Juno EU AM meeting Ferrara, October 24 - 25, 2022

Antineutrinos from reactors

Davide Chiesa

University and INFN of Milano - Bicocca

davide.chiesa@mib.infn.it

Introduction

Development of an analysis tool to generate and study the spectrum of antineutrinos from reactors

FEATURES

- Based on available nuclear data (ab initio calculation)
- Flexible and easy to use
- Can be coupled with reactor burnup simulations

Provides the unoscillated $\bar{\nu}_e$ spectrum with infinite energy resolution

Known limitations

Uncertainties from nuclear data

To be used for **benchmark** analysis with experimental data (TAO, JUNO, ...)

Input data

JUNO

We want transparent and easy to be updated/modified input data

LIVE CHART OF NUCLIDES

- Developed and maintained by the IAEA Nuclear Data Section (<u>link</u>)
- The LiveChart API (Application Programming Interface) allows the direct download of data
- The Livechart API works very effectively with Python data analysis libraries

We load the **nuclear data** we need for the ab initio calculation (fission yields, half-lives, beta decay Q-values, ...)

BETASHAPE

- The BetaShape program has been developed by the LNHB (Laboratoire National Henri Becquerel)
- Can be downloaded for free and run on most OS
- Its output was recently added to the Live Chart of Nuclides

We produce a data library with all the **spectra of antineutrinos** emitted in beta decays

First step: equilibrium spectrum

JUNO

- Generate the $\bar{\nu}_e$ spectra from the main fissile (²³⁵U, ²³⁹Pu, ²⁴¹Pu) and fissionable (²³⁸U) isotopes at the **equilibrium** condition
- Most fission products have relatively short half-lives and reach equilibrium (production rate = decay rate) in a negligible timescale

SUMMATION SPECTRUM AT EQUILIBRIUM

$$S_{\nu}(E) = \sum_{i} f_{i} \, S_{\nu,i}(E) = \sum_{i} f_{i} \sum_{j} y_{i,j} \, S_{\nu,j}(E)$$
Fission fraction Fission vields $\bar{\nu}_{e}$ spectrum of j-th isotope

Beta spectra included / missing

- ▶ There are ~ 700 fission products with $Q_{\beta^-} > 1.8$ MeV
- Currently, our database generated with BetaShape includes $\sim 400\,$ fission product spectra with $Q_{\beta^-}>1.8~{\rm MeV}$
- ▶ The fraction of included data in terms of fission yields is in the range 90 94%

...however, their contribution to the total spectrum does not scale as fission yields: it also depends on Q_{β^-} and branching ratios

	²³⁵ U	²³⁹ Pu	²⁴¹ Pu	²³⁸ U
Fission Products (Q>1.8 MeV)	655	696	703	677
Fission Products included	397	426	426	404
% FY included	93.9%	92.8%	91.7%	90.2%

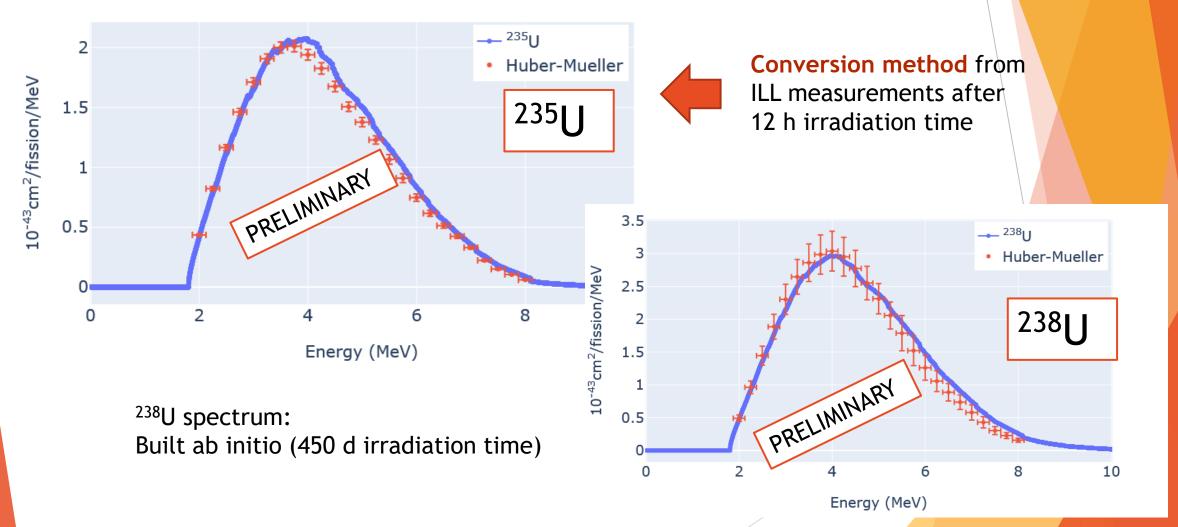
By adding the beta spectra of only 15 isotopes we would reach >99% for ²³⁵U and ²³⁹Pu

Multiplication by IBD cross section

Since TAO/JUNO will detect $\bar{\nu}_e$ through the IBD reaction, we multiply all $S_{\nu,j}(E)$ spectra by the IBD cross section:

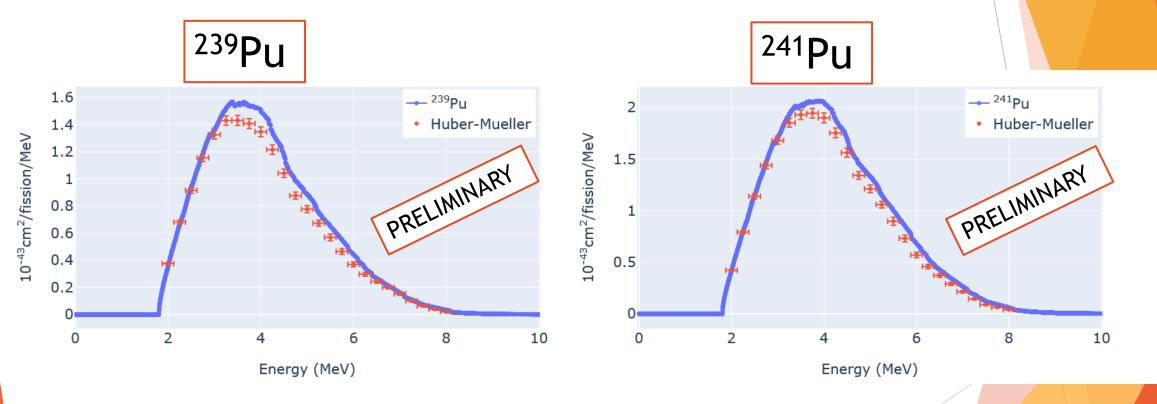
$$S_{\nu,j}^{IBD}(E) = \sigma_{IBD}(E) S_{\nu,j}(E)$$

- We take $\sigma_{IBD}(E)$ from Eq. 25 in "A. Strumia, F. Vissani, arXiv:astro-ph/0302055"
- We produced a collection of $S_{\nu,j}^{IBD}(E)$ spectra for all β^- decaying fission products


In this way:

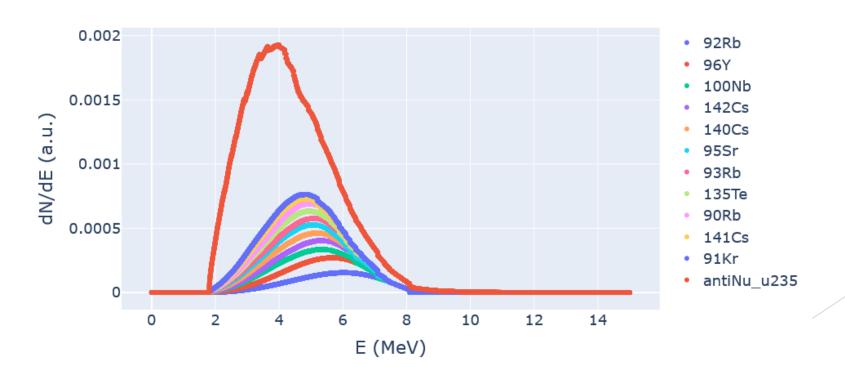
- we reduce the number of $\bar{\nu}_e$ spectra to be summed (1.8 MeV threshold)
- we can analyze the relative contribution of each fission product to the "IBD detectable" spectrum

235 U and 238 U IBD-weighted $\bar{\nu}_e$ spectra


We compare the IBD weighted $\bar{\nu}_e$ spectra with those obtained by Mueller et at (2011)

239 Pu and 241 Pu IBD-weighted $\bar{\nu}_e$ spectra

We compare the IBD weighted $\bar{\nu}_e$ spectra with those obtained by Mueller et at (2011) with the conversion method

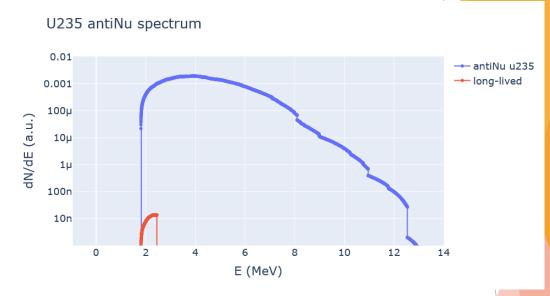

Overestimation at higher energies possibly due to the PANDEMONIUM EFFECT
 → need to investigate which isotopes need for a pandemonium effect correction in BetaShape

How many spectra to reach 99%?

JUNO

- To build up $\geq 99\%$ of our ab initio spectra we use between 130 and 160 spectra out of 400
- ▶ The first 10 spectra of ²³⁵U spectrum, ordered by integral area, are stacked below

First 10 components of U235 antiNu spectrum


Off-equilibrium long lived isotopes $(T_{1/2} > 10 d)$

- ► There are only 3 fission products: ¹²⁴Sb (60.2 d), ¹²⁶Sb (12.5 d), and ¹⁵⁶Eu (15.2 d)
- Their contribution to the $S_{\nu,j}^{IBD}(E)$ spectra is of the order of $10^{-6}-10^{-5}$ of integral area and limited to the lower energy region
- What about short-lived isotopes which are daughter of long-lived (off equilibrium) ones?

By searching in the Table of Isotopes there are only few limited cases, that emit neutrinos in the lower energy region below 4 MeV

	Shielding		Shielded	
A	isotope	t_1/2 (d)	isotope	Q (MeV)
66	Ni	2.275	Cu	2.63
90	Sr	10504.7	Υ	2.28
106	Ru	373.6	Rh	3.54
126	Sn	9.13E+07	Sb	3.67
131	Te131m	1.35	Te131	2.23
132	Te	3.2	1	3.58
140	Ba	12.75	La	3.76
144	Ce	284.6	Pr	2.99
166	Dy	3.4	Но	1.85

Conclusions and next steps

- A flexible and easy to use tool for generating ab initio antineutrino spectra is under development.
- ❖ A preliminary analysis of equilibrium spectra from ²³⁵U, ²³⁹Pu, ²⁴¹Pu, ²³⁸U fissions has been conducted.
- We must check whether BetaShape already takes into account for the Pandemonium effect or not
- The impact of off-equilibrium long-lived isotopes seems to be negligible...
- The LiveChart API allows also to import uncertainties associated to FY data
 - We plan to study the impact of such uncertainties in the next future
 - ► Through this tool we can focus on the uncertainties of most relevant isotopes
- This tool will be integrated with PWR reactor simulations (see Lorenzo Loi's talk tomorrow) to analyze the antineutrino spectrum dependence as a function of burnup (fission fractions)
- This tool is also aimed at analyzing the fine structures of the unoscillated $\bar{\nu}_e$ spectrum measured by TAO

Juno Italia meeting
May 5 - 6, 2022

Thanks for your attention

Davide Chiesa

University and INFN of Milano - Bicocca

davide.chiesa@mib.infn.it

