Sensitivity to NMO with subdetectors

Dmitry Dolzhikov, Maxim Gonchar

Joint Institute for Nuclear Research, Dubna

October 26, 2022

Motivation

- Sensitivity to neutrino mass ordering (NMO) depends on the choice of fiducial volume (FV) cut R_{cut}
- ▶ Bigger *R*_{cut} leads to more statistics, but worse energy resolution and higher accidental background
- There are two options to deal with it:
 - 1. Find optimal R_{cut} to maximize JUNO sensitivity to NMO
 - 2. Separate the JUNO detector into several subdetectors and take into account features of each subdetector in the analysis
- The second option can lead to increase of JUNO NMO sensitivity since we can use statistics that would be discarded in the first option

Overview

- Analysis was performed with GNA software;
- Asimov dataset was used;
- Six years of data taking;
- > JUNO detector was virtually divided into three parts with edges:

 $R_1 \in$ [0 m, 15 m], $R_2 \in$ (15 m, 16.2 m], and $R_3 \in$ (16.2 m, 17.2 m]

Overview

- Analysis was performed with GNA software;
- Asimov dataset was used;
- Six years of data taking;
- > JUNO detector was virtually divided into three parts with edges:

 $R_1 \in$ [0 m, 15 m], $R_2 \in$ (15 m, 16.2 m], and $R_3 \in$ (16.2 m, 17.2 m]

To perform subdetector NMO analysis one need to define subdetector related quantities:

- ✓ Fractions of IBD and backgrounds events in every subdetector and their correlations:
 - Fractions of uniformly distributed events (IBDs + all backgrounds except accidental);
 - Fractions of accidental background events;
- Energy resolution and LSNL for the subdetectors. By now all subdetectors use the same energy resolution and LSNL from common input.

Note on accidental background

- This work uses accidental spectrum different from common input since common input has no spatial distribution of events
- ► The difference between spectra is small
- Impact on the sensitivity is $\Delta \chi^2 \sim 0.001$

Subdetector edges choice

- 1. $R \in [0 \text{ m}, 15 \text{ m}]$: lowest number of accidental events, the best energy resolution, 66.3% of FV;
- 2. $R \in [15 \text{ m}, 16.2 \text{ m}]$: low number of accidental events, slightly worse energy resolution, 17.2% of FV;
- 3. $R \in [16.2 \text{ m}, 17.2 \text{ m}]$: biggest number of accidental events, worst energy resolution, 16.5% of FV;

A. Gavrikov, Yu. Malyshkin, F. Ratnikov: "Energy reconstruction for large liquid scinitillator detectors with machine learning techniques: aggregated features approach" (Docdb: 8044)

To define fractions of events:

- 1. Calculate initial fraction of events:
 - $\omega_i^{uni} = V_i / V_{tot}$ for uniformly distributed events;
 - $\omega_i^{acc} = N_i / N_{tot}$ for accidental background events;

To define fractions of events:

- 1. Calculate initial fraction of events:
 - $\omega_i^{uni} = V_i / V_{tot}$ for uniformly distributed events;
 - $\omega_i^{acc} = N_i / N_{tot}$ for accidental background events;

where i denotes subdetector number;

2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;

To define fractions of events:

- 1. Calculate initial fraction of events:
 - $\omega_i^{uni} = V_i / V_{tot}$ for uniformly distributed events;
 - $\omega_i^{acc} = N_i / N_{tot}$ for accidental background events;

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;

To define fractions of events:

- 1. Calculate initial fraction of events:
 - $\omega_i^{uni} = V_i / V_{tot}$ for uniformly distributed events;
 - $\omega_i^{acc} = N_i / N_{tot}$ for accidental background events;

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;
- 4. Recalculate fractions ω_i after shifting as $\omega_i = N_i/N_{tot}$;

To define fractions of events:

- 1. Calculate initial fraction of events:
 - $\omega_i^{uni} = V_i / V_{tot}$ for uniformly distributed events;
 - $\omega_i^{acc} = N_i / N_{tot}$ for accidental background events;

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;
- 4. Recalculate fractions ω_i after shifting as $\omega_i = N_i/N_{tot}$;
- 5. Repeat steps 3-4 100'000 times so we have sample of fractions of events after shifting which allow us to calculate fractions covariance and correlation matrices;

Fractions of uniform events

Obtained covariance and corerlation matrices for uniform events: Covariance Correlation ω_1 ω, ω_3 ω_3 ω_1 ω_2 1.05×10^{-7} -5.61×10^{-8} -4.85×10^{-8} 1.00 -0.46 -0.40 ω_1 ω_1 1.45×10^{-7} -8.89×10^{-8} -0.46 1.00 -0.63 ω_2 ω_2 -8.89×10^{-8} 1.37×10^{-7} -0.63 1.00 ω_{3} ω_{3}

 Uncertainties due to position reconstruction are about 10⁻⁵

Fractions of accidental background events

 Uncertainties due to position reconstruction are about 10⁻³

Current results

Three modes of the analysis:

- *nominal* mode: No division into subdetectors, analysis is the same as in the Dubna NMO technote (Docdb: 7489)
- sum mode: The detector is divided, but then all the spectra are summed. This mode should be consistent with nominal.
- concat mode: The detector is divided, the spectra are concatenated. Extra uncertainties are propagated to the fit.

Current results

Three modes of the analysis:

- nominal mode: No division into subdetectors, analysis is the same as in the Dubna NMO technote (Docdb: 7489)
- sum mode: The detector is divided, but then all the spectra are summed. This mode should be consistent with nominal.
- *concat* mode: The detector is divided, the spectra are concatenated. Extra uncertainties are propagated to the fit.

$\Delta\chi^2$	nominal	sum	concat
data NO	8.0567	8.0567	8.1001
data IO	8.6184	8.6288	8.6711

 $\Delta\chi^2\sim 0.043~{\rm sensitivity~increase~for~NO} \\ \Delta\chi^2\sim 0.053~{\rm sensitivity~increase~for~IO}$

Conclusion

- Subdetector NMO sensitivity analysis was performed;
- Events spill in/spill out between subdetectors due to JUNO spatial resolution is taken into account;
- ▶ By now, NMO sensitivity is increased by $\Delta \chi^2 \sim 0.043$ and $\Delta \chi^2 \sim 0.053$ for NO and IO respectively;
- ▶ WIP: Estimate energy resolution and LSNL for every subdetector that can lead to better results;