14.9	2.8	11.5
Other	User data	1.8	12.0	2.4	12.4	2.4	12.4
Other	Buffers	11.0	11.0 12.8		13.4	11.0	13.4
Total			89.6		142.9	1	102.5
	LHCb-TDR-018		111.0		159.0		

11 PB of disk space reserved for staging 44 PB of data from tape during "re-sprucing". Corresponding to a two-month procedure with 2-week contingency.

Today: 6 PB over a period of 5 months.

Disk (PB)	2022	2023
Tier0	26.5	30.3
Tier1	52.9	60.5
Tier2	10.2	11.7
Total	89.6	102.5

Tape requests

Tape request dominated by the need of preserving a two copies of the raw data, at CERN and at Tier-1s.

Tape storage usage forecast (PB)		LHCb-PU)22 UB-2021- 02	2023 LHCb-2021-008		2023 This document	
Dund 1	RAW data (pp+HI+fixed target)	38.4		38.4		36.9	
Run1 + Run2	RDST data (pp+HI+fixed target)	13.7	82.1	13.7	83.1	13.8	78.4
Nullz	ARCHIVE	30.0		31.0		27.7	
	pp data (FULL+TURBO+TURCAL)	120.1	0.6	240.1	276.2	141.4	169.9
Dun2	minimum bias / no-bias	0.6		0.6		0.6	
Run3	Heavy Ion Data + fixed target	5.6	137.8	10.6		11.2	
1	ARCHIVE (data+MC)	11.5		25.4		16.7	[
Total			219.9		359.3		248.3
	LHCb-TDR-018		243.0		345.0		

To cope with limited buffer space at EOS, data must be transferred to Tier-1s will happen during the data-taking, representing a significant challenge for the infrastructure.

Tape (PB)	2022	2023
Tier0	81	91
Tier1	139	157
Total	220	248

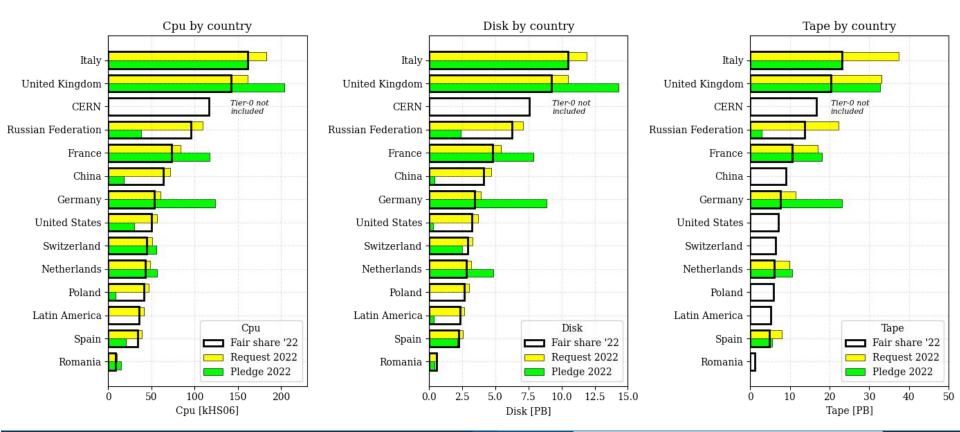
Share through countries (Tier1s+Tier2s)

CERN researchers cannot contribute to computing resources beyond what is allocated in Tier-0.

Countries not hosting a Tier-1 cannot contribute to Tape.

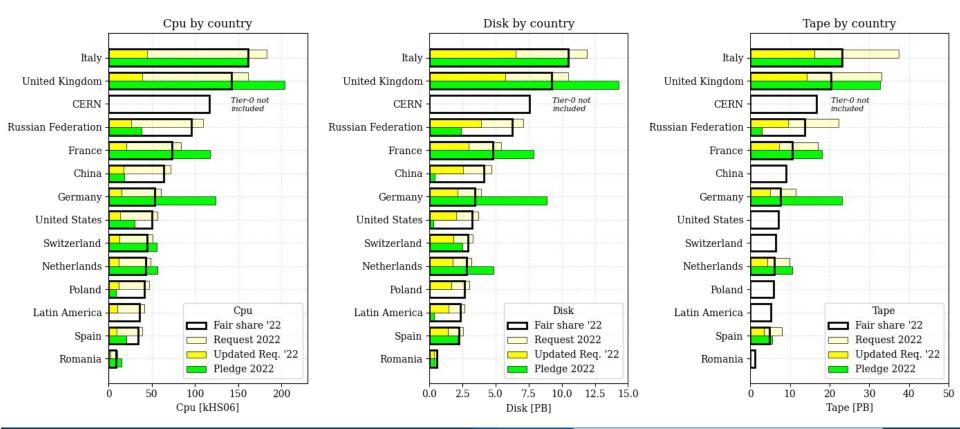
LHCb requests distribute the missing resources through the remaining sites, according to fraction of PhD equivalents.

$$ext{CPU}(ar{c}) = rac{ ext{PhD}(ar{c})}{\sum_{c
eq ext{CERN}} ext{PhD}(c)} imes ext{CPU}_{ ext{cRSG}} \hspace{1cm} ext{DISK}(ar{c}) = rac{ ext{PhD}(ar{c})}{\sum_{c
eq ext{CERN}} ext{PhD}(c)} imes ext{DISK}_{ ext{cRSG}}$$

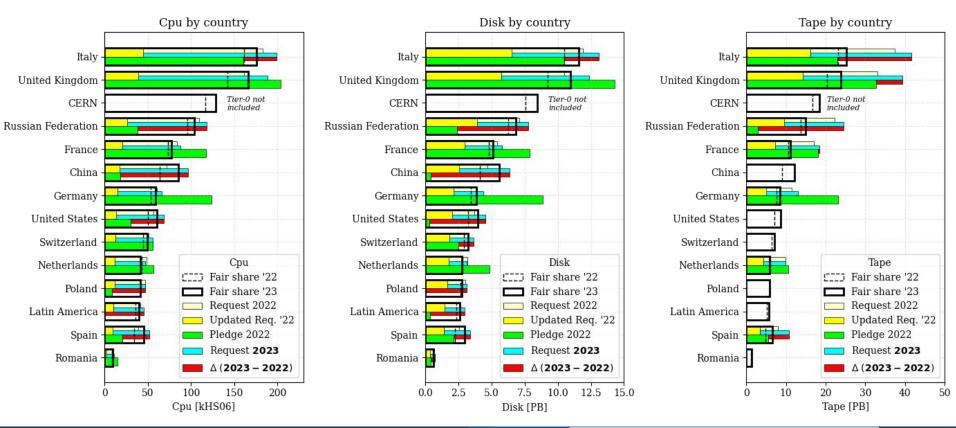

$$ext{TAPE}(ar{c}) = rac{ ext{PhD}(ar{c})}{\sum_{c \in \{ ext{w/ Tier1}\}} ext{PhD}(c)} imes ext{TAPE}_{ ext{cRSG}}$$

Such sharing scheme is considered unfair by some funding agency, including INFN, which contributes by its fair-share (16%)

CERN-RRB-2022-044


2023	PhD eq. total/ funding auth.	
AUSTRALIA	3	0.5
BRAZIL	19	3.3
COLOMBIA	2	0.3
FRANCE	41	7.1
BMBF GERMANY	29	5.0
MPG, GERMANY	2	0.3
IRELAND	1	0.2
INFN ITALY	93	16.0
HUNGARY	1	0.2
NETHERLANDS	22	3.8
P. R. CHINA	45	7.8
POLAND	22	3.8
HHNIPNE ROMANIA	5	0.9
RUSSIA INST.	40	6.9
RUSSIA UNI.	15	2.6
SPAIN	24	4.1
SWEDEN	1	0.2
SWITZERLAND	26	4.5
UKRAINE	1	0.2
UK	88	15.2
USA	32	5.5
CERN	68	11.7
TOTAL	580	100.0

Requests and pledges for 2022


Lucio Anderlini Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Reassessed requests for 2022 (due to LHC delays)

Lucio Anderlini Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Requests for 2023

Lucio Anderlini Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Sunding CERN Cannot store data coming from HLT. Descoping more lines from FULL to TUBIO and/or tighter ape shortage at Tier1 sites Decrease HLT throughput to offline by migrating more lines from FULL to TUBIO and/or tighter ape shortage at Tier1 sites Decrease HLT throughput to offline by migrating more lines from FULL to TUBIO and/or tighter ape shortage at Tier1 sites Decrease HLT throughput to offline by migrating more lines from FULL to TUBIO and/or tighter ape shortage at Cannot analyse (approxima) for and complexity, system resiliency. Delay of physics analysis. Substantial changes in increase pool of opportunistic resources Declay of physics program Declay of physics program hortage of computing power 3 2 6 All sites Cannot store data coming from HLT. Descoping of physics analysis. Substantial changes in increase pool of opportunistic resources Decrease HLT throughput. Prioritize physics program Valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites Of physics program Decrease HLT throughput. Prioritize physics program valiability of tape read bandwidth 2 4 8 CERN + Tier1 sites Of physics program Decrease HLT throughput. Prioritize physics program inderestimation of sits buffer 3 9 WLCG More computing power needed. YETS re- sproucing or get space by temporarily removing power needed. Treese pool of opportunistic resources inderestimation of simulation of simulation work 3 9<					LHCb Ri	sk Register			
ape shortage at CERN 2 4 8 CERN Cannot store data coming from HLT. Descoping of physics program Decrease HLT throughput to offline by migrating more lines from FULL to TUR80 and/or tighten or operations load and complexity, system resiliency. Delay in physics program Decrease HLT throughput to offline by migrating more lines from FULL to TUR80 and ard/or tighten or operations load and complexity, system resiliency. Delay in physics program Decrease HLT throughput to offline by migrating more lines from FULL to TUR80 and ard/or tighten or operations load and complexity, system resiliency. Delay in physics program hortage of computing power 3 2 6 All sites Cannot store data coming from HLT. Descoping power analysis. Substantial changes in analysis model. Decrease Fraction of fast and parametric simulation samples. Delay of physics program Decrease fraction of fast and parametric simulation samples. Delay of physics program Decrease HLT throughput. Prioritize physics program Valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot store data coming from HLT. Descoping or physics program Decrease HLT throughput. Prioritize physics program valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot tacking period Decrease HLT throughput. Prioritize physics program inderestimation of sprucing work 2 2 4 B CERN + Tier1 sites	Risk	stress in the second in the second		Severity	854111.V		Mitigation		
ape shortage at Tier1 sites 3 4 12 Tier1 sites of physics program more lines from FULL to TURBO and/or tighten particles load and complexity, systep (and of) data taken. Impact on poperations load and complexity, systep (and of) data taken. Impact on popularity. Park data on cold strage and activate if when popularity. hortage of computing power 3 2 6 All sites Cannot store data complexity, systep. Park data on cold strage and activate if when popularity. wailability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot store data coming from HLT. Descoping of physics analysis. Substantial changins in analysis model. Decrease HLT thoughput. Prioritize physics program wailability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot store data coming from HLT. Descoping of physics analysis Decrease HLT thoughput. Prioritize physics program wailability of tape read bandwidth 2 4 8 CERN + Tier1 sites Cannot store data coming from HLT. Descoping of physics analysis Delay re-sprucing to EYETS or LS3 Delay re-sprucing to EYETS or LS3 Delay re-sprucing to EYETS or LS3 Delay re-sprucing or get space by temporarity removing other datasets inderestimation of sprucing work 2 2 4 LHCb More computing power needed delay in (re-sprucing to Baleyad delay in (re-sprucing to Baleyad delay in (re-sprucing to shaleys suffers analysis suffers Site expected scleaved poduction	Funding								
Cannot analyse (part of) data taken. Impact on operations (a data complexity, system resiliency. Delay of physics program More time to get adequate simulation samples. Delay of physics analysis. Substantial changes in Delay re-sprucing. Delay re-sprucing. Delay re-sprucing or get space by temporarily removing other datasets Software More computing power needed. Velicent inderestimation of simulation work. 2 4 BCERN + Tier1 sites of Delay (re-sprucing campaigns. Buffer space is production Reckult analysis production Software More computing power needed. Velicent inderestimation of simulation work. 2 2 4 LHCb More computing power needed. Velicent analysis suffers Site expected speet (GB/s) Target achieved Kielihood: Impact: : never expected to happen 1: we can deal with it, no problem : could wal happen but very unikely 2: a bit of a hasks but not too bad Yes RaL Ral 2.95 Yes	Tape shortage at CERN	2	4	8	CERN	Cannot store data coming from HLT. Descoping	Decrease HLT the	roughput to offline	e by migrating
asisk shortage a a b perations load and complexity, system resiliency. Delay in physics program More time to get adequate simulation samples belay of physics analysis. Substantial changes in analysis model. feasible. Decide what to store on disk based on popularity. hortage of computing power a z 6 All sites analysis model. increase fraction of fast and parametric simulati increase pool of opportunistic resources valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites of physics program Decrease HLT thoughput. Prioritize physics program valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites of physics analysis Delay of physics analysis valiability of tape write bandwidth 2 4 8 CERN + Tier1 sites of physics analysis Delay of physics analysis nedrestimation of disk buffer 3 3 9 WLCG data taking period Delay re-sprucing to EVETS or LS3 befay of physics analysis Delay of physics analysis Delay of physics analysis Delay of physics analysis inderestimation of sprucing work 2 2 4 LHCb More computing power needed. YETS re- sprucing is delayed recover computing power by delaying simulatio not sufficient inderestimation of simulation work 3 3 9 LHCb/G4/HSF analy	Tape shortage at Tier1 sites	3	4	12	Tier1 sites	of physics program	more lines from	FULL to TURBO a	nd/or tightenin
hortage of computing power 3 2 6 All sites analysis model. Increase pool of opportunistic resources Decrations / Technology vailability of tape write bandwidth 2 4 8 CERN + Tier1 sites of physics program Decrease HLT trhoughput. Prioritize physics program vailability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot tore call data for end-of-year re-sprucing. Delay of physics analysis Delay re-sprucing to EYETS or LS3 Delay re-sprucing or get space by temporarily removing other datasets Inderestimation of disk buffer 3 3 9 WLCG data taking period Software	Disk shortage	3	3	9	WLCG sites	operations load and complexity, system resiliency. Delay in physics program More time to get adequate simulation samples.	feasible. Decide popularity.	Park data on cold storage and activate if when feasible. Decide what to store on disk based on popularity.	
Decretions / Technology Decrease HLT thoughput. Prioritize physics program vailability of tape write bandwidth 2 4 8 CERN + Tier1 sites of physics program Decrease HLT thoughput. Prioritize physics program vailability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot sfor end-of-year re-sprucing. Delay of physics analysis Delay re-sprucing to EYETS or LS3 underestimation of disk buffer 3 9 WLCG data taking period Delay re-sprucing to EYETS or LS3 Delay re-sprucing or get space by temporarily removing other datasets Delay re-sprucing to EYETS or LS3 Delay re-sprucing to EYETS or LS3 Deference 0 Deference Precover computing power by delaying simulatio Inderestimation of sprucing application 2 3 6 UHCb More computing power needed CERN Target achieved Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers recover computing power by delaying simulatio Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers Site Site Site Site	Shortage of computing power	3	2	6	All sites				
vailability of tape write bandwidth 2 4 8 CERN + Tier1 sites Cannot store data coming from HLT. Descoping of physics program Decrease HLT trhoughput. Prioritize physics program vailability of tape read bandwidth 2 4 8 CERN + Tier1 sites Cannot recail data for end-of-year re-sprucing. Delay re-sprucing to EYETS or LS3 Delay re-sprucing to EYETS or LS3 linderestimation of disk buffer 3 3 9 WLCG Delay re-sprucing slowed-down and extending into data taking period Delay re-sprucing or get space by temporarily removing other datasets Software Inderestimation of sprucing work 2 2 4 LHCb More computing power needed. YETS re- sprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulation production Inderestimation of analysis work 2 2 4 LHCb more computing power needed CERN Target analysis suffers inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers Site Expected Speed (GB/s) Target achieved inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis su			-						
valiability of tape write bandwidth 2 4 B CERN + Tier1 sites of physics program Decrease HLT trhoughput. Prioritize physics program valiability of tape read bandwidth 2 4 8 CERN + Tier1 sites Cannot recall data for end-of-year re-sprucing. Delay of physics analysis Delay re-sprucing to EYETS or LS3 Underestimation of disk buffer 3 3 9 WLCG More computing power needed. YETS re-sprucing or get space by temporarily removing other datasets Software 2 2 4 LHCb More computing power needed. YETS re-sprucing campaigns. Buffer space in not sufficient simulation; in (re-)sprucing campaigns. Buffer space in not sufficient simulation; physics Site expected Speed (GB/s) Target achieved Inderestimation of simulation work 2 2 4 LHCb more computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics Site Site Speed (GB/s) Target achieved Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics Site Site Speed (GB/s) Target achieved						Cannot store data coming from HLT. Descoping			
valiability of tape read bandwidth 2 4 8 CERN + Tier1 sites Cannot recall data for end-of-year re-sprucing. Delay of physics analysis Delay re-sprucing to EYETS or LS3 Inderestimation of disk buffer 3 3 9 WLCG Resprucing slowed-down and extending into data taking period Delay re-sprucing or get space by temporarily removing other datasets Software 2 4 LHCb More computing power needed. YETS re- sprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulation Inderestimation of analysis work 2 2 4 LHCb more computing power needed Inderestimation of simulation work 3 3 9 LHCb more computing power needed Inderestimation of simulation work 3 3 9 LHCb more computing power needed Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers Site Speed (GB/s) Target achieved Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers NCB3 1.25 Yes	Availability of tape write bandwidth	2	4	8	CERN + Tier1 sites		Decrease HLT trh	oughput. Prioritiz	e physics progra
Inderestimation of disk buffer 3 3 9 WLCG Resprucing slowed-down and extending into data taking period Delay re-sprucing or get space by temporarily removing other datasets Software Inderestimation of sprucing work 2 2 4 LHCb More computing power needed. YETS resprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulatio production Inderestimation of sprucing application 2 3 6 LHCb more computing power needed recover (GB/s) Target Inderestimation of simulation work 2 2 4 LHCb more computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF analysis suffers 2022 tape GRIDKA 2.23 Yes iskelihood: Impact: : we candeal with it, no problem 2 2 Yes No : never expected to happen 1: we can deal with it, no problem 2 2 4 LHCb/G4/HSF Cannot afford sufficient simulation; physics NoE is could happen but very unlikely 3 9 LHCb/G4/HSF Cannot afford sufficie									
Inderestimation of disk buffer 3 3 9 WLCG data taking period removing other datasets Software More computing power needed. YETS re-sprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulation Inderestimation of sprucing application 2 3 6 LHCb More computing power needed recover computing power by delaying simulation Inderestimation of analysis work 2 2 4 LHCb More computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF analysis suffers 2022 tape GRIDKA 2.23 Yes Inderestimation of simulation work 1 we can deal with it, no problem 2 2 4 Record Ral 2.96 -No Ikelihood: Impact: Caude happen 1: we can deal with it, no problem 2 2 4 Ral 2.96 -No Is could happen 1: we can deal with it, no problem 2 2 4 Ral 2.96 -No Inderestimation of simulation work 3: can be managed, but with signi	Availability of tape read bandwidth	2	4	8	CERN + Tier1 sites	Delay of physics analysis	Delay re-sprucing	g to EYETS or LS3	
Software More computing power needed. YETS re-sprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulatio production Inderestimation of sprucing application 2 3 6 LHCb More computing power needed. YETS re-sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulatio Inderestimation of analysis work 2 2 4 LHCb more computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CERN 11 Yes ikelihood: Impact: recourd cade with it, no problem 2 2 4 No No NCBJ 1.32 No : never expected to happen 1: we can deal with it, no problem 2 2 4 Challenge RAL 2.96 -No : could well happen 3: can be managed, but with significant effort WPITE RaL 2.96 -No				Resprucing slowed-down and extending into	Delay re-sprucing or get space by temporarily				
Inderestimation of sprucing work 2 2 4 LHCb More computing power needed. YETS resprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient recover computing power by delaying simulatio wailability of sprucing application 2 3 6 LHCb Inderestimation of analysis work 2 2 4 LHCb more computing power needed CERN 11 Yes Underestimation of analysis work 2 2 4 LHCb more computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers RRICK CERN 11 Yes ikelihood: Impact: . . 2022 tape NO Pic 0.2 Yes : never expected to happen 1: we can deal with it, no problem .	Underestimation of disk buffer	3	3	9	WLCG	data taking period	removing other datasets		
Inderestimation of sprucing work 2 2 4 LHCb sprucing is delayed delay in (re-)sprucing campaigns. Buffer space is not sufficient production Inderestimation of analysis work 2 2 4 LHCb more computing power needed Cannot afford sufficient simulation; physics analysis suffers Site expected Speed (GB/s) Target achieved Inderestimation of analysis work 2 2 4 LHCb more computing power needed Cannot afford sufficient simulation; physics analysis suffers CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CRIDKA 2.23 Yes i.kelihood: Impact: Impact: Zo222 tape challenge Challenge WPITE NCBJ 1.32 No i: never expected to happen 1: we can deal with it, no problem 2: a bit of a hassle but not too bad Zo222 tape challenge WPITE RAL RCKI 2.96 -No	Software						•		
Inderestimation of analysis work 2 2 4 LHCb more computing power needed CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CERN 11 Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CRNAF 1.72 -Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CRNAF 1.72 -Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CRNAF 1.72 -Yes Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CRNAF 1.72 -Yes Inderestimation of simulation work 1 Image: sufficient simulation; physics analysis suffers NCBJ 1.32 NO Inderestimation of simulation work 1 Image: sufficient simulation; physics analysis suffers Canno	Underestimation of sprucing work	2	2	4	LHCb	sprucing is delayed			
Inderestimation of simulation work 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CERN 11 Yes CNAF 1.72 -Yes GRIDKA 2.23 Yes INPact: Impact: 2022 tape NCBJ 1.32 No Is never expected to happen 1: we can deal with it, no problem Challenge Pic 0.2 Yes Is could happen but very unlikely 2: a bit of a hassle but not too bad Challenge RAL 2.96 -No RRCKI 0.25 Yes	Availability of sprucing application						Site		
Inderestimation of simulation work 3 3 9 LHCb/G4/HSF Cannot afford sufficient simulation; physics analysis suffers CNAF 1.72 -Yes GRIDKA 2.23 Yes Impact: Impact: NCBJ 1.32 No is never expected to happen 1: we can deal with it, no problem Challenge PIC 0.2.5 Yes is could happen but very unlikely 2: a bit of a hassle but not too bad Challenge RAL 2.90 -No is could well happen 3: can be managed, but with significant effort WPITE RRCKI 0.25 Yes	onderestimation of analysis work	1			Lines	more comparing power needed	CEDN	11	Voc
Inderestimation of simulation work 3 9 LHCb/G4/HSF analysis suffers GRIDKA 2.23 Yes Sikelihood: Impact: Impact: 2022 tape NCBJ 1.32 No Is never expected to happen 1: we can deal with it, no problem 2022 tape Pic 0.2 Yes Is could happen but very unlikely 2: a bit of a hassle but not too bad Challenge RAL 2.96 -No Is could well happen 3: can be managed, but with significant effort WPITE RRCKI 0.25 Yes						Cannot afford sufficient simulation; physics			
Impact:	Underestimation of simulation work	3	3	9	LHCb/G4/HSF				
Impact: Impact: NCBJ 1.32 No 1: we can deal with it, no problem 1: we can deal with it, no problem 2: a bit of a hassle but not too bad Challenge RAL 2.96 -No 1: could well happen 3: can be managed, but with significant effort WPITE RAL 0.25 Yes						.			
Impact: Impact: 2022 tape PIC 0.2 Yes : never expected to happen 1: we can deal with it, no problem challenge RAL 2.96 ~No : could happen but very unlikely 2: a bit of a hassle but not too bad challenge RAL 2.96 ~No :: could well happen 3: can be managed, but with significant effort WPITE RCKI 0.25 Yes									
: never expected to happen 1: we can deal with it, no problem : could happen but very unlikely 2: a bit of a hassle but not too bad challenge RAL 2.96 No :: could well happen 3: can be managed, but with significant effort WPITE RRCKI 0.25 Yes	Likelihood:	Impact:				2022 tape	1459439.055393.055		
t: could well happen 3: can be managed, but with significant effort W/DITE RRCKI 0.25 Yes	1: never expected to happen			and the second second		•			
o. can be managed, but with significant enort	2: could happen but very unlikely					challenge			
	3: could well happen 4: will probably happen	3: can be mana 4: crisis	aged, bu	t with signifi	cant effort	WRITE	SARA		

Lucio Anderlini Istituto Nazionale di Fisica Nucleare – Sezione di Firenze

Risk assessment LHCb-PUB-2021-002

2021

Sept. 2022

Referaggio del calcolo 2023

37

Final consideration on computing requests

Shortage of CPU and DISK resources may significant delay the physics output of the LHCb experiment, but we do not expect descoping of the program.

Lack of tape resources is worrisome, especially considering that increasing the available tape resources can hardly happen in an emergency.

Sticking to fair-share for CNAF tape resources represents a severe risk for LHCb data-taking.

Big effort ongoing in the Collaboration to add tape-enabled computing centers from other countries: NCBJ (Poland), IHEP (China), MGHPCC (USA)

Requests as approved by cRSG: <u>LHCb-PUB-2022-010</u>

			2023					
LI	HCb	Request	2023 req./ 2022 CRSG	2023 req. / 2022 pledge				
	Tier-0	215	114%	114%				
WLCG	Tier-1	707	114%	137%				
	Tier-2	391	113%	118%				
CPU	HLT	50	100%	100%				
	Sum	1364	113%	126%				
Others		50	100%	n/a				
Total		1,414	113%	124%				
	Tier-0	30.3	114%	114%				
Disk	Tier-1	60.5	114%	127%				
	Tier-2	11.6	114%	168%				
	Total	102.5	114%	126%				
	Tier-0	91	113%	112%				
Tape	Tier-1	157	113%	135%				
	Total	248.3	113%	126%				

ledge 2022 as from CRIC	wlcg-cric.cern.ch/	<u>/core/pledge/list/</u>
-------------------------	--------------------	---------------------------

Federation	$^{\downarrow \underline{h}}$	VO	$\downarrow_{\underline{h}}^{\pm}$	Туре	11	Pledge 11
IT-INFN-CNAF		LHCb		Tape		23044 TBytes
IT-INFN-CNAF		LHCb		CPU		103118 HEP-SPEC06
IT-INFN-CNAF		LHCb		Disk		10461 TBytes
IT-INFN-T2		LHCb		CPU		57197 HEP-SPEC06

Fair share INFN 2023 $rac{{ m PhD}(ar{c})}{\sum_c { m PhD}(c)} = 16.0\%$	$rac{ ext{PhD}(ar{c})}{\sum_{c\in \{ ext{w/Tier1}\}} ext{PhD}(c)}=26.4\%$			
Request	Pledge '23	Increment		
CPU Tier-1 [HS06]	113428	+10310		
DISK Tier-1 [TB]	11561	+1100		
Tape Tier-1 [TB]	41624*	+18580		
CPU Tier-2 [HS06]	62595	+5398		

*Tape request computed according to the LHCb formula.

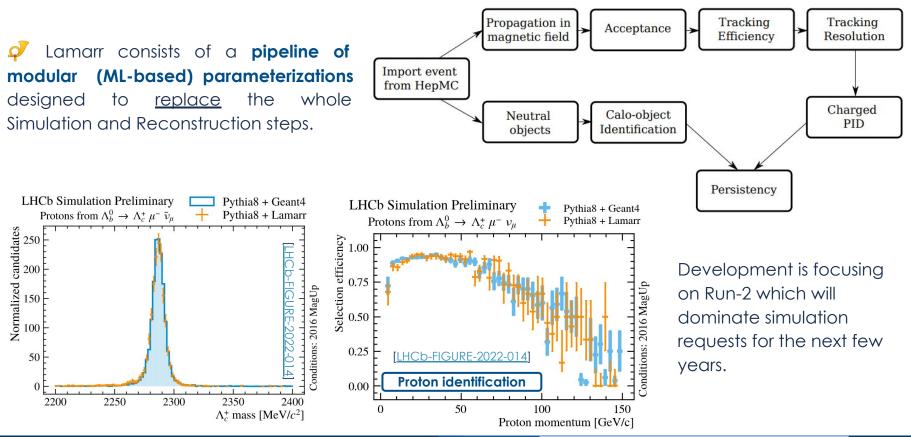
 $ext{TAPE}(ar{c}) = rac{ ext{PhD}(ar{c})}{\sum_{c \in \{ ext{w/ Tier1}\}} ext{PhD}(c)} imes ext{TAPE}_{ ext{cRSG}}$

Fair share would correspond to **25261 TB** (delta: **+2217 TB**) Difference (extra request beyond FS): **+16363 TB**

Conclusion

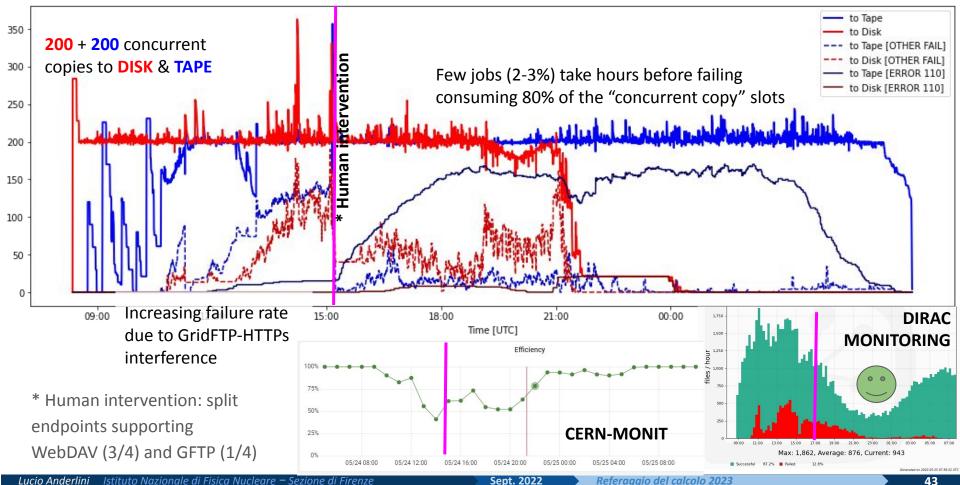
An important effort is ongoing within LHCb to **modernize the software and the development cycle**. The Italian community is a very relevant player in this game.

Covid-19 caused significant **delays to the start of Run-3** which set LHCb in a condition of *under-utilization of the computing resources,* in particular for the storage. This is however expected to change very quickly with the start of the data-taking, given the **large bandwidth of the experiment** and "*debugging*" needs related to the **commissioning of a new experiment**.


CNAF is one of the four major Tier1s providing resources to LHCb and is technologically ready for the upcoming challenge (though with some bottleneck, well identified).

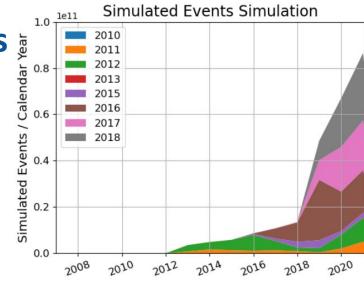
Pledging the resources requested by the experiment (especially tape) will consolidate the leading role of the Italian community in the experiment, contributing to its success.

Backup


Firenze (important synergy with ML_INFN and INFN Cloud)

Ultra-fast simulation: Lamarr

42


Third tape challenge: gory details

Effect of Fast & Filtered Simulations

As expected, during LS2 we had an explosion of requests for simulated samples, combining Run1 and Run2 data-taking conditions.

							*Logical
Year	Simulated events (10 ⁹)	Stored events (10 ⁹)	Ratio	CPU work kHS06.y	CPU per event kHS06.s	LFS TB	File Size
2017	10.3	4.2	40.3%	817	2.50	640	Fast S
2018	12.0	3.0	25.3%	1009	2.65	550	a dra
2019	45.0	6.9	15.2%	1290	0.90	1110	Filter
2020	67.0	16.8	31.7%	1357	0.81	2010	of sin
2021	80.0	11.1	13.9%	1815	0.72	2030	01 311

Fast Simulation options (ReDecay) enabled a drastic reduction of CPU/event.

Filtered productions reduced the impact of simulation on storage resources.