Sensitivity to NMO with subdetectors

Dmitry Dolzhikov, Maxim Gonchar

Joint Institute for Nuclear Research, Dubna

October 26, 2022

Motivation

- **In Sensitivity to neutrino mass ordering (NMO) depends on the choice of fiducial volume (FV) cut** R_{cut}
- \triangleright Bigger R_{cut} leads to more statistics, but worse energy resolution and higher accidental background
- \blacktriangleright There are two options to deal with it:
	- 1. Find optimal R_{cut} to maximize JUNO sensitivity to NMO
	- 2. Separate the JUNO detector into several subdetectors and take into account features of each subdetector in the analysis
- In The second option can lead to increase of JUNO NMO sensitivity since we can use statistics that would be discarded in the first option

Overview

- Analysis was performed with GNA software;
- \blacktriangleright Asimov dataset was used;
- \triangleright Six years of data taking;
- \triangleright JUNO detector was virtually divided into three parts with edges:

 $R_1 \in [0 \text{ m}, 15 \text{ m}], R_2 \in (15 \text{ m}, 16.2 \text{ m}], \text{ and } R_3 \in (16.2 \text{ m}, 17.2 \text{ m}]$

Overview

- \blacktriangleright Analysis was performed with GNA software;
- Asimov dataset was used:
- \triangleright Six years of data taking;
- \triangleright JUNO detector was virtually divided into three parts with edges:

 $R_1 \in [0 \text{ m}, 15 \text{ m}], R_2 \in (15 \text{ m}, 16.2 \text{ m}], \text{ and } R_3 \in (16.2 \text{ m}, 17.2 \text{ m}]$

To perform subdetector NMO analysis one need to define subdetector related quantities:

- \triangledown Fractions of IBD and backgrounds events in every subdetector and their correlations:
	- \triangleright Fractions of uniformly distributed events (IBDs + all backgrounds except accidental);
	- \blacktriangleright Fractions of accidental background events;
- \blacktriangleright Energy resolution and LSNL for the subdetectors. By now all subdetectors use the same energy resolution and LSNL from common input.

Note on accidental background

- \blacktriangleright This work uses accidental spectrum different from common input since common input has no spatial distribution of events
- \blacktriangleright The difference between spectra is small
- ► Impact on the sensitivity is $\Delta \chi^2 \sim 0.001$

Subdetector edges choice

- 1. $R \in [0 \text{ m}, 15 \text{ m}]$: lowest number of accidental events, the best energy resolution, 66.3% of FV;
- 2. $R \in [15 \text{ m}, 16.2 \text{ m}]$: low number of accidental events, slightly worse energy resolution, 17.2% of FV;
- 3. $R \in [16.2 \text{ m}, 17.2 \text{ m}]$: biggest number of accidental events, worst energy resolution, 16.5% of FV;

A. Gavrikov, Yu. Malyshkin, F. Ratnikov: "Energy reconstruction for large liquid scinitillator detectors with machine learning techniques: aggregated features approach" [\(Docdb: 8044\)](http://juno.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=8044)

To define fractions of events:

- 1. Calculate initial fraction of events:
	- $\blacktriangleright \omega_i^{uni} = V_i/V_{tot}$ for uniformly distributed events;
	- \blacktriangleright $\omega_i^{acc} = N_i/N_{tot}$ for accidental background events;

where i denotes subdetector number;

To define fractions of events:

- 1. Calculate initial fraction of events:
	- $\blacktriangleright \omega_i^{uni} = V_i/V_{tot}$ for uniformly distributed events;
	- \blacktriangleright $\omega_i^{acc} = N_i/N_{tot}$ for accidental background events;

where i denotes subdetector number;

2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;

To define fractions of events:

- 1. Calculate initial fraction of events:
	- $\blacktriangleright \omega_i^{uni} = V_i/V_{tot}$ for uniformly distributed events;
	- \blacktriangleright $\omega_i^{acc} = N_i/N_{tot}$ for accidental background events;

where i denotes subdetector number:

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;

To define fractions of events:

- 1. Calculate initial fraction of events:
	- $\blacktriangleright \omega_i^{uni} = V_i/V_{tot}$ for uniformly distributed events;
	- \blacktriangleright $\omega_i^{acc} = N_i/N_{tot}$ for accidental background events;

where i denotes subdetector number:

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;
- 4. Recalculate fractions ω_i after shifting as $\omega_i = N_i/N_{tot}$;

To define fractions of events:

- 1. Calculate initial fraction of events:
	- $\blacktriangleright \omega_i^{uni} = V_i/V_{tot}$ for uniformly distributed events;
	- \blacktriangleright $\omega_i^{acc} = N_i/N_{tot}$ for accidental background events;

where i denotes subdetector number:

- 2. Generate 100'000 uniform events and 1750 accidental events in a sphere of R=17.7 meters;
- 3. Since JUNO has spatial resolution of about 0.15 meters, each generated event was randomly shifted with $\theta \sim U(0, \pi)$, $\phi \sim U(0, 2\pi)$, and $r \sim N(0, 0.15)$;
- 4. Recalculate fractions ω_i after shifting as $\omega_i = N_i/N_{tot}$;
- 5. Repeat steps 3-4 100'000 times so we have sample of fractions of events after shifting which allow us to calculate fractions covariance and correlation matrices;

Fractions of uniform events

Obtained covariance and corerlation matrices for uniform events: 1 ω_2 ω_3 ω_1 ω ω ₃ 1.05×10^{-7} -5.61×10^{-8} -4.85×10^{-8} -5.61×10^{-8} 1.45×10^{-7} $7 - 8.89 \times 10^{-8}$ -4.85×10^{-8} -8.89×10^{-8} $8 \quad 1.37 \times 10^{-7}$ Covariance ω_2 ω_3 ω_1 ω ω ₃ 1.00 -0.46 -0.40 -0.46 1.00 -0.63 -0.40 -0.63 1.00 Correlation

 \blacktriangleright Uncertainties due to position reconstruction are about 10[−]⁵

Fractions of accidental background events

 \blacktriangleright I Incertainties due to position reconstruction are about 10^{-3}

Current results

Three modes of the analysis:

- \triangleright nominal mode: No division into subdetectors, analysis is the same as in the Dubna NMO technote [\(Docdb: 7489\)](http://juno.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=7489)
- \triangleright sum mode: The detector is divided, but then all the spectra are summed. This mode should be consistent with nominal.
- \triangleright concat mode: The detector is divided, the spectra are concatenated. Extra uncertainties are propagated to the fit.

Current results

Three modes of the analysis:

- \triangleright nominal mode: No division into subdetectors, analysis is the same as in the Dubna NMO technote [\(Docdb: 7489\)](http://juno.ihep.ac.cn/cgi-bin/DocDB/ShowDocument?docid=7489)
- \triangleright sum mode: The detector is divided, but then all the spectra are summed. This mode should be consistent with nominal.
- \triangleright concat mode: The detector is divided, the spectra are concatenated. Extra uncertainties are propagated to the fit.

 $\Delta\chi^2\sim 0.043$ sensitivity increase for NO $\Delta\chi^2\sim 0.053$ sensitivity increase for IO

Conclusion

- \triangleright Subdetector NMO sensitivity analysis was performed;
- In Events spill in/spill out between subdetectors due to JUNO spatial resolution is taken into account;
- ► By now, NMO sensitivity is increased by $\Delta\chi^2\sim 0.043$ and $\Delta\chi^2\sim 0.053$ for NO and IO respectively;
- I WIP: Estimate energy resolution and LSNL for every subdetector that can lead to better results;