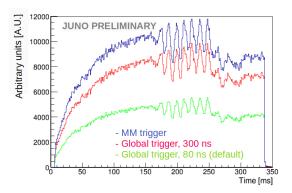
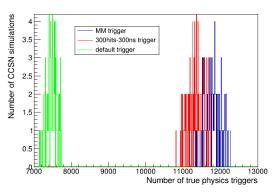
On the impact of the trigger on the CCSN signal event rates

Marta Colomer Molla marta.colomer@ulb.be

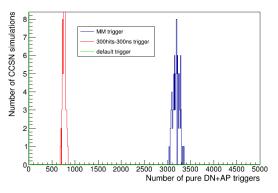

Detected neutrino lightcurve in JUNO:

- No interaction channel (flavor) classification
- No selection, all triggered events used for higher statistics (with global JUNO trigger for now)
- The effect(s) that we want to study are independent of the interaction channel
- We would aim at an almost real-time lightcurve analysis, reconstruction would take long
- Event trigger time from elecsim used to build the lightcurve

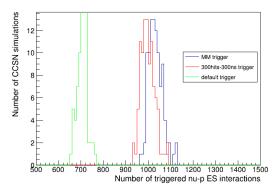
Reminder...


In previous meetings...

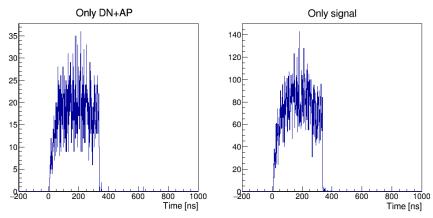
 \rightarrow different final triggered rates for CCSN events with the different triggers shown


Questions raised during review for Neutrino2022 / JUNO EU meeting:

- Is the increase in the rates with the MM trigger due to more $\nu\text{-p}$ ES events?
- Then, where does the difference between default and new global setup rates comes from?

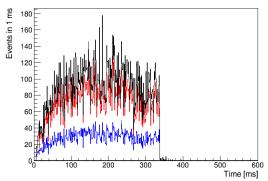


Conclusion:


 The number of total TRUE signal events increases almost the same with MM trigger OR with "new" global trigger setup with respect to "default"

- The difference between the two global trigger setups comes from an increase of signal AND of DN+AP events, dominated by signal increase
- With default trigger, negligible number of DN+AP triggers, not anymore with new global setup and MM triggers

- The number of triggered ν-p ES signal events is almost the same with MM trigger OR with "new" global trigger setup
 → longuer global trigger window allows to trigger DN+lowE signal events as the lower E threshold of the MM trigger
- The number of triggered ν -p ES signal events does not account for the total trigger signal rate increase



Large charge deposit (CCSN events Eav \sim 20 MeV) is accompanied by afterpulses \rightarrow DN+AP events (simulation) follow the same time distribution as signal events \rightarrow Signal and "background" are time correlated \rightarrow noise keeps signal features

Impact on the final event rates

- One single neutrino event is counted twise in the 1ms time bin when triggers a $\mathsf{DN} + \mathsf{AP}$ event. This double counting increases the sensitivity.
- This is also happening for SN IBD events: promt+delay signal double count, as there is no event selection

All triggers
Triggers with true physics hits
Triggers removing double counting

True neutrino events VS triggered events

Table: Comparison of the total number of events

True neutrino interactions (generated events)	Triggered events with signal, no double counting	Triggered events (all)			
~14.300	~9.400	~30.000			

- Without selection: \sim twice the true number of neutrinos
- After 100% eff selection, \sim 34% of the events are lost (not triggered)

Scan over events:

We can clearly see that indeed events are truly lost:

LOO	root [13] eventindex->Scan()													
***	*****	* * ·	******	**										
*	Row	*	Instance	*	eventid.e	*	nevents.n		* ta	gs	filenames	*		nhits *
***	***************************************													
*	0		0								/pnfs/iih		3	242 *
*			0		1		1		k	SN	/pnfs/iih		4	28253 *
*			0		2		1			SN	/pnfs/iih		4	72 *
*									k	SN	/pnfs/iih			28 *
*							0							
*										SN	/pnfs/iih			3363 *
*									k	SN	/pnfs/iih			325 *
*							1		k	SN	/pnfs/iih			400 *
*	8		0		8		1		k	SN	/pnfs/iih		11	26159 *
*					9		1		k	SN	/pnfs/iih		11	49 *
*	10		0		10		0							
*	11		0		11		0							
*	12		0		12		1			SN	/pnfs/iih		12	248 *
*	13		0		13		1			SN	/pnfs/iih		17	1492 *
*	14		0		14		1			SN	/pnfs/iih		28	17619 *
*	15		0		15		1				/pnfs/iih		28	37 *
*	16		0		16		0							
*	17		0		17		1		k	SN	/pnfs/iih		28	3370 *
*	18		0		18		1				/pnfs/iih		36	19385 *
*	19		0		19		1				/pnfs/iih		36	37 *
*	20		0		20		0				, , ,			
*	21				21		1			SN	/pnfs/iih		38	104 *
*	22		0		22						/pnfs/iih		39	115 *
*	23				23						/pnfs/iih		40	18207 *
*	24				24						/pnfs/iih		40	28 *

Impact on the sensitivity, example of SASI

Table: Sensitivity comparing the different triggers and conditions at 9 kpc.

Trigger:	new global: sig	MM: sig	MM: sig+DN-AP	MM: sig+DN-AP+ ¹⁴ C
Method 1	2.2 σ	2.4 σ	2.8 σ	2.6 σ
Method 2	3.1σ	3.3σ	3.7 σ	3.5 <i>σ</i>

- One cannot use all raw triggered events data without event selection
- "Double counting" was making our sensitvity "artifically" grow
- The loss of statistics after event selection will dramatically impact the sensitivity

Unordered triggered times? (issue #28)

Some trigger times come unordered:

```
8500513.0
                                       40 trigger time:
                                                                   (ns)
                   6591872.0
                               (ns)
  trigger time:
                                       41 trigger time:
                                                        8557448.0
                                                                   (ns)
 trigger time:
                   6611307.0
                               (ns)
                                       42 triager time:
                                                        8558599.0
                                                                   (ns)
  triager time:
                   6612457.0
                               (ns)
                                       43 trigger time:
                                                        8560247.0
                                                                   (ns)
 trigger time:
                 6614317.0
                               (ns)
                                       44 trigger time:
                                                        8561799.0
                                                                  (ns)
                                                        8879877.0
                                       45 trigger time:
                                                                  (ns)
 trigger time:
                 6616011.0
                               (ns)
                                       46 trigger time:
                                                        8659196.0
                                                                  (ns)
6 triager time: 7276221.0
                               (ns)
                                       47 trigger time:
                                                        50861272.0
                                                                   (ns)
 trigger time: 6645537.0
                               (ns)
                                       48 triager time:
                                                        8994437.0
                                                                  (ns)
8 triager time:
                   6727984.0
                               (ns)
                                       49 trigger time:
                                                        9038894.0
                                                                   (ns)
9 triager time:
                   6776377.0
                               (ns)
                                       50 trigger time:
                                                        9040045.0
```

Answer by experts: There is no ordering between sub-detectors (CD-WP-TT) do they happen in other sub-detectors (not CD)?

- In J21 I used to simulate this data set, WP/TT were yet not fully implemented
- I don't expect many MeV events interacting in CD to trigger also the WP
- I did not enable WP in my script configuration:

```
option $300009/offline/Examples/Tutorial/share/tut_detsin.py --evtnax=-1 --seed=${0515109} --output=${0515109} --user-output=${0515109} sn --input ${0516110} --relative-hittine

python $300009/offline/Examples/Tutorial/share/tut_detzelec.py --evtnax=-1 --seed=${01105109} --input=$N1551015109] --rate SN:1.0 --loop SN:0 --startidx SN:0 --enableSWode

python $300009/offline/Examples/Tutorial/share/tut_detzelec.py --evtnax=-1 --seed=${01105109} --input=SN:5{0115109} --rate SN:1.0 --loop SN:0 --startidx SN:0 --enableSWode

python $400009/offline/Examples/Tutorial/share/tut_detzelec.py --evtnax=-1 --seed=${01105109} --input=SN:5{0115109} --rate SN:1.0 --loop SN:0 --startidx SN:0 --enableSWode

python $400009/offline/Examples/Tutorial/share/tut_detzelec.py --evtnax=-1 --seed=${01105109} --input=SN:5{0115109} --rate SN:1.0 --loop SN:0 --startidx SN:0 --enableSWode
```

 \rightarrow Is this an issue?

Not able to access sub-detector info at elecsim (trigger) level in J21 files...

Conclusions/outlook:

- Significant number of triggers by DN+AP with MM and new global setup
- Still, MM trigger and new global trigger setup improve sensitivity for lightcurve studies (e.g. SASI, distance, etc)
- The signal increase with MM and new global setup triggers is not given by ν -p ES events only
- Removal of pure DN+AP (and of delayed IBDs) will decrease event statistics → impact on the lightcurve studies, reduces sensitivity
- WORK IN PROGRESS: event rates and sensitivity updates after event selection to:
 - Reject AP+DN events
 - Remove delayed IBD signals